libliftoff/alloc.c

697 lines
19 KiB
C
Raw Permalink Normal View History

#include <assert.h>
#include <errno.h>
#include <inttypes.h>
#include <limits.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "log.h"
#include "private.h"
/* Plane allocation algorithm
*
* Goal: KMS exposes a set of hardware planes, user submitted a set of layers.
* We want to map as many layers as possible to planes.
*
* However, all layers can't be mapped to any plane. There are constraints,
* sometimes depending on driver-specific limitations or the configuration of
* other planes.
*
* The only way to discover driver-specific limitations is via an atomic test
* commit: we submit a plane configuration, and KMS replies whether it's
* supported or not. Thus we need to incrementally build a valid configuration.
*
* Let's take an example with 2 planes and 3 layers. Plane 1 is only compatible
* with layer 2 and plane 2 is only compatible with layer 3. Our algorithm will
* discover the solution by building the mapping one plane at a time. It first
* starts with plane 1: an atomic commit assigning layer 1 to plane 1 is
* submitted. It fails, because this isn't supported by the driver. Then layer
* 2 is assigned to plane 1 and the atomic test succeeds. We can go on and
* repeat the operation with plane 2. After exploring the whole tree, we end up
* with a valid allocation.
*
*
* layer 1 layer 1
* +---------> failure +---------> failure
* | |
* | |
* | |
* +---------+ | +---------+ |
* | | | layer 2 | | | layer 3 final allocation:
* | plane 1 +------------>+ plane 2 +--+---------> plane 1 layer 2
* | | | | | plane 2 layer 3
* +---------+ | +---------+
* |
* |
* | layer 3
* +---------> failure
*
*
* Note how layer 2 isn't considered for plane 2: it's already mapped to plane
* 1. Also note that branches are pruned as soon as an atomic test fails.
*
* In practice, the primary plane is treated separately. This is where layers
* that can't be mapped to any plane (e.g. layer 1 in our example) will be
* composited. The primary plane is the first that will be allocated. Then all
* other planes will be allocated, from the topmost one to the bottommost one.
*
* The "zpos" property (which defines ordering between layers/planes) is handled
* as a special case. If it's set on layers, it adds additional constraints on
* their relative ordering. If two layers intersect, their relative zpos needs
* to be preserved during plane allocation.
*
* Implementation-wise, the output_choose_layers function is called at each node
* of the tree. It iterates over layers, check constraints, performs an atomic
* test commit and calls itself recursively on the next plane.
*/
/* Global data for the allocation algorithm */
struct alloc_result {
drmModeAtomicReq *req;
size_t planes_len;
struct liftoff_layer **best;
int best_score;
/* per-output */
bool has_composition_layer;
size_t non_composition_layers_len;
};
/* Transient data, arguments for each step */
struct alloc_step {
struct liftoff_list *plane_link; /* liftoff_plane.link */
size_t plane_idx;
struct liftoff_layer **alloc; /* only items up to plane_idx are valid */
int score; /* number of allocated layers */
int last_layer_zpos;
bool composited; /* per-output */
};
static void plane_step_init_next(struct alloc_step *step,
struct alloc_step *prev,
struct liftoff_layer *layer)
{
struct liftoff_plane *plane;
struct liftoff_layer_property *zpos_prop;
plane = liftoff_container_of(prev->plane_link, plane, link);
step->plane_link = prev->plane_link->next;
step->plane_idx = prev->plane_idx + 1;
step->alloc = prev->alloc;
step->alloc[prev->plane_idx] = layer;
if (layer != NULL && layer == layer->output->composition_layer) {
assert(!prev->composited);
step->composited = true;
} else {
step->composited = prev->composited;
}
if (layer != NULL && layer != layer->output->composition_layer) {
step->score = prev->score + 1;
} else {
step->score = prev->score;
}
zpos_prop = NULL;
if (layer != NULL) {
zpos_prop = layer_get_property(layer, "zpos");
}
if (zpos_prop != NULL && plane->type != DRM_PLANE_TYPE_PRIMARY) {
step->last_layer_zpos = zpos_prop->value;
} else {
step->last_layer_zpos = prev->last_layer_zpos;
}
}
static bool is_layer_allocated(struct alloc_step *step,
struct liftoff_layer *layer)
{
size_t i;
/* TODO: speed this up with an array of bools indicating whether a layer
* has been allocated */
for (i = 0; i < step->plane_idx; i++) {
if (step->alloc[i] == layer) {
return true;
}
}
return false;
}
static bool has_composited_layer_over(struct liftoff_output *output,
struct alloc_step *step,
struct liftoff_layer *layer)
{
struct liftoff_layer *other_layer;
struct liftoff_layer_property *zpos_prop, *other_zpos_prop;
zpos_prop = layer_get_property(layer, "zpos");
if (zpos_prop == NULL) {
return false;
}
liftoff_list_for_each(other_layer, &output->layers, link) {
if (is_layer_allocated(step, other_layer)) {
continue;
}
other_zpos_prop = layer_get_property(other_layer, "zpos");
if (other_zpos_prop == NULL) {
continue;
}
if (layer_intersects(layer, other_layer) &&
other_zpos_prop->value > zpos_prop->value) {
return true;
}
}
return false;
}
static bool has_allocated_layer_over(struct liftoff_output *output,
struct alloc_step *step,
struct liftoff_layer *layer)
{
ssize_t i;
struct liftoff_plane *other_plane;
struct liftoff_layer *other_layer;
struct liftoff_layer_property *zpos_prop, *other_zpos_prop;
zpos_prop = layer_get_property(layer, "zpos");
if (zpos_prop == NULL) {
return false;
}
i = -1;
liftoff_list_for_each(other_plane, &output->device->planes, link) {
i++;
if (i >= (ssize_t)step->plane_idx) {
break;
}
if (other_plane->type == DRM_PLANE_TYPE_PRIMARY) {
continue;
}
other_layer = step->alloc[i];
if (other_layer == NULL) {
continue;
}
other_zpos_prop = layer_get_property(other_layer, "zpos");
if (other_zpos_prop == NULL) {
continue;
}
/* Since plane zpos is descending, this means the other layer is
* supposed to be under but is mapped to a plane over the
* current one. */
if (zpos_prop->value > other_zpos_prop->value &&
layer_intersects(layer, other_layer)) {
return true;
}
}
return false;
}
static bool has_allocated_plane_under(struct liftoff_output *output,
struct alloc_step *step,
struct liftoff_layer *layer)
{
struct liftoff_plane *plane, *other_plane;
ssize_t i;
plane = liftoff_container_of(step->plane_link, plane, link);
i = -1;
liftoff_list_for_each(other_plane, &output->device->planes, link) {
i++;
if (i >= (ssize_t)step->plane_idx) {
break;
}
if (other_plane->type == DRM_PLANE_TYPE_PRIMARY) {
continue;
}
if (step->alloc[i] == NULL) {
continue;
}
if (plane->zpos >= other_plane->zpos &&
layer_intersects(layer, step->alloc[i])) {
return true;
}
}
return false;
}
bool check_layer_plane_compatible(struct alloc_step *step,
struct liftoff_layer *layer,
struct liftoff_plane *plane)
{
struct liftoff_output *output;
struct liftoff_layer_property *zpos_prop;
output = layer->output;
/* Skip this layer if already allocated */
if (is_layer_allocated(step, layer)) {
return false;
}
zpos_prop = layer_get_property(layer, "zpos");
if (zpos_prop != NULL) {
if ((int)zpos_prop->value > step->last_layer_zpos &&
has_allocated_layer_over(output, step, layer)) {
/* This layer needs to be on top of the last
* allocated one */
liftoff_log(LIFTOFF_DEBUG,
"Layer %p -> plane %"PRIu32": "
"layer zpos invalid",
(void *)layer, plane->id);
return false;
}
if ((int)zpos_prop->value < step->last_layer_zpos &&
has_allocated_plane_under(output, step, layer)) {
/* This layer needs to be under the last
* allocated one, but this plane isn't under the
* last one (in practice, since planes are
* sorted by zpos it means it has the same zpos,
* ie. undefined ordering). */
liftoff_log(LIFTOFF_DEBUG,
"Layer %p -> plane %"PRIu32": "
"plane zpos invalid",
(void *)layer, plane->id);
return false;
}
}
if (plane->type != DRM_PLANE_TYPE_PRIMARY &&
has_composited_layer_over(output, step, layer)) {
liftoff_log(LIFTOFF_DEBUG,
"Layer %p -> plane %"PRIu32": "
"has composited layer on top",
(void *)layer, plane->id);
return false;
}
if (plane->type != DRM_PLANE_TYPE_PRIMARY &&
layer == layer->output->composition_layer) {
liftoff_log(LIFTOFF_DEBUG,
"Layer %p -> plane %"PRIu32": "
"cannot put composition layer on "
"non-primary plane",
(void *)layer, plane->id);
return false;
}
return true;
}
bool check_alloc_valid(struct alloc_result *result, struct alloc_step *step)
{
/* If composition isn't used, we need to have allocated all
* layers. */
/* TODO: find a way to fail earlier, e.g. when the number of
* layers exceeds the number of planes. */
if (result->has_composition_layer && !step->composited &&
step->score != (int)result->non_composition_layers_len) {
liftoff_log(LIFTOFF_DEBUG,
"Cannot skip composition: some layers "
"are missing a plane");
return false;
}
/* On the other hand, if we manage to allocate all layers, we
* don't want to use composition. We don't want to use the
* composition layer at all. */
if (step->composited &&
step->score == (int)result->non_composition_layers_len) {
liftoff_log(LIFTOFF_DEBUG,
"Refusing to use composition: all layers "
"have been put in a plane");
return false;
}
/* TODO: check allocation isn't empty */
return true;
}
bool output_choose_layers(struct liftoff_output *output,
struct alloc_result *result, struct alloc_step *step)
{
struct liftoff_device *device;
struct liftoff_plane *plane;
struct liftoff_layer *layer;
int cursor;
size_t remaining_planes;
bool compatible;
struct alloc_step next_step;
device = output->device;
if (step->plane_link == &device->planes) { /* Allocation finished */
if (step->score > result->best_score &&
check_alloc_valid(result, step)) {
/* We found a better allocation */
liftoff_log(LIFTOFF_DEBUG,
"Found a better allocation with score=%d",
step->score);
result->best_score = step->score;
memcpy(result->best, step->alloc,
result->planes_len * sizeof(struct liftoff_layer *));
}
return true;
}
plane = liftoff_container_of(step->plane_link, plane, link);
remaining_planes = result->planes_len - step->plane_idx;
if (result->best_score >= step->score + (int)remaining_planes) {
/* Even if we find a layer for all remaining planes, we won't
* find a better allocation. Give up. */
/* TODO: change remaining_planes to only count those whose
* possible CRTC match and which aren't allocated */
return true;
}
cursor = drmModeAtomicGetCursor(result->req);
if (plane->layer != NULL) {
goto skip;
}
if ((plane->possible_crtcs & (1 << output->crtc_index)) == 0) {
goto skip;
}
liftoff_log(LIFTOFF_DEBUG,
"Performing allocation for plane %"PRIu32" (%zu/%zu)",
plane->id, step->plane_idx + 1, result->planes_len);
liftoff_list_for_each(layer, &output->layers, link) {
if (layer->plane != NULL || layer->force_composition) {
continue;
}
if (!layer_has_fb(layer)) {
continue; /* no FB set, nothing to display */
}
if (!check_layer_plane_compatible(step, layer, plane)) {
continue;
}
/* Try to use this layer for the current plane */
liftoff_log(LIFTOFF_DEBUG, " Layer %p -> plane %"PRIu32": "
"applying properties...",
(void *)layer, plane->id);
if (!plane_apply(plane, layer, result->req, &compatible)) {
return false;
}
if (!compatible) {
liftoff_log(LIFTOFF_DEBUG,
" Layer %p -> plane %"PRIu32": "
"incompatible properties",
(void *)layer, plane->id);
continue;
}
if (!device_test_commit(device, result->req, &compatible)) {
return false;
}
if (compatible) {
liftoff_log(LIFTOFF_DEBUG,
" Layer %p -> plane %"PRIu32": success",
(void *)layer, plane->id);
/* Continue with the next plane */
plane_step_init_next(&next_step, step, layer);
if (!output_choose_layers(output, result, &next_step)) {
return false;
}
}
drmModeAtomicSetCursor(result->req, cursor);
}
skip:
/* Try not to use the current plane */
plane_step_init_next(&next_step, step, NULL);
if (!output_choose_layers(output, result, &next_step)) {
return false;
}
drmModeAtomicSetCursor(result->req, cursor);
return true;
}
static bool apply_current(struct liftoff_device *device,
drmModeAtomicReq *req)
{
struct liftoff_plane *plane;
int cursor;
bool compatible;
cursor = drmModeAtomicGetCursor(req);
liftoff_list_for_each(plane, &device->planes, link) {
if (!plane_apply(plane, plane->layer, req, &compatible)) {
drmModeAtomicSetCursor(req, cursor);
return false;
}
assert(compatible);
}
return true;
}
static bool layer_needs_realloc(struct liftoff_layer *layer)
{
size_t i;
struct liftoff_layer_property *prop;
for (i = 0; i < layer->props_len; i++) {
prop = &layer->props[i];
if (!prop->changed) {
continue;
}
if (strcmp(prop->name, "FB_ID") == 0) {
if (layer->force_composition) {
return true;
}
/* TODO: check format/modifier is the same. Check
* previous/next value isn't zero. */
continue;
}
/* TODO: if CRTC_{X,Y,W,H} changed but intersection with other
* layers hasn't changed, don't realloc */
return true;
}
return false;
}
static bool reuse_previous_alloc(struct liftoff_output *output,
drmModeAtomicReq *req)
{
struct liftoff_device *device;
struct liftoff_layer *layer;
int cursor;
bool compatible;
device = output->device;
if (output->layers_changed) {
return false;
}
liftoff_list_for_each(layer, &output->layers, link) {
if (layer_needs_realloc(layer)) {
return false;
}
}
cursor = drmModeAtomicGetCursor(req);
if (!apply_current(device, req)) {
return false;
}
if (!device_test_commit(device, req, &compatible) || !compatible) {
drmModeAtomicSetCursor(req, cursor);
return false;
}
return true;
}
static void mark_layers_clean(struct liftoff_output *output)
{
struct liftoff_layer *layer;
output->layers_changed = false;
liftoff_list_for_each(layer, &output->layers, link) {
layer_mark_clean(layer);
}
}
static void update_layers_priority(struct liftoff_device *device)
{
struct liftoff_output *output;
struct liftoff_layer *layer;
device->page_flip_counter++;
bool period_elapsed =
device->page_flip_counter >= LIFTOFF_PRIORITY_PERIOD;
if (period_elapsed) {
device->page_flip_counter = 0;
}
liftoff_list_for_each(output, &device->outputs, link) {
liftoff_list_for_each(layer, &output->layers, link) {
layer_update_priority(layer, period_elapsed);
}
}
}
static void log_reuse(struct liftoff_output *output)
{
if (output->alloc_reused_counter == 0) {
liftoff_log(LIFTOFF_DEBUG,
"Reusing previous plane allocation on output %p",
(void *)output);
}
output->alloc_reused_counter++;
}
static void log_no_reuse(struct liftoff_output *output)
{
liftoff_log(LIFTOFF_DEBUG, "Computing plane allocation on output %p",
(void *)output);
if (output->alloc_reused_counter != 0) {
liftoff_log(LIFTOFF_DEBUG,
"Stopped reusing previous plane allocation on "
"output %p (had reused it %d times)",
(void *)output, output->alloc_reused_counter);
output->alloc_reused_counter = 0;
}
}
bool liftoff_output_apply(struct liftoff_output *output, drmModeAtomicReq *req)
{
struct liftoff_device *device;
struct liftoff_plane *plane;
struct liftoff_layer *layer;
struct alloc_result result;
struct alloc_step step;
size_t i, j;
bool compatible;
device = output->device;
update_layers_priority(device);
if (reuse_previous_alloc(output, req)) {
log_reuse(output);
return true;
}
log_no_reuse(output);
output_log_planes(output);
2019-12-12 23:40:01 +01:00
output_log_layers(output);
2019-10-30 20:45:15 +01:00
/* Unset all existing plane and layer mappings. */
liftoff_list_for_each(plane, &device->planes, link) {
if (plane->layer != NULL && plane->layer->output == output) {
plane->layer->plane = NULL;
plane->layer = NULL;
}
}
/* Disable all planes. Do it before building mappings to make sure not
to hit bandwidth limits because too many planes are enabled. */
liftoff_list_for_each(plane, &device->planes, link) {
if (plane->layer == NULL) {
if (!plane_apply(plane, NULL, req, &compatible)) {
return false;
}
assert(compatible);
}
}
result.req = req;
result.planes_len = liftoff_list_length(&device->planes);
step.alloc = malloc(result.planes_len * sizeof(*step.alloc));
result.best = malloc(result.planes_len * sizeof(*result.best));
if (step.alloc == NULL || result.best == NULL) {
liftoff_log_errno(LIFTOFF_ERROR, "malloc");
return false;
}
/* For each plane, try to find a layer. Don't do it the other
* way around (ie. for each layer, try to find a plane) because
* some drivers want user-space to enable the primary plane
* before any other plane. */
result.best_score = -1;
memset(result.best, 0, result.planes_len * sizeof(*result.best));
result.has_composition_layer = output->composition_layer != NULL;
result.non_composition_layers_len =
liftoff_list_length(&output->layers);
if (output->composition_layer != NULL) {
result.non_composition_layers_len--;
}
step.plane_link = device->planes.next;
step.plane_idx = 0;
step.score = 0;
step.last_layer_zpos = INT_MAX;
step.composited = false;
if (!output_choose_layers(output, &result, &step)) {
return false;
}
liftoff_log(LIFTOFF_DEBUG,
"Found plane allocation for output %p with "
"score=%d:", (void *)output, result.best_score);
/* Apply the best allocation */
liftoff_log(LIFTOFF_DEBUG, "Final assignment of layers to planes:");
i = j = 0;
liftoff_list_for_each(plane, &device->planes, link) {
layer = result.best[i];
i++;
if (layer == NULL) {
continue;
}
j++;
liftoff_log(LIFTOFF_DEBUG, " [%zu] Layer %p -> plane %"PRIu32
" (%s)", j, (void *)layer, plane->id,
plane->type == DRM_PLANE_TYPE_PRIMARY ? "primary" :
DRM_PLANE_TYPE_OVERLAY ? "overlay" : "cursor");
assert(plane->layer == NULL);
assert(layer->plane == NULL);
plane->layer = layer;
layer->plane = plane;
}
liftoff_log(LIFTOFF_DEBUG, "%s", i > 0 ? " " : " No planes assigned!");
if (!apply_current(device, req)) {
return false;
}
free(step.alloc);
free(result.best);
mark_layers_clean(output);
return true;
}