Refactor audio synth

This commit is contained in:
Alex Clink 2022-02-12 21:34:49 -05:00
parent 22e6f007c4
commit 2cf7bf3df9
11 changed files with 488 additions and 290 deletions

View file

@ -4,138 +4,104 @@ require "../src/audio"
require "../src/audio/*" require "../src/audio/*"
module PF module PF
enum Instrument : UInt8
RetroVoice
PianoVoice
DrumVoice
end
class RetroVoice < Voice
def initialize(@note, time)
@envelope = Envelope.new(time,
attack_time: 0.01,
decay_time: 0.1,
sustain_level: 0.5,
release_time: 0.5
)
end
def hertz(time)
envelope.amplitude(time) * (
Oscilator.square(note.hertz, time, 7.0, 0.001)
)
end
end
class PianoVoice < Voice
def initialize(@note, time)
@envelope = Envelope.new(time,
attack_time: 0.001,
decay_time: 0.7,
sustain_level: 0.0,
release_time: 1.0
)
end
def hertz(time)
envelope.amplitude(time) * (
Oscilator.triangle(note.hertz - 1.5, time - 0.33)
Oscilator.saw(note.hertz, time, 5, 3.0, 0.000001) +
Oscilator.triangle(note.hertz + 1.5, time + 0.33)
) / 3.0
end
end
class DrumVoice < Voice
def initialize(@note, time)
@envelope = Envelope.new(time,
attack_time: 0.01,
decay_time: 1.0,
sustain_level: 0.0,
release_time: 0.1
)
end
def hertz(time)
envelope.amplitude(time) * (
Oscilator.noise(note.hertz + Math.sin(time / 10), time)
)
end
end
class Piano < Game class Piano < Game
@instrument : UInt8 = 0
@base_note : UInt8 = 69 # (in MIDI) - A4 / 440.0Hz
# Variables for drawing the piano keys
@highlight : Pixel = Pixel.new(120, 120, 120)
@text_hl : Pixel = Pixel.new(0, 200, 255)
@key_size : Int32 @key_size : Int32
@key_width : Int32 @key_width : Int32
@middle : Int32 @middle : Int32
@keys : UInt32 = 15 @keys : UInt32 = 16
@base_octave : Int8 = 4 @white_keys = [] of Tuple(Vector2(Int32), Vector2(Int32), String)
@accidentals : StaticArray(UInt8, 12) = StaticArray[0u8, 1u8, 0u8, 0u8, 1u8, 0u8, 1u8, 0u8, 0u8, 1u8, 0u8, 1u8] @black_keys = [] of Tuple(Vector2(Int32), Vector2(Int32), String)
@highlight : Pixel = Pixel.new(120, 120, 120)
@text_hl : Pixel = Pixel.new(0, 200, 255) @instruments : Array(Instrument) = [RetroVoice.new, PianoVoice.new, Flute.new, KickDrum.new, SnareDrum.new]
@instrument : Instrument = Instrument::RetroVoice
def initialize(*args, **kwargs) def initialize(*args, **kwargs)
super super
@text_color = Pixel.new(127, 127, 127)
@controller = PF::Controller(Keys).new({
Keys::UP => "octave up",
Keys::DOWN => "octave down",
Keys::LEFT => "prev inst",
Keys::RIGHT => "next inst",
Keys::Z => "A",
Keys::S => "A#/Bb",
Keys::X => "B",
Keys::C => "C",
Keys::F => "C#/Db",
Keys::V => "D",
Keys::G => "D#/Eb",
Keys::B => "E",
Keys::N => "F",
Keys::J => "F#/Gb",
Keys::M => "G",
Keys::K => "G#/Ab",
Keys::COMMA => "A+",
Keys::L => "A#/Bb+",
Keys::PERIOD => "B+",
Keys::SLASH => "C+",
Keys::APOSTROPHE => "C#/Db+",
})
@sounds = [] of Sound
@keysdown = {} of String => Tuple(Instrument, UInt32)
# Initialize an audio handler
# - the given Proc will be called at the sample rate/freq param (44.1Khz is standard)
# - the channel variable describes which speaker the sample is for
@audio = Audio.new(channels: 1) do |time, channel|
value = 0.0
@instruments.each do |instrument|
instrument.sounds.each do |sound|
value += sound.sample(time)
end
end
value
end
@key_size = height // 2 - 25 @key_size = height // 2 - 25
@key_width = width // 10 @key_width = width // 10
@middle = (height // 2) + 25 @middle = (height // 2) + 25
@text_color = Pixel.new(127, 127, 127) calculate_keys
@controller = PF::Controller(Keys).new({
Keys::UP => "up",
Keys::DOWN => "down",
Keys::KEY_1 => "1",
Keys::KEY_2 => "2",
Keys::KEY_3 => "3",
Keys::KEY_4 => "4",
Keys::KEY_5 => "5",
Keys::KEY_6 => "6",
Keys::KEY_7 => "7",
Keys::KEY_8 => "8",
Keys::KEY_9 => "9",
Keys::KEY_0 => "0",
Keys::Z => "A",
Keys::S => "AS",
Keys::X => "B",
Keys::C => "C",
Keys::F => "CS",
Keys::V => "D",
Keys::G => "DS",
Keys::B => "E",
Keys::N => "F",
Keys::J => "FS",
Keys::M => "G",
Keys::K => "GS",
Keys::COMMA => "A+",
Keys::L => "AS+",
Keys::PERIOD => "B+",
Keys::SLASH => "C+",
})
@sounds = [] of Voice # Without this, the audio will not make noise
@keysdown = {} of String => Voice @audio.play
end
@audio = Audio.new(channels: 1) do |time, channel| def calculate_keys(base : UInt8 = @base_note)
@sounds.reduce(0.0) do |total, sound| pos = 0
total + sound.hertz(time)
end while @white_keys.size > 0
@white_keys.pop
end end
@audio.play while @black_keys.size > 0
@black_keys.pop
end
@white_keys = [] of Tuple(Vector2(Int32), Vector2(Int32), String) 0.upto(@keys) do |n|
@black_keys = [] of Tuple(Vector2(Int32), Vector2(Int32), String) note = Note.new(@base_note + n)
name = n > 11 ? note.name + "+" : note.name
pos = 0 unless note.accidental?
(Note::NOTES + %w[A+ AS+ B+ C+]).map_with_index do |name, i| # Calculate the position of a white key
if @accidentals[i % 12] == 0
top_left = Vector[@key_width * pos, @middle - @key_size] top_left = Vector[@key_width * pos, @middle - @key_size]
bottom_right = Vector[(@key_width * pos) + @key_width, @middle + @key_size] bottom_right = Vector[(@key_width * pos) + @key_width, @middle + @key_size]
@white_keys << {top_left, bottom_right, name} @white_keys << {top_left, bottom_right, name}
# position from the left is increased by 1 for every white key
pos += 1 pos += 1
else else
# Calculate the position of a black key
# Black keys are thinner than white keys (space in between the black keys)
shrinkage = (@key_width // 8) shrinkage = (@key_width // 8)
# black keys are at the same position as the last, but half as tall and offset by half the width.
left = (@key_width * pos) - (@key_width // 2) + shrinkage left = (@key_width * pos) - (@key_width // 2) + shrinkage
top_left = Vector[left, @middle - @key_size] top_left = Vector[left, @middle - @key_size]
bottom_right = Vector[left + @key_width - (shrinkage * 2), @middle] bottom_right = Vector[left + @key_width - (shrinkage * 2), @middle]
@ -147,46 +113,44 @@ module PF
def update(dt, event) def update(dt, event)
@controller.map_event(event) @controller.map_event(event)
@base_octave = ((@base_octave + 1) % 8) if @controller.pressed?("up") @base_note += 12 if @controller.pressed?("octave up") && @base_note <= 112
@base_octave = ((@base_octave - 1) % 8) if @controller.pressed?("down") @base_note -= 12 if @controller.pressed?("octave down") && @base_note >= 21 + 12
@instrument = Instrument::RetroVoice if @controller.pressed?("1")
@instrument = Instrument::PianoVoice if @controller.pressed?("2")
@instrument = Instrument::DrumVoice if @controller.pressed?("3")
{% for name, n in Note::NOTES + %w[A+ AS+ B+ C+] %} if @controller.pressed?("next inst")
if @controller.pressed?({{name}}) @instrument = (@instrument + 1) % @instruments.size
voice = case @instrument end
when Instrument::RetroVoice
RetroVoice.new(Note.new({{n}}_i8, @base_octave), @audio.time) if @controller.pressed?("prev inst")
when Instrument::PianoVoice @instrument = @instruments.size.to_u8 if @instrument == 0
PianoVoice.new(Note.new({{n}}_i8, @base_octave), @audio.time) @instrument -= 1
when Instrument::DrumVoice end
DrumVoice.new(Note.new({{n}}_i8, @base_octave), @audio.time)
else 0.upto(@keys) do |n|
PianoVoice.new(Note.new({{n}}_i8, @base_octave), @audio.time) note = Note.new(n + @base_note)
end name = n > 11 ? note.name + "+" : note.name
@keysdown[{{name}}] = voice
@sounds << voice if @controller.pressed?(name)
note_id = @instruments[@instrument].on(note.hertz, @audio.time)
@keysdown[name] = {@instruments[@instrument], note_id}
end end
if @controller.released?({{name}}) if @controller.released?(name)
@keysdown[{{name}}].release(@audio.time) instrument, note_id = @keysdown[name]
@keysdown.delete({{name}}) instrument.off(note_id, @audio.time)
@keysdown.delete(name)
end end
{% end %} end
@sounds.reject!(&.finished?)
end end
def draw def draw
clear clear
text = <<-TEXT draw_string(<<-TEXT, 5, 5, @text_color)
Press up/down to change octave, Bottom row of keyboard plays notes Press up/down to change octave, Bottom row of keyboard plays notes
1 : RetroVoice, 2 : PianoVoice #{@instruments.map(&.name).join(", ")}
Octave: #{@base_octave}, Voice : #{@instrument} Octave: #{@base_note // 12 - 1}, Voice : #{@instruments[@instrument].name}
TEXT #{@instruments[@instrument].sounds.map { |s| s.hertz.round(2) }}
draw_string(text, 5, 5, @text_color) TEXT
@white_keys.each do |key| @white_keys.each do |key|
top_left, bottom_right, name = key top_left, bottom_right, name = key

View file

@ -0,0 +1,51 @@
require "../spec_helper"
require "../../src/audio/envelope"
include PF
describe Envelope do
describe "#stage" do
it "returns the correct current stage" do
attack = Envelope::Stage.new(0.5, 0.0, 1.0)
decay = Envelope::Stage.new(0.1, 1.0, 0.8)
sustain = Envelope::Stage.new(Float64::INFINITY, 0.8, 0.8)
release = Envelope::Stage.new(0.5, 1.0, 0.0)
env = Envelope.new(attack, decay, sustain, release)
stage, time = env.stage(0.4)
stage.should eq(attack)
time.round(2).should eq(0.4)
stage, time = env.stage(0.51)
stage.should eq(decay)
time.round(2).should eq(0.01)
stage, time = env.stage(0.61)
stage.should eq(sustain)
time.round(2).should eq(0.01)
end
end
describe "#amplitude" do
it "returns a known amplitude" do
attack = Envelope::Stage.new(1.0, 0.0, 1.0)
decay = Envelope::Stage.new(1.0, 1.0, 0.8)
sustain = Envelope::Stage.new(Float64::INFINITY, 0.8, 0.8)
release = Envelope::Stage.new(1.0, 1.0, 0.0)
env = Envelope.new(attack, decay, sustain, release)
# half attack
env.amplitude(time: 1.0, started_at: 0.5).should eq(0.5)
# peak
env.amplitude(time: 1.5, started_at: 0.5).should eq(1.0)
# half decay
env.amplitude(time: 2.0, started_at: 0.5).should eq(0.9)
# sustain
env.amplitude(time: 2.6, started_at: 0.5).should eq(0.8)
# release at half of release time (sustain / 2)
env.amplitude(time: 3.0, started_at: 0.5, released_at: 2.5).should eq(0.4)
end
end
end

View file

@ -1,16 +1,19 @@
module PF module PF
class Audio class Audio
# stored as a class variable to avoid garbage collection, since it's passed to a C function
@@box : Pointer(Void)? @@box : Pointer(Void)?
@spec : LibSDL::AudioSpec @spec : LibSDL::AudioSpec
@device_id : LibSDL::AudioDeviceID @device_id : LibSDL::AudioDeviceID
property volume = 0.5 property volume = 0.5
property clipping_scaler = 0.5 # https://dsp.stackexchange.com/questions/3581/algorithms-to-mix-audio-signals-without-clipping
property headroom = 0.4
delegate :freq, to: @spec delegate :freq, to: @spec
@playing : Bool = false @playing : Bool = false
getter time : Float64 = 0.0 getter time : Float64 = 0.0
@channel : UInt8 = 0u8 @channel : UInt8 = 0u8
def initialize(freq : Int32 = 44100, channels : UInt8 = 2, samples : UInt16 = 512, &callback : Float64, UInt8 -> Float64) def initialize(freq : Int32 = 44100, channels : UInt8 = 2, samples : UInt16 = 512, &callback : Float64, UInt8 -> Float64)
# Information to be passed to the audio callback
boxed_data = Box.box({ boxed_data = Box.box({
callback, callback,
(1 / freq) / channels, # the time per sample (1 / freq) / channels, # the time per sample
@ -18,7 +21,7 @@ module PF
pointerof(@time), pointerof(@time),
pointerof(@channel), pointerof(@channel),
channels, channels,
pointerof(@clipping_scaler), pointerof(@headroom),
}) })
@@box = boxed_data @@box = boxed_data
@ -28,24 +31,24 @@ module PF
channels: channels, channels: channels,
samples: samples, samples: samples,
callback: ->(userdata : Void*, stream : UInt8*, len : Int32) { callback: ->(userdata : Void*, stream : UInt8*, len : Int32) {
# return if len == 0 # Convert the stream into the correct type, AUDIO_S16SYS is a signed 16 bit integer
# Convert the stream into the correct type
stream = stream.as(Pointer(Int16)) stream = stream.as(Pointer(Int16))
# Calculate the correct length in size of Int16 (according to audio spec AUDIO_S16SYS) # Calculate the correct length in size of Int16 (according to audio spec AUDIO_S16SYS)
length = len // (sizeof(Int16) // sizeof(UInt8)) length = len // (sizeof(Int16) // sizeof(UInt8))
# Unbox the user callback # Unbox the user callback and other data
unboxed_data = Box(Tuple(typeof(callback), Float64, Float64*, Float64*, UInt8*, UInt8, Float64*)).unbox(userdata) unboxed_data = Box(Tuple(typeof(callback), Float64, Float64*, Float64*, UInt8*, UInt8, Float64*)).unbox(userdata)
user_callback, time_step, volume, time, channel, channel_count, clipping_scaler = unboxed_data user_callback, time_step, volume, time, channel, channel_count, headroom = unboxed_data
# Iterate over the size of the buffer # Iterate over the size of the buffer
0.upto(length - 1) do |x| 0.upto(length - 1) do |x|
# Call the user callback and recieve the sample # Call the user callback and recieve the sample
sample = user_callback.call(time.value, channel.value) sample = user_callback.call(time.value, channel.value)
# Channel is incremented every sample, because samples are interlaced
channel.value = (channel.value + 1) % channel_count channel.value = (channel.value + 1) % channel_count
# Increment the time # Increment the time, time_step was calculated as 1 out of the audio frequency divided by number of channels
time.value += time_step time.value += time_step
# Fill the buffer location with the sample # Fill the buffer location with the sample
# Make sure to convert the Float64 into a signed Int16 for compatability with the audio format # Make sure to convert the Float64 into a signed Int16 for compatability with the audio format
(stream + x).value = (sample * Int16::MAX * volume.value * clipping_scaler.value).clamp(Int16::MIN, Int16::MAX).to_i16 (stream + x).value = (sample * Int16::MAX * volume.value * headroom.value).clamp(Int16::MIN, Int16::MAX).to_i16
end end
}, },
userdata: boxed_data userdata: boxed_data

View file

@ -1,64 +1,92 @@
module PF module PF
struct Envelope # Enevelope represents an ADSR cycle to control the amplitude of a sound throughout its lifecycle
@attack_time : Float64 = 0.05 class Envelope
@decay_time : Float64 = 0.1 # An Envelope::Stage is a slice of time within an enveleope (Either A,D,S, or R)
@sustain_level : Float64 = 0.8 struct Stage
@release_time : Float64 = 0.5 # Linear interpolation function
@initial_level : Float64 = 1.0 def self.lerp
->(time : Float64, duration : Float64, initial : Float64, level : Float64) do
@started_at : Float64 = 0.0 initial + (time / duration) * (level - initial)
@released_at : Float64? = nil
@released : Bool = false
@finished : Bool = false
def initialize(@started_at : Float64, @attack_time = 0.05, @decay_time = 0.1, @sustain_level = 0.8, @release_time = 0.5)
end
def finished?
@finished
end
def amplitude(time : Float64)
amp = 0.0
duration = time - @started_at
if duration <= @attack_time
# Attack phase
amp = (duration / @attack_time) * @initial_level
elsif duration > @attack_time && duration <= (@attack_time + @decay_time)
# Decay phase
amp = ((duration - @attack_time) / @decay_time) * (@sustain_level - @initial_level) + @initial_level
else
if released_at = @released_at
duration = time - released_at
if duration <= @release_time
# Release phase
amp = ((duration / @release_time) * (-@sustain_level)) + @sustain_level
else
@finished = true
amp = 0.0
end
else
# Sustain phase
amp = @sustain_level
end end
end end
amp < 0.0001 ? 0.0 : amp # Pulsating linear interpolation
def self.wavy_lerp(hertz : Float64 = 50, amount : Float64 = 0.7)
->(time : Float64, duration : Float64, initial : Float64, level : Float64) do
lerp = (initial + (time / duration) * (level - initial))
(1.0 - amount) * lerp * Math.sin(time * hertz) + (amount * lerp)
end
end
# The length of time in seconds that this stage lasts
property duration : Float64
# The initial level of the amplitude
property initial : Float64 = 0.0
# The finial level of the amplitude
property level : Float64 = 1.0
# This function determines the shape of this stage (defaults to linear)
# params: time, duration, initial, level
property shape : Float64, Float64, Float64, Float64 -> Float64 = Stage.lerp
def initialize(@duration, @initial = 1.0, @level = 1.0)
end
def initialize(@duration, @initial, @level, @shape)
end
def initialize(@duration, @initial = 1.0, @level = 1.0, &@shape : Float64, Float64, Float64, Float64 -> Float64)
end
# Get the amplitude for this stage for *time*
# *time* should be relative to the start of this stage
def amplitude(time : Float64)
return 0.0 if time > @duration
shape.call(time, @duration, @initial, @level)
end
end end
def held? property attack : Stage = Stage.new(0.5, 0.0, 1.0)
@released_at.nil? property decay : Stage = Stage.new(0.1, 1.0, 0.8)
property sustain : Stage = Stage.new(Float64::INFINITY, 0.8, 0.8)
property release : Stage = Stage.new(0.5, 1.0, 0.0)
def initialize
end end
def released? def initialize(@attack, @decay, @sustain, @release)
!@released_at.nil?
end end
def release(time : Float64) # The length of time this envelope should last for
@released_at = time # note: might be inifinite if sustain has an infinite duration
def duration
attack.duration + decay.duration + sustain.duration + release.duration
end
# Given a *relative_time* to when the current stage of the envelope was started,
# returns the current stage (ADSR), along with the relative_time into that stage
def stage(relative_time : Float64)
return {@attack, relative_time} if relative_time < @attack.duration
relative_time -= @attack.duration
return {@decay, relative_time} if relative_time < @decay.duration
relative_time -= @decay.duration
return {@sustain, relative_time}
end
# Givin an absolute *time*, along with when the envelope was *started_at*, and *released_at?*
# returns the current aplitude of the enveloped sound
def amplitude(time : Float64, started_at : Float64, released_at : Float64? = nil)
current_stage, relative_time = stage(time - started_at)
amp = current_stage.amplitude(relative_time)
if released_at
# The release stage is calculated based on the time into the current stage
amp * @release.amplitude(time - released_at)
else
amp
end
end end
end end
end end

109
src/audio/instrument.cr Normal file
View file

@ -0,0 +1,109 @@
module PF
class Instrument
property name : String = "Unnamed Instrument"
property envelope : Envelope
property wave : Sound::Wave
getter sounds : Array(Sound) = [] of Sound
@notes : Hash(UInt32, Sound) = {} of UInt32 => Sound
@note_id = 0_u32
def initialize(@envelope, @wave)
end
def on(hertz : Float64, time : Float64)
@note_id += 1_u32
sound = Sound.new(hertz, @envelope, time, @wave)
@notes[@note_id] = sound
@sounds << sound
@note_id
end
def off(note_id : UInt32, time : Float64)
sound = @notes[note_id]
sound.release!(time)
spawn do
sleep @envelope.release.duration
@sounds.delete(sound)
@notes.delete(note_id)
end
end
end
class RetroVoice < Instrument
def initialize
@name = "Retro"
@envelope = Envelope.new(
attack: Envelope::Stage.new(0.01, 0.0, 1.0),
decay: Envelope::Stage.new(0.1, 1.0, 0.5),
sustain: Envelope::Stage.new(Float64::INFINITY, 0.5, 0.5),
release: Envelope::Stage.new(0.5, 1.0, 0.0)
)
@wave = Sound.saw_wave(7.0, 0.001)
end
end
class PianoVoice < Instrument
def initialize
@name = "Piano"
@envelope = Envelope.new(
attack: Envelope::Stage.new(0.001, 0.0, 1.0),
decay: Envelope::Stage.new(0.7, 1.0, 0.0),
sustain: Envelope::Stage.new(0.0, 0.0, 0.0),
release: Envelope::Stage.new(0.5, 1.0, 0.0)
)
@wave = Sound.triangle_wave(6.0, 0.0005)
end
end
class Flute < Instrument
def initialize
@name = "Flute"
@envelope = Envelope.new(
attack: Envelope::Stage.new(0.1, 0.0, 1.0),
decay: Envelope::Stage.new(0.3, 1.0, 0.7),
sustain: Envelope::Stage.new(5.0, 0.7, 0.0),
release: Envelope::Stage.new(0.5, 1.0, 0.0)
)
@wave = Sound.sin_wave(5.0, 0.001)
end
end
class KickDrum < Instrument
def initialize
@name = "KickDrum"
@envelope = Envelope.new(
attack: Envelope::Stage.new(0.0005, 0.0, 1.0),
decay: Envelope::Stage.new(0.052, 1.0, 0.0, Envelope::Stage.wavy_lerp(60, 1.0)),
sustain: Envelope::Stage.new(0.0, 0.0, 0.0),
release: Envelope::Stage.new(0.3, 1.0, 0.0)
)
@wave = ->(time : Float64, hertz : Float64) do
hertz = 180.31
av = 2 * Math::PI * (hertz / 2.0) * time
drop_time = 10.0
drop = (drop_time - time) / drop_time
Math.cos(av * drop - 1.0) * 3.0
end
end
end
class SnareDrum < Instrument
def initialize
@name = "SnareDrum"
@envelope = Envelope.new(
attack: Envelope::Stage.new(0.0005, 0.0, 1.0),
decay: Envelope::Stage.new(0.052, 1.0, 0.0, Envelope::Stage.wavy_lerp(60, 1.0)),
sustain: Envelope::Stage.new(0.0, 0.0, 0.0),
release: Envelope::Stage.new(0.3, 1.0, 0.0)
)
@wave = ->(time : Float64, hertz : Float64) do
av = 2 * Math::PI * (hertz / 2.0) * time
drop_time = 10.0
drop = (drop_time - time) / drop_time
Math.cos(av * drop - 1.0) * 3.0 + rand(-0.2..0.2)
end
end
end
end

View file

@ -1,49 +1,74 @@
module PF module PF
struct Note struct Note
TWELFTH_ROOT = 2 ** (1 / 12) NAMES = %w[C C#/Db D D#/Eb E F F#/Gb G G#/Ab A A#/Bb B]
NOTES = %w[A AS B C CS D DS E F FS G GS] ACCIDENTALS = StaticArray[1u8, 3u8, 6u8, 8u8, 10u8]
property note : Int8 = 0 getter tuning : Float64 = 440.0
property octave : Int8 = 4 getter number : Float64
@hertz : Float64? = nil
@index : UInt8? = nil
@name : String? = nil
@is_accidental : Bool? = nil
def initialize def initialize(@number, @tuning = 440.0)
end end
def initialize(@note, @octave = 4i8) def initialize(number : Number, tuning : Number = 440.0)
@number, @tuning = number.to_f, tuning.to_f
end end
def name def name
NOTES[@note % 12] @name ||= NAMES[index]
end end
def base_hertz def index
27.5 * (2 ** @octave) @index ||= @number.to_u8 % 12
end
def octave
(@number.to_i // 12) - 1
end
def accidental?
@is_accidental ||= ACCIDENTALS.includes?(index)
end end
def hertz def hertz
base_hertz * (TWELFTH_ROOT ** @note) @hertz ||= tuning * ((2 ** ((@number - 69) / 12)))
end end
def +(value : UInt8) def tuning=(value : Float64)
octave_shift, note = (@note.to_i + value).divmod(12) Note.new(@number, value)
octave = (@octave + octave_shift).clamp(0i8, 8i8)
Note.new(@note + value, @octave)
end end
def -(value : Int) def note=(value : Float64)
octave_shift, note = (@note.to_i - value).divmod(12) Note.new(value, @tuning)
octave = (@octave + octave_shift).clamp(0i8, 8i8) end
Note.new(note.to_i8, octave.to_i8)
def +(value : Float64)
Note.new(@number + value, tuning)
end
def -(value : Float64)
Note.new(@number - value, tuning)
end
def *(value : Float64)
Note.new(@number * value, tuning)
end
def /(value : Float64)
Note.new(@number / value, tuning)
end end
# # Decabells to volume # # Decabells to volume
# def db_to_volume(db : Float64) # def db_to_volume(db : Float64)
# 10.0 ** (0.05 * db) # 10.0 ** (0.05 * db)
# end # end
#
# # Volume to decabells # # Volume to decabells
# def volume_to_db(volume : Float64) # def volume_to_db(volume : Float64)
# 20.0 * Math.log10f(volume) # 20.0 * Math.log(volume, 10)
# end # end
end end
end end

View file

@ -1,53 +0,0 @@
module PF
module Oscilator
TWELFTH_ROOT = 2 ** (1 / 12)
def self.base_freq(hertz : Float64, time : Float64, lfo_hertz : Float64 = 0.0, lfo_amp : Float64 = 0.0)
av(hertz) * time + lfo_amp * hertz * Math.sin(av(lfo_hertz) * time)
end
# Calculate a sine wave ~~~~~~~~
def self.sin(hertz : Float64, time : Float64, lfo_hertz : Float64 = 0.0, lfo_amp : Float64 = 0.0)
Math.sin(base_freq(hertz, time, lfo_hertz, lfo_amp))
# Math.sin(av(hertz) * time)
end
# Calculate a square wave _|-|_|-|_
def self.square(hertz : Float64, time : Float64, lfo_hertz : Float64 = 0.0, lfo_amp : Float64 = 0.0)
Math.sin(base_freq(hertz, time, lfo_hertz, lfo_amp)) > 0 ? 1.0 : 0.0
end
# Calculate a triangle wave /\/\/\/\/
def self.triangle(hertz : Float64, time : Float64, lfo_hertz : Float64 = 0.0, lfo_amp : Float64 = 0.0)
Math.asin(Math.sin(base_freq(hertz, time, lfo_hertz, lfo_amp))) * 2.0 / Math::PI
end
# Calculate a sawtooth wave by addition of sine waves
# the more *sins* specified, the closer the waveform will
# match a straight sawtooth wave
# /|/|/|/|
def self.saw(hertz : Float64, time : Float64, sins : Int, lfo_hertz : Float64 = 0.0, lfo_amp : Float64 = 0.0)
value = 0.0
n = 0.0
while (n += 1.0) < sins
value += Math.sin(n * base_freq(hertz, time, lfo_hertz, lfo_amp)) / n
end
value * (2.0 / Math::PI)
end
# Calculate a sawtooth wave
def self.saw(hertz : Float64, time : Float64, lfo_hertz : Float64 = 0.0, lfo_amp : Float64 = 0.0)
(2.0 / Math::PI) * (hertz * Math::PI * (time % (1.0 / hertz)) - (Math::PI / 2.0))
end
# Produces static noise
def self.noise(hertz : Float64, time : Float64, lfo_hertz : Float64 = 0.0, lfo_amp : Float64 = 0.0)
rand(-1.0..1.0)
end
# Convert hertz into angular velocity
def self.av(hertz)
2.0 * Math::PI * hertz
end
end
end

81
src/audio/sound.cr Normal file
View file

@ -0,0 +1,81 @@
module PF
class Sound
private TWO_PI = 2 * Math::PI
# Params: time, hertz
alias Wave = Float64, Float64 -> Float64
# Calculate a sine wave ~~~~~~~~
def self.sin_wave(lfo_hertz : Float64 = 0.0, lfo_amp : Float64 = 0.0) : Wave
->(time : Float64, hertz : Float64) do
Math.sin(TWO_PI * hertz * time +
lfo_amp * hertz * Math.sin(TWO_PI * lfo_hertz * time))
end
end
# # Calculate a square wave _|-|_|-|_
def self.square_wave(lfo_hertz : Float64 = 0.0, lfo_amp : Float64 = 0.0) : Wave
->(time : Float64, hertz : Float64) do
Math.sin(TWO_PI * hertz * time +
lfo_amp * hertz * Math.sin(TWO_PI * lfo_hertz * time)) > 0 ? 0.7 : -0.7
end
end
# Calculate a triangle wave /\/\/\/\/
def self.triangle_wave(lfo_hertz : Float64 = 0.0, lfo_amp : Float64 = 0.0) : Wave
->(time : Float64, hertz : Float64) do
Math.asin(Math.sin(
TWO_PI * hertz * time +
lfo_amp * hertz * Math.sin(TWO_PI * lfo_hertz * time)
)) * (2 / Math::PI)
end
end
# Calculate a sawtooth wave by addition of sine waves
# the more *sins* specified, the closer the waveform will
# match a straight sawtooth wave
# /|/|/|/|
def self.saw_wave(sins : Int, lfo_hertz : Float64 = 0.0, lfo_amp : Float64 = 0.0) : Wave
->(time : Float64, hertz : Float64) do
value = 0.0
n = 0.0
while (n += 1.0) < sins
value += Math.sin(TWO_PI * hertz * time + lfo_amp * hertz * Math.sin(TWO_PI * lfo_hertz * time)) / n
end
value * (2.0 / Math::PI)
end
end
# Calculate a sawtooth wave
# /|/|/|/|
def self.saw_wave(lfo_hertz : Float64 = 0.0, lfo_amp : Float64 = 0.0) : Wave
->(time : Float64, hertz : Float64) do
(2.0 / Math::PI) * (hertz * Math::PI * (time % (1.0 / hertz)) - (Math::PI / 2.0))
end
end
property hertz : Float64
property lfo_hertz : Float64 = 7.0
property lfo_amp : Float64 = 0.002
property envelope : Envelope
property started_at : Float64
property wave : Wave
property released_at : Float64? = nil
def initialize(@hertz, @envelope, @started_at, @wave = Sound.sin_wave)
end
def sample(time : Float64)
@wave.call(time - @started_at, @hertz) *
@envelope.amplitude(time, @started_at, @released_at)
end
def release!(time : Float64)
@released_at = time
end
def finished?(time : Float64)
return false unless release_time = @released_at
(time - release_time) > @envelope.release.duration
end
end
end

View file

@ -1,16 +0,0 @@
module PF
abstract class Voice
delegate :start, :release, :held?, :released?, :finished?, to: @envelope
property envelope : Envelope
property note : Note
def initialize(@note : Note, time : Float64)
@envelope = Envelope.new(time)
end
abstract def hertz(time : Float64)
def finished?(time : Float64)
end
end
end

View file

@ -24,6 +24,7 @@ module PF
@fps_current : UInt32 = 0 # the current FPS. @fps_current : UInt32 = 0 # the current FPS.
@fps_frames : UInt32 = 0 # frames passed since the last recorded fps. @fps_frames : UInt32 = 0 # frames passed since the last recorded fps.
@last_time : Float64 = Time.monotonic.total_milliseconds @last_time : Float64 = Time.monotonic.total_milliseconds
@engine_started_at : Float64 = Time.monotonic.total_milliseconds
def initialize(@width, @height, @scale = 1, @title = self.class.name, def initialize(@width, @height, @scale = 1, @title = self.class.name,
flags = SDL::Renderer::Flags::ACCELERATED, flags = SDL::Renderer::Flags::ACCELERATED,
@ -59,7 +60,11 @@ module PF
end end
def elapsed_time def elapsed_time
Time.monotonic.total_milliseconds Time.monotonic.total_milliseconds - @engine_started_at
end
def elapsed_seconds
elapsed_time / 1000
end end
def clear(r = 0, g = 0, b = 0) def clear(r = 0, g = 0, b = 0)
@ -84,10 +89,11 @@ module PF
end end
private def engine_update(event) private def engine_update(event)
et = elapsed_time et = Time.monotonic.total_milliseconds
calculate_fps(et) calculate_fps(et)
update((et - @last_time) / 1000.0, event) update((et - @last_time) / 1000.0, event)
@last_time = et @last_time = et
Fiber.yield
GC.collect GC.collect
end end

View file

@ -97,7 +97,7 @@ module PF
def draw_string(msg : String, x : Int, y : Int, color : Pixel = Pixel.black, bg : Pixel? = nil) def draw_string(msg : String, x : Int, y : Int, color : Pixel = Pixel.black, bg : Pixel? = nil)
cur_y = 0 cur_y = 0
cur_x = 0 cur_x = 0
leading = 0 leading = 2
msg.chars.each do |c| msg.chars.each do |c|
if c == '\n' if c == '\n'