leocad/common/lc_math.h

1533 lines
37 KiB
C
Raw Normal View History

2012-03-29 03:10:55 +02:00
#ifndef _LC_MATH_H_
#define _LC_MATH_H_
#include <math.h>
2012-06-07 00:34:38 +02:00
#include <float.h>
2012-03-29 03:10:55 +02:00
2012-06-30 01:50:29 +02:00
#define LC_DTOR 0.017453f
#define LC_RTOD 57.29578f
#define LC_PI 3.141592f
#define LC_2PI 6.283185f
template <typename T, typename U>
inline T lcMin(const T& a, const U& b)
{
return a < b ? a : b;
}
template <typename T, typename U>
inline T lcMax(const T& a, const U& b)
{
return a > b ? a : b;
}
template <typename T, typename U, typename V>
inline T lcClamp(const T& Value, const U& Min, const V& Max)
{
if (Value > Max)
return Max;
else if (Value < Min)
return Min;
else
return Value;
}
2012-10-12 01:55:55 +02:00
class lcVector2
{
public:
lcVector2()
{
}
lcVector2(const float _x, const float _y)
: x(_x), y(_y)
{
}
lcVector2(const lcVector2& a)
: x(a.x), y(a.y)
{
}
operator const float*() const
{
return (const float*)this;
}
operator float*()
{
return (float*)this;
}
const float& operator[](int i) const
{
return ((float*)this)[i];
}
float& operator[](int i)
{
return ((float*)this)[i];
}
float x, y;
};
2012-03-29 03:10:55 +02:00
class lcVector3
{
public:
lcVector3()
{
}
lcVector3(const float _x, const float _y, const float _z)
: x(_x), y(_y), z(_z)
{
}
lcVector3(const lcVector3& a)
: x(a.x), y(a.y), z(a.z)
{
}
operator const float*() const
{
return (const float*)this;
}
operator float*()
{
return (float*)this;
}
2012-05-19 03:13:05 +02:00
const float& operator[](int i) const
{
return ((float*)this)[i];
}
float& operator[](int i)
2012-03-29 03:10:55 +02:00
{
return ((float*)this)[i];
}
void Normalize();
float Length() const;
2012-05-29 01:33:22 +02:00
float LengthSquared() const;
2012-03-29 03:10:55 +02:00
float x, y, z;
};
class lcVector4
{
public:
lcVector4()
{
}
lcVector4(const float _x, const float _y, const float _z, const float _w)
: x(_x), y(_y), z(_z), w(_w)
{
}
2012-05-29 01:33:22 +02:00
lcVector4(const lcVector3& _xyz, const float _w)
: x(_xyz.x), y(_xyz.y), z(_xyz.z), w(_w)
{
}
2012-03-29 03:10:55 +02:00
operator const float*() const
{
return (const float*)this;
}
operator float*()
{
return (float*)this;
}
2012-05-19 03:13:05 +02:00
const float& operator[](int i) const
{
return ((float*)this)[i];
}
float& operator[](int i)
2012-03-29 03:10:55 +02:00
{
return ((float*)this)[i];
}
float x, y, z, w;
};
class lcMatrix44
{
public:
lcMatrix44()
{
}
2012-05-19 03:13:05 +02:00
lcMatrix44(const lcVector4& _x, const lcVector4& _y, const lcVector4& _z, const lcVector4& _w)
{
r[0] = _x;
r[1] = _y;
r[2] = _z;
r[3] = _w;
}
void SetTranslation(const lcVector3& Translation)
{
r[3] = lcVector4(Translation[0], Translation[1], Translation[2], 1.0f);
}
operator const float*() const
{
return (const float*)this;
}
operator float*()
{
return (float*)this;
}
2012-05-19 03:13:05 +02:00
const lcVector4& operator[](int i) const
{
return r[i];
}
lcVector4& operator[](int i)
{
return r[i];
}
lcVector4 r[4];
};
2012-03-29 03:10:55 +02:00
inline lcVector3 operator+(const lcVector3& a, const lcVector3& b)
{
return lcVector3(a.x + b.x, a.y + b.y, a.z + b.z);
}
inline lcVector3 operator-(const lcVector3& a, const lcVector3& b)
{
return lcVector3(a.x - b.x, a.y - b.y, a.z - b.z);
}
inline lcVector3 operator*(const lcVector3& a, const lcVector3& b)
{
return lcVector3(a.x * b.x, a.y * b.y, a.z * b.z);
}
inline lcVector3 operator/(const lcVector3& a, const lcVector3& b)
{
return lcVector3(a.x / b.x, a.y / b.y, a.z / b.z);
}
inline lcVector3 operator*(const lcVector3& a, float b)
{
return lcVector3(a.x * b, a.y * b, a.z * b);
}
inline lcVector3 operator/(const lcVector3& a, float b)
{
return lcVector3(a.x / b, a.y / b, a.z / b);
}
2012-06-16 02:17:52 +02:00
inline lcVector3 operator*(float a, const lcVector3& b)
{
return lcVector3(b.x * a, b.y * a, b.z * a);
}
inline lcVector3 operator/(float a, const lcVector3& b)
{
return lcVector3(b.x / a, b.y / a, b.z / a);
}
2012-03-29 03:10:55 +02:00
inline lcVector3 operator-(const lcVector3& a)
{
return lcVector3(-a.x, -a.y, -a.z);
}
inline lcVector3& operator+=(lcVector3& a, const lcVector3& b)
{
a.x += b.x;
a.y += b.y;
a.z += b.z;
return a;
}
inline lcVector3& operator-=(lcVector3& a, const lcVector3& b)
{
a.x -= b.x;
a.y -= b.y;
a.z -= b.z;
return a;
}
inline lcVector3& operator*=(lcVector3& a, const lcVector3& b)
{
a.x *= b.x;
a.y *= b.y;
a.z *= b.z;
return a;
}
inline lcVector3& operator/=(lcVector3& a, const lcVector3& b)
{
a.x /= b.x;
a.y /= b.y;
a.z /= b.z;
return a;
}
inline lcVector3& operator*=(lcVector3& a, float b)
{
a.x *= b;
a.y *= b;
a.z *= b;
return a;
}
inline lcVector3& operator/=(lcVector3& a, float b)
{
a.x /= b;
a.y /= b;
a.z /= b;
return a;
}
2012-09-29 02:16:43 +02:00
inline bool operator==(const lcVector3& a, const lcVector3& b)
{
return a.x == b.x && a.y == b.y && a.z == b.z;
}
2012-03-29 03:10:55 +02:00
inline void lcVector3::Normalize()
{
float InvLength = 1.0f / Length();
x *= InvLength;
y *= InvLength;
z *= InvLength;
}
inline float lcVector3::Length() const
{
return sqrtf(x * x + y * y + z * z);
}
2012-05-29 01:33:22 +02:00
inline float lcVector3::LengthSquared() const
{
return x * x + y * y + z * z;
}
2012-07-12 06:18:10 +02:00
inline float lcLength(const lcVector3& a)
{
return a.Length();
}
inline float lcLengthSquared(const lcVector3& a)
{
return a.LengthSquared();
}
2012-03-29 03:10:55 +02:00
inline lcVector3 lcNormalize(const lcVector3& a)
{
lcVector3 Ret(a);
Ret.Normalize();
return Ret;
}
inline float lcDot(const lcVector3& a, const lcVector3& b)
{
return a.x * b.x + a.y * b.y + a.z * b.z;
}
inline float lcDot3(const lcVector4& a, const lcVector3& b)
{
return a.x * b.x + a.y * b.y + a.z * b.z;
}
inline float lcDot3(const lcVector3& a, const lcVector4& b)
{
return a.x * b.x + a.y * b.y + a.z * b.z;
}
2012-07-12 06:18:10 +02:00
inline float lcDot3(const lcVector4& a, const lcVector4& b)
{
return a.x * b.x + a.y * b.y + a.z * b.z;
}
2012-06-07 00:34:38 +02:00
inline float lcDot(const lcVector4& a, const lcVector4& b)
2012-05-19 03:13:05 +02:00
{
return a.x * b.x + a.y * b.y + a.z * b.z + a.w * b.w;
}
2012-03-29 03:10:55 +02:00
inline lcVector3 lcCross(const lcVector3& a, const lcVector3& b)
{
return lcVector3(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x);
}
inline lcVector4 operator+(const lcVector4& a, const lcVector4& b)
{
return lcVector4(a.x + b.x, a.y + b.y, a.z + b.z, a.w + b.w);
}
inline lcVector4 operator-(const lcVector4& a, const lcVector4& b)
{
return lcVector4(a.x - b.x, a.y - b.y, a.z - b.z, a.w - b.w);
}
inline lcVector4 operator*(const lcVector4& a, float f)
{
return lcVector4(a.x * f, a.y * f, a.z * f, a.w * f);
}
inline lcVector4 operator*(const lcVector4& a, const lcVector4& b)
{
return lcVector4(a.x * b.x, a.y * b.y, a.z * b.z, a.w * b.w);
}
inline lcVector4 operator/(const lcVector4& a, float f)
{
return lcVector4(a.x / f, a.y / f, a.z / f, a.w / f);
}
inline lcVector4 operator/(const lcVector4& a, const lcVector4& b)
{
return lcVector4(a.x / b.x, a.y / b.y, a.z / b.z, a.w / b.w);
}
2012-10-18 20:57:21 +02:00
inline lcVector4& operator+=(lcVector4& a, const lcVector4& b)
{
a.x += b.x;
a.y += b.y;
a.z += b.z;
a.w += b.w;
return a;
}
inline lcVector4& operator-=(lcVector4& a, const lcVector4& b)
{
a.x -= b.x;
a.y -= b.y;
a.z -= b.z;
a.w -= b.w;
return a;
}
2012-05-29 01:33:22 +02:00
inline lcVector4& operator*=(lcVector4& a, float b)
{
a.x *= b;
a.y *= b;
a.z *= b;
a.w *= b;
return a;
}
inline lcVector4& operator/=(lcVector4& a, float b)
{
a.x /= b;
a.y /= b;
a.z /= b;
a.w /= b;
return a;
}
inline lcVector3 lcMul31(const lcVector3& a, const lcMatrix44& b)
{
lcVector4 v = b.r[0] * a[0] + b.r[1] * a[1] + b.r[2] * a[2] + b.r[3];
return lcVector3(v[0], v[1], v[2]);
}
2012-08-23 20:47:37 +02:00
inline lcVector3 lcMul31(const lcVector4& a, const lcMatrix44& b)
{
lcVector4 v = b.r[0] * a[0] + b.r[1] * a[1] + b.r[2] * a[2] + b.r[3];
return lcVector3(v[0], v[1], v[2]);
}
2012-05-19 03:13:05 +02:00
inline lcVector3 lcMul30(const lcVector3& a, const lcMatrix44& b)
{
lcVector4 v = b.r[0] * a[0] + b.r[1] * a[1] + b.r[2] * a[2];
return lcVector3(v[0], v[1], v[2]);
}
2012-08-23 20:47:37 +02:00
inline lcVector3 lcMul30(const lcVector4& a, const lcMatrix44& b)
{
lcVector4 v = b.r[0] * a[0] + b.r[1] * a[1] + b.r[2] * a[2];
return lcVector3(v[0], v[1], v[2]);
}
2012-05-19 03:13:05 +02:00
inline lcVector4 lcMul4(const lcVector4& a, const lcMatrix44& b)
{
return b.r[0] * a[0] + b.r[1] * a[1] + b.r[2] * a[2] + b.r[3] * a[3];
}
2012-05-19 03:13:05 +02:00
inline lcMatrix44 lcMul(const lcMatrix44& a, const lcMatrix44& b)
{
lcVector4 Col0(b.r[0][0], b.r[1][0], b.r[2][0], b.r[3][0]);
lcVector4 Col1(b.r[0][1], b.r[1][1], b.r[2][1], b.r[3][1]);
lcVector4 Col2(b.r[0][2], b.r[1][2], b.r[2][2], b.r[3][2]);
lcVector4 Col3(b.r[0][3], b.r[1][3], b.r[2][3], b.r[3][3]);
2012-06-07 00:34:38 +02:00
lcVector4 Ret0(lcDot(a.r[0], Col0), lcDot(a.r[0], Col1), lcDot(a.r[0], Col2), lcDot(a.r[0], Col3));
lcVector4 Ret1(lcDot(a.r[1], Col0), lcDot(a.r[1], Col1), lcDot(a.r[1], Col2), lcDot(a.r[1], Col3));
lcVector4 Ret2(lcDot(a.r[2], Col0), lcDot(a.r[2], Col1), lcDot(a.r[2], Col2), lcDot(a.r[2], Col3));
lcVector4 Ret3(lcDot(a.r[3], Col0), lcDot(a.r[3], Col1), lcDot(a.r[3], Col2), lcDot(a.r[3], Col3));
2012-05-19 03:13:05 +02:00
return lcMatrix44(Ret0, Ret1, Ret2, Ret3);
}
inline lcMatrix44 lcMatrix44Identity()
{
lcMatrix44 m;
m.r[0] = lcVector4(1.0f, 0.0f, 0.0f, 0.0f);
m.r[1] = lcVector4(0.0f, 1.0f, 0.0f, 0.0f);
m.r[2] = lcVector4(0.0f, 0.0f, 1.0f, 0.0f);
m.r[3] = lcVector4(0.0f, 0.0f, 0.0f, 1.0f);
return m;
}
2012-05-19 03:13:05 +02:00
inline lcMatrix44 lcMatrix44Translation(const lcVector3& Translation)
{
lcMatrix44 m;
m.r[0] = lcVector4(1.0f, 0.0f, 0.0f, 0.0f);
m.r[1] = lcVector4(0.0f, 1.0f, 0.0f, 0.0f);
m.r[2] = lcVector4(0.0f, 0.0f, 1.0f, 0.0f);
m.r[3] = lcVector4(Translation[0], Translation[1], Translation[2], 1.0f);
return m;
}
inline lcMatrix44 lcMatrix44RotationX(const float Radians)
{
float s, c;
s = sinf(Radians);
c = cosf(Radians);
lcMatrix44 m;
m.r[0] = lcVector4(1.0f, 0.0f, 0.0f, 0.0f);
m.r[1] = lcVector4(0.0f, c, s, 0.0f);
m.r[2] = lcVector4(0.0f, -s, c, 0.0f);
m.r[3] = lcVector4(0.0f, 0.0f, 0.0f, 1.0f);
return m;
}
inline lcMatrix44 lcMatrix44RotationY(const float Radians)
{
float s, c;
s = sinf(Radians);
c = cosf(Radians);
lcMatrix44 m;
m.r[0] = lcVector4( c, 0.0f, -s, 0.0f);
m.r[1] = lcVector4(0.0f, 1.0f, 0.0f, 0.0f);
m.r[2] = lcVector4( s, 0.0f, c, 0.0f);
m.r[3] = lcVector4(0.0f, 0.0f, 0.0f, 1.0f);
return m;
}
inline lcMatrix44 lcMatrix44RotationZ(const float Radians)
{
float s, c;
s = sinf(Radians);
c = cosf(Radians);
lcMatrix44 m;
m.r[0] = lcVector4( c, s, 0.0f, 0.0f);
m.r[1] = lcVector4( -s, c, 0.0f, 0.0f);
m.r[2] = lcVector4(0.0f, 0.0f, 1.0f, 0.0f);
m.r[3] = lcVector4(0.0f, 0.0f, 0.0f, 1.0f);
return m;
}
2012-05-29 01:33:22 +02:00
inline lcMatrix44 lcMatrix44LookAt(const lcVector3& Eye, const lcVector3& Target, const lcVector3& Up)
{
lcVector3 x, y, z;
z = lcNormalize(Eye - Target);
x = lcNormalize(lcCross(Up, z));
y = lcNormalize(lcCross(z, x));
lcMatrix44 m;
m.r[0] = lcVector4(x[0], y[0], z[0], 0.0f);
m.r[1] = lcVector4(x[1], y[1], z[1], 0.0f);
m.r[2] = lcVector4(x[2], y[2], z[2], 0.0f);
m.r[3] = m.r[0] * -Eye[0] + m.r[1] * -Eye[1] + m.r[2] * -Eye[2];
m.r[3][3] = 1.0f;
return m;
}
inline lcMatrix44 lcMatrix44Perspective(float FoVy, float Aspect, float Near, float Far)
{
float Left, Right, Bottom, Top;
Top = Near * (float)tan(FoVy * LC_PI / 360.0f);
Bottom = -Top;
Left = Bottom * Aspect;
Right = Top * Aspect;
if ((Near <= 0.0f) || (Far <= 0.0f) || (Near == Far) || (Left == Right) || (Top == Bottom))
return lcMatrix44Identity();
float x, y, a, b, c, d;
x = (2.0f * Near) / (Right - Left);
y = (2.0f * Near) / (Top - Bottom);
a = (Right + Left) / (Right - Left);
b = (Top + Bottom) / (Top - Bottom);
c = -(Far + Near) / (Far - Near);
d = -(2.0f * Far * Near) / (Far - Near);
lcMatrix44 m;
m.r[0] = lcVector4(x, 0, 0, 0);
m.r[1] = lcVector4(0, y, 0, 0);
m.r[2] = lcVector4(a, b, c, -1);
m.r[3] = lcVector4(0, 0, d, 0);
return m;
}
2012-06-30 01:50:29 +02:00
inline lcMatrix44 lcMatrix44Ortho(float Left, float Right, float Bottom, float Top, float Near, float Far)
{
lcMatrix44 m;
m.r[0] = lcVector4(2.0f / (Right-Left), 0.0f, 0.0f, 0.0f),
m.r[1] = lcVector4(0.0f, 2.0f / (Top-Bottom), 0.0f, 0.0f),
m.r[2] = lcVector4(0.0f, 0.0f, -2.0f / (Far-Near), 0.0f),
m.r[3] = lcVector4(-(Right+Left) / (Right-Left), -(Top+Bottom) / (Top-Bottom), -(Far+Near) / (Far-Near), 1.0f);
return m;
}
inline lcMatrix44 lcMatrix44FromAxisAngle(const lcVector3& Axis, const float Radians)
{
float s, c, mag, xx, yy, zz, xy, yz, zx, xs, ys, zs, one_c;
s = sinf(Radians);
c = cosf(Radians);
mag = Axis.Length();
if (mag == 0.0f)
return lcMatrix44Identity();
lcVector3 Normal = Axis * (1.0f / mag);
xx = Normal[0] * Normal[0];
yy = Normal[1] * Normal[1];
zz = Normal[2] * Normal[2];
xy = Normal[0] * Normal[1];
yz = Normal[1] * Normal[2];
zx = Normal[2] * Normal[0];
xs = Normal[0] * s;
ys = Normal[1] * s;
zs = Normal[2] * s;
one_c = 1.0f - c;
lcMatrix44 m;
m.r[0] = lcVector4((one_c * xx) + c, (one_c * xy) + zs, (one_c * zx) - ys, 0.0f);
m.r[1] = lcVector4((one_c * xy) - zs, (one_c * yy) + c, (one_c * yz) + xs, 0.0f);
m.r[2] = lcVector4((one_c * zx) + ys, (one_c * yz) - xs, (one_c * zz) + c, 0.0f);
m.r[3] = lcVector4(0.0f, 0.0f, 0.0f, 1.0f);
return m;
}
2012-05-19 03:13:05 +02:00
inline lcVector4 lcMatrix44ToAxisAngle(const lcMatrix44& m)
{
lcVector3 Rows[3];
Rows[0] = lcNormalize(lcVector3(m.r[0][0], m.r[0][1], m.r[0][2]));
Rows[1] = lcNormalize(lcVector3(m.r[1][0], m.r[1][1], m.r[1][2]));
Rows[2] = lcNormalize(lcVector3(m.r[2][0], m.r[2][1], m.r[2][2]));
// Determinant should be 1 for rotation matrices.
float Determinant = Rows[0][0] * Rows[1][1] * Rows[2][2] + Rows[0][1] * Rows[1][2] * Rows[2][0] +
Rows[0][2] * Rows[1][0] * Rows[2][1] - Rows[0][0] * Rows[1][2] * Rows[2][1] -
Rows[0][1] * Rows[1][0] * Rows[2][2] - Rows[0][2] * Rows[1][1] * Rows[2][0];
if (Determinant < 0.0f)
Rows[0] *= -1.0f;
float Trace = Rows[0][0] + Rows[1][1] + Rows[2][2];
float Cos = 0.5f * (Trace - 1.0f);
lcVector4 rot;
2012-06-30 01:50:29 +02:00
rot[3] = acosf(lcClamp(Cos, -1.0f, 1.0f)); // in [0,PI]
2012-05-19 03:13:05 +02:00
if (rot[3] > 0.01f)
{
2012-06-30 01:50:29 +02:00
if (fabsf(LC_PI - rot[3]) > 0.01f)
2012-05-19 03:13:05 +02:00
{
rot[0] = Rows[1][2] - Rows[2][1];
rot[1] = Rows[2][0] - Rows[0][2];
rot[2] = Rows[0][1] - Rows[1][0];
float inv = 1.0f / sqrtf(rot[0]*rot[0] + rot[1]*rot[1] + rot[2]*rot[2]);
rot[0] *= inv;
rot[1] *= inv;
rot[2] *= inv;
}
else
{
// angle is PI
float HalfInverse;
if (Rows[0][0] >= Rows[1][1])
{
// r00 >= r11
if (Rows[0][0] >= Rows[2][2])
{
// r00 is maximum diagonal term
rot[0] = 0.5f * sqrtf(Rows[0][0] - Rows[1][1] - Rows[2][2] + 1.0f);
HalfInverse = 0.5f / rot[0];
rot[1] = HalfInverse * Rows[1][0];
rot[2] = HalfInverse * Rows[2][0];
}
else
{
// r22 is maximum diagonal term
rot[2] = 0.5f * sqrtf(Rows[2][2] - Rows[0][0] - Rows[1][1] + 1.0f);
HalfInverse = 0.5f / rot[2];
rot[0] = HalfInverse * Rows[2][0];
rot[1] = HalfInverse * Rows[2][1];
}
}
else
{
// r11 > r00
if (Rows[1][1] >= Rows[2][2])
{
// r11 is maximum diagonal term
rot[1] = 0.5f * sqrtf(Rows[1][1] - Rows[0][0] - Rows[2][2] + 1.0f);
HalfInverse = 0.5f / rot[1];
rot[0] = HalfInverse * Rows[1][0];
rot[2] = HalfInverse * Rows[2][1];
}
else
{
// r22 is maximum diagonal term
rot[2] = 0.5f * sqrtf(Rows[2][2] - Rows[0][0] - Rows[1][1] + 1.0f);
HalfInverse = 0.5f / rot[2];
rot[0] = HalfInverse * Rows[2][0];
rot[1] = HalfInverse * Rows[2][1];
}
}
}
}
else
{
// The angle is 0 and the matrix is the identity.
rot[0] = 0.0f;
rot[1] = 0.0f;
rot[2] = 1.0f;
}
return rot;
}
2012-06-30 01:50:29 +02:00
inline lcMatrix44 lcMatrix44FromEulerAngles(const lcVector3& Radians)
{
float CosYaw, SinYaw, CosPitch, SinPitch, CosRoll, SinRoll;
CosRoll = cosf(Radians[0]);
SinRoll = sinf(Radians[0]);
CosPitch = cosf(Radians[1]);
SinPitch = sinf(Radians[1]);
CosYaw = cosf(Radians[2]);
SinYaw = sinf(Radians[2]);
lcMatrix44 m;
m.r[0] = lcVector4(CosYaw * CosPitch, SinYaw * CosPitch, -SinPitch, 0.0f);
m.r[1] = lcVector4(CosYaw * SinPitch * SinRoll - SinYaw * CosRoll, CosYaw * CosRoll + SinYaw * SinPitch * SinRoll, CosPitch * SinRoll, 0.0f);
m.r[2] = lcVector4(CosYaw * SinPitch * CosRoll + SinYaw * SinRoll, SinYaw * SinPitch * CosRoll - CosYaw * SinRoll, CosPitch * CosRoll, 0.0f);
m.r[3] = lcVector4(0.0f, 0.0f, 0.0f, 1.0f);
return m;
}
inline lcVector3 lcMatrix44ToEulerAngles(const lcMatrix44& RotMat)
{
float SinPitch, CosPitch, SinRoll, CosRoll, SinYaw, CosYaw;
SinPitch = -RotMat.r[0][2];
CosPitch = sqrtf(1 - SinPitch*SinPitch);
if (fabsf(CosPitch) > 0.0005f)
{
SinRoll = RotMat.r[1][2] / CosPitch;
CosRoll = RotMat.r[2][2] / CosPitch;
SinYaw = RotMat.r[0][1] / CosPitch;
CosYaw = RotMat.r[0][0] / CosPitch;
}
else
{
SinRoll = -RotMat.r[2][1];
CosRoll = RotMat.r[1][1];
SinYaw = 0.0f;
CosYaw = 1.0f;
}
lcVector3 Rot(atan2f(SinRoll, CosRoll), atan2f(SinPitch, CosPitch), atan2f(SinYaw, CosYaw));
if (Rot[0] < 0) Rot[0] += LC_2PI;
if (Rot[1] < 0) Rot[1] += LC_2PI;
if (Rot[2] < 0) Rot[2] += LC_2PI;
return Rot;
}
2012-06-07 02:08:37 +02:00
inline lcMatrix44 lcMatrix44Transpose(const lcMatrix44& m)
{
lcMatrix44 t;
t.r[0] = lcVector4(m[0][0], m[1][0], m[2][0], m[3][0]);
t.r[1] = lcVector4(m[0][1], m[1][1], m[2][1], m[3][1]);
t.r[2] = lcVector4(m[0][2], m[1][2], m[2][2], m[3][2]);
t.r[3] = lcVector4(m[0][3], m[1][3], m[2][3], m[3][3]);
return t;
}
2012-05-29 01:33:22 +02:00
inline lcMatrix44 lcMatrix44AffineInverse(const lcMatrix44& m)
{
lcMatrix44 Inv;
Inv.r[0] = lcVector4(m.r[0][0], m.r[1][0], m.r[2][0], m.r[0][3]);
Inv.r[1] = lcVector4(m.r[0][1], m.r[1][1], m.r[2][1], m.r[1][3]);
Inv.r[2] = lcVector4(m.r[0][2], m.r[1][2], m.r[2][2], m.r[2][3]);
2012-08-23 20:47:37 +02:00
lcVector3 Trans = -lcMul30(m.r[3], Inv);
2012-05-29 01:33:22 +02:00
Inv.r[3] = lcVector4(Trans[0], Trans[1], Trans[2], 1.0f);
return Inv;
}
// Inverse code from the GLU library.
inline lcMatrix44 lcMatrix44Inverse(const lcMatrix44& m)
{
#define SWAP_ROWS(a, b) { float *_tmp = a; (a)=(b); (b)=_tmp; }
#define MAT(m,col,row) m.r[row][col]
float wtmp[4][8];
float m0, m1, m2, m3, s;
float *r0, *r1, *r2, *r3;
r0 = wtmp[0], r1 = wtmp[1], r2 = wtmp[2], r3 = wtmp[3];
r0[0] = MAT(m,0,0), r0[1] = MAT(m,0,1),
r0[2] = MAT(m,0,2), r0[3] = MAT(m,0,3),
r0[4] = 1.0, r0[5] = r0[6] = r0[7] = 0.0,
r1[0] = MAT(m,1,0), r1[1] = MAT(m,1,1),
r1[2] = MAT(m,1,2), r1[3] = MAT(m,1,3),
r1[5] = 1.0, r1[4] = r1[6] = r1[7] = 0.0,
r2[0] = MAT(m,2,0), r2[1] = MAT(m,2,1),
r2[2] = MAT(m,2,2), r2[3] = MAT(m,2,3),
r2[6] = 1.0, r2[4] = r2[5] = r2[7] = 0.0,
r3[0] = MAT(m,3,0), r3[1] = MAT(m,3,1),
r3[2] = MAT(m,3,2), r3[3] = MAT(m,3,3),
r3[7] = 1.0, r3[4] = r3[5] = r3[6] = 0.0;
// choose pivot - or die
if (fabs(r3[0])>fabs(r2[0])) SWAP_ROWS(r3, r2);
if (fabs(r2[0])>fabs(r1[0])) SWAP_ROWS(r2, r1);
if (fabs(r1[0])>fabs(r0[0])) SWAP_ROWS(r1, r0);
// if (0.0 == r0[0]) return GL_FALSE;
// eliminate first variable
m1 = r1[0]/r0[0]; m2 = r2[0]/r0[0]; m3 = r3[0]/r0[0];
s = r0[1]; r1[1] -= m1 * s; r2[1] -= m2 * s; r3[1] -= m3 * s;
s = r0[2]; r1[2] -= m1 * s; r2[2] -= m2 * s; r3[2] -= m3 * s;
s = r0[3]; r1[3] -= m1 * s; r2[3] -= m2 * s; r3[3] -= m3 * s;
s = r0[4];
if (s != 0.0) { r1[4] -= m1 * s; r2[4] -= m2 * s; r3[4] -= m3 * s; }
s = r0[5];
if (s != 0.0) { r1[5] -= m1 * s; r2[5] -= m2 * s; r3[5] -= m3 * s; }
s = r0[6];
if (s != 0.0) { r1[6] -= m1 * s; r2[6] -= m2 * s; r3[6] -= m3 * s; }
s = r0[7];
if (s != 0.0) { r1[7] -= m1 * s; r2[7] -= m2 * s; r3[7] -= m3 * s; }
// choose pivot - or die
if (fabs(r3[1])>fabs(r2[1])) SWAP_ROWS(r3, r2);
if (fabs(r2[1])>fabs(r1[1])) SWAP_ROWS(r2, r1);
// if (0.0 == r1[1]) return GL_FALSE;
// eliminate second variable
m2 = r2[1]/r1[1]; m3 = r3[1]/r1[1];
r2[2] -= m2 * r1[2]; r3[2] -= m3 * r1[2];
r2[3] -= m2 * r1[3]; r3[3] -= m3 * r1[3];
s = r1[4]; if (0.0 != s) { r2[4] -= m2 * s; r3[4] -= m3 * s; }
s = r1[5]; if (0.0 != s) { r2[5] -= m2 * s; r3[5] -= m3 * s; }
s = r1[6]; if (0.0 != s) { r2[6] -= m2 * s; r3[6] -= m3 * s; }
s = r1[7]; if (0.0 != s) { r2[7] -= m2 * s; r3[7] -= m3 * s; }
// choose pivot - or die
if (fabs(r3[2])>fabs(r2[2])) SWAP_ROWS(r3, r2);
// if (0.0 == r2[2]) return GL_FALSE;
// eliminate third variable
m3 = r3[2]/r2[2];
r3[3] -= m3 * r2[3], r3[4] -= m3 * r2[4],
r3[5] -= m3 * r2[5], r3[6] -= m3 * r2[6],
r3[7] -= m3 * r2[7];
// last check
// if (0.0 == r3[3]) return GL_FALSE;
s = 1.0f/r3[3]; // now back substitute row 3
r3[4] *= s; r3[5] *= s; r3[6] *= s; r3[7] *= s;
m2 = r2[3]; // now back substitute row 2
s = 1.0f/r2[2];
r2[4] = s * (r2[4] - r3[4] * m2), r2[5] = s * (r2[5] - r3[5] * m2),
r2[6] = s * (r2[6] - r3[6] * m2), r2[7] = s * (r2[7] - r3[7] * m2);
m1 = r1[3];
r1[4] -= r3[4] * m1, r1[5] -= r3[5] * m1,
r1[6] -= r3[6] * m1, r1[7] -= r3[7] * m1;
m0 = r0[3];
r0[4] -= r3[4] * m0, r0[5] -= r3[5] * m0,
r0[6] -= r3[6] * m0, r0[7] -= r3[7] * m0;
m1 = r1[2]; // now back substitute row 1
s = 1.0f/r1[1];
r1[4] = s * (r1[4] - r2[4] * m1), r1[5] = s * (r1[5] - r2[5] * m1),
r1[6] = s * (r1[6] - r2[6] * m1), r1[7] = s * (r1[7] - r2[7] * m1);
m0 = r0[2];
r0[4] -= r2[4] * m0, r0[5] -= r2[5] * m0,
r0[6] -= r2[6] * m0, r0[7] -= r2[7] * m0;
m0 = r0[1]; // now back substitute row 0
s = 1.0f/r0[0];
r0[4] = s * (r0[4] - r1[4] * m0), r0[5] = s * (r0[5] - r1[5] * m0),
r0[6] = s * (r0[6] - r1[6] * m0), r0[7] = s * (r0[7] - r1[7] * m0);
lcVector4 Row0(r0[4], r1[4], r2[4], r3[4]);
lcVector4 Row1(r0[5], r1[5], r2[5], r3[5]);
lcVector4 Row2(r0[6], r1[6], r2[6], r3[6]);
lcVector4 Row3(r0[7], r1[7], r2[7], r3[7]);
lcMatrix44 out(Row0, Row1, Row2, Row3);
return out;
#undef MAT
#undef SWAP_ROWS
}
2012-07-12 06:18:10 +02:00
inline lcVector4 lcQuaternionRotationX(float Radians)
{
return lcVector4(sinf(Radians / 2.0f), 0, 0, cosf(Radians / 2.0f));
}
inline lcVector4 lcQuaternionRotationY(float Radians)
{
return lcVector4(0, sinf(Radians / 2.0f), 0, cosf(Radians / 2.0f));
}
inline lcVector4 lcQuaternionRotationZ(float Radians)
{
return lcVector4(0, 0, sinf(Radians / 2.0f), cosf(Radians / 2.0f));
}
inline lcVector4 lcQuaternionFromAxisAngle(const lcVector4& a)
{
float s = sinf(a[3] / 2.0f);
return lcVector4(a[0] * s, a[1] * s, a[2] * s, cosf(a[3] / 2.0f));
}
inline lcVector4 lcQuaternionToAxisAngle(const lcVector4& a)
{
float Len = lcDot3(a, a);
if (Len > 0.00001f)
{
float f = 1.0f / sqrtf(Len);
return lcVector4(a[0] * f, a[1] * f, a[2] * f, acosf(a[3]) * 2.0f);
}
else
{
return lcVector4(0, 0, 1, 0);
}
}
inline lcVector4 lcQuaternionMultiply(const lcVector4& a, const lcVector4& b)
{
float x = a[0] * b[3] + a[1] * b[2] - a[2] * b[1] + a[3] * b[0];
float y = -a[0] * b[2] + a[1] * b[3] + a[2] * b[0] + a[3] * b[1];
float z = a[0] * b[1] - a[1] * b[0] + a[2] * b[3] + a[3] * b[2];
float w = -a[0] * b[0] - a[1] * b[1] - a[2] * b[2] + a[3] * b[3];
return lcVector4(x, y, z, w);
}
inline lcVector3 lcQuaternionMul(const lcVector3& a, const lcVector4& b)
{
// Faster to transform to a matrix and multiply.
float Tx = 2.0f*b[0];
float Ty = 2.0f*b[1];
float Tz = 2.0f*b[2];
float Twx = Tx*b[3];
float Twy = Ty*b[3];
float Twz = Tz*b[3];
float Txx = Tx*b[0];
float Txy = Ty*b[0];
float Txz = Tz*b[0];
float Tyy = Ty*b[1];
float Tyz = Tz*b[1];
float Tzz = Tz*b[2];
lcVector3 Rows[3];
Rows[0] = lcVector3(1.0f-(Tyy+Tzz), Txy+Twz, Txz-Twy);
Rows[1] = lcVector3(Txy-Twz, 1.0f-(Txx+Tzz), Tyz+Twx);
Rows[2] = lcVector3(Txz+Twy, Tyz-Twx, 1.0f-(Txx+Tyy));
return lcVector3(Rows[0]*a[0] + Rows[1]*a[1] + Rows[2]*a[2]);
}
2012-05-29 01:33:22 +02:00
// Convert world coordinates to screen coordinates.
inline lcVector3 lcProjectPoint(const lcVector3& Point, const lcMatrix44& ModelView, const lcMatrix44& Projection, const int Viewport[4])
{
lcVector4 Tmp;
Tmp = lcMul4(lcVector4(Point[0], Point[1], Point[2], 1.0f), ModelView);
Tmp = lcMul4(Tmp, Projection);
// Normalize.
Tmp /= Tmp[3];
// Screen coordinates.
return lcVector3(Viewport[0] + (1 + Tmp[0]) * Viewport[2] / 2, Viewport[1] + (1 + Tmp[1]) * Viewport[3] / 2, (1 + Tmp[2]) / 2);
}
inline lcVector3 lcUnprojectPoint(const lcVector3& Point, const lcMatrix44& ModelView, const lcMatrix44& Projection, const int Viewport[4])
{
// Calculate the screen to model transform.
lcMatrix44 Transform = lcMatrix44Inverse(lcMul(ModelView, Projection));
lcVector4 Tmp;
// Convert the point to homogeneous coordinates.
Tmp[0] = (Point[0] - Viewport[0]) * 2.0f / Viewport[2] - 1.0f;
Tmp[1] = (Point[1] - Viewport[1]) * 2.0f / Viewport[3] - 1.0f;
Tmp[2] = Point[2] * 2.0f - 1.0f;
Tmp[3] = 1.0f;
Tmp = lcMul4(Tmp, Transform);
if (Tmp[3] != 0.0f)
Tmp /= Tmp[3];
return lcVector3(Tmp[0], Tmp[1], Tmp[2]);
}
inline void lcUnprojectPoints(lcVector3* Points, int NumPoints, const lcMatrix44& ModelView, const lcMatrix44& Projection, const int Viewport[4])
{
// Calculate the screen to model transform.
lcMatrix44 Transform = lcMatrix44Inverse(lcMul(ModelView, Projection));
for (int i = 0; i < NumPoints; i++)
{
lcVector4 Tmp;
// Convert the point to homogeneous coordinates.
Tmp[0] = (Points[i][0] - Viewport[0]) * 2.0f / Viewport[2] - 1.0f;
Tmp[1] = (Points[i][1] - Viewport[1]) * 2.0f / Viewport[3] - 1.0f;
Tmp[2] = Points[i][2] * 2.0f - 1.0f;
Tmp[3] = 1.0f;
Tmp = lcMul4(Tmp, Transform);
if (Tmp[3] != 0.0f)
Tmp /= Tmp[3];
Points[i] = lcVector3(Tmp[0], Tmp[1], Tmp[2]);
}
}
2012-06-07 00:34:38 +02:00
inline void lcGetFrustumPlanes(const lcMatrix44& WorldView, const lcMatrix44& Projection, lcVector4 Planes[6])
{
lcMatrix44 WorldProj = lcMul(WorldView, Projection);
Planes[0][0] = (WorldProj[0][0] - WorldProj[0][3]) * -1;
Planes[0][1] = (WorldProj[1][0] - WorldProj[1][3]) * -1;
Planes[0][2] = (WorldProj[2][0] - WorldProj[2][3]) * -1;
Planes[0][3] = (WorldProj[3][0] - WorldProj[3][3]) * -1;
Planes[1][0] = WorldProj[0][0] + WorldProj[0][3];
Planes[1][1] = WorldProj[1][0] + WorldProj[1][3];
Planes[1][2] = WorldProj[2][0] + WorldProj[2][3];
Planes[1][3] = WorldProj[3][0] + WorldProj[3][3];
Planes[2][0] = (WorldProj[0][1] - WorldProj[0][3]) * -1;
Planes[2][1] = (WorldProj[1][1] - WorldProj[1][3]) * -1;
Planes[2][2] = (WorldProj[2][1] - WorldProj[2][3]) * -1;
Planes[2][3] = (WorldProj[3][1] - WorldProj[3][3]) * -1;
Planes[3][0] = WorldProj[0][1] + WorldProj[0][3];
Planes[3][1] = WorldProj[1][1] + WorldProj[1][3];
Planes[3][2] = WorldProj[2][1] + WorldProj[2][3];
Planes[3][3] = WorldProj[3][1] + WorldProj[3][3];
Planes[4][0] = (WorldProj[0][2] - WorldProj[0][3]) * -1;
Planes[4][1] = (WorldProj[1][2] - WorldProj[1][3]) * -1;
Planes[4][2] = (WorldProj[2][2] - WorldProj[2][3]) * -1;
Planes[4][3] = (WorldProj[3][2] - WorldProj[3][3]) * -1;
Planes[5][0] = WorldProj[0][2] + WorldProj[0][3];
Planes[5][1] = WorldProj[1][2] + WorldProj[1][3];
Planes[5][2] = WorldProj[2][2] + WorldProj[2][3];
Planes[5][3] = WorldProj[3][2] + WorldProj[3][3];
for (int i = 0; i < 6; i++)
{
lcVector3 Normal(Planes[i][0], Planes[i][1], Planes[i][2]);
2012-06-30 01:50:29 +02:00
float Length = Normal.Length();
Planes[i] /= -Length;
2012-06-07 00:34:38 +02:00
}
}
inline lcVector3 lcZoomExtents(const lcVector3& Position, const lcMatrix44& WorldView, const lcMatrix44& Projection, const lcVector3* Points, int NumPoints)
{
if (!NumPoints)
return Position;
lcVector4 Planes[6];
lcGetFrustumPlanes(WorldView, Projection, Planes);
lcVector3 Front(WorldView[0][2], WorldView[1][2], WorldView[2][2]);
// Calculate the position that is as close as possible to the model and has all pieces visible.
float SmallestDistance = FLT_MAX;
for (int p = 0; p < 4; p++)
{
lcVector3 Plane(Planes[p][0], Planes[p][1], Planes[p][2]);
float ep = lcDot(Position, Plane);
float fp = lcDot(Front, Plane);
for (int j = 0; j < NumPoints; j++)
{
// Intersect the camera line with the plane that contains this point, NewEye = Eye + u * (Target - Eye)
float u = (ep - lcDot(Points[j], Plane)) / fp;
if (u < SmallestDistance)
SmallestDistance = u;
}
}
return Position - (Front * SmallestDistance);
}
2012-06-16 02:17:52 +02:00
// Calculate the intersection of a line segment and a plane and returns false
// if they are parallel or the intersection is outside the line segment.
2012-07-12 06:18:10 +02:00
inline bool lcLinePlaneIntersection(lcVector3* Intersection, const lcVector3& Start, const lcVector3& End, const lcVector4& Plane)
2012-06-16 02:17:52 +02:00
{
lcVector3 Dir = End - Start;
lcVector3 PlaneNormal(Plane[0], Plane[1], Plane[2]);
float t1 = lcDot(PlaneNormal, Start) + Plane[3];
float t2 = lcDot(PlaneNormal, Dir);
if (t2 == 0.0f)
return false;
float t = -t1 / t2;
2012-07-12 06:18:10 +02:00
*Intersection = Start + t * Dir;
2012-06-16 02:17:52 +02:00
if ((t < 0.0f) || (t > 1.0f))
return false;
return true;
}
2012-07-12 06:18:10 +02:00
inline bool lcLineTriangleMinIntersection(const lcVector3& p1, const lcVector3& p2, const lcVector3& p3, const lcVector3& Start, const lcVector3& End, float* MinDist, lcVector3* Intersection)
2012-06-16 02:17:52 +02:00
{
// Calculate the polygon plane.
lcVector3 PlaneNormal = lcCross(p1 - p2, p3 - p2);
float PlaneD = -lcDot(PlaneNormal, p1);
// Check if the line is parallel to the plane.
lcVector3 Dir = End - Start;
float t1 = lcDot(PlaneNormal, Start) + PlaneD;
float t2 = lcDot(PlaneNormal, Dir);
if (t2 == 0)
return false;
float t = -(t1 / t2);
if (t < 0)
return false;
// Intersection of the plane and line segment.
2012-07-12 06:18:10 +02:00
*Intersection = Start - (t1 / t2) * Dir;
2012-06-16 02:17:52 +02:00
2012-07-12 06:18:10 +02:00
float Dist = lcLength(Start - *Intersection);
2012-06-16 02:17:52 +02:00
2012-07-12 06:18:10 +02:00
if (Dist > *MinDist)
2012-06-16 02:17:52 +02:00
return false;
// Check if we're inside the triangle.
lcVector3 pa1, pa2, pa3;
2012-07-12 06:18:10 +02:00
pa1 = lcNormalize(p1 - *Intersection);
pa2 = lcNormalize(p2 - *Intersection);
pa3 = lcNormalize(p3 - *Intersection);
2012-06-16 02:17:52 +02:00
float a1, a2, a3;
a1 = lcDot(pa1, pa2);
a2 = lcDot(pa2, pa3);
a3 = lcDot(pa3, pa1);
2012-06-30 01:50:29 +02:00
float total = (acosf(a1) + acosf(a2) + acosf(a3)) * LC_RTOD;
2012-06-16 02:17:52 +02:00
if (fabs(total - 360) <= 0.001f)
{
2012-07-12 06:18:10 +02:00
*MinDist = Dist;
2012-06-16 02:17:52 +02:00
return true;
}
return false;
}
2012-07-12 06:18:10 +02:00
// Sutherland-Hodgman method of clipping a polygon to a plane.
inline void lcPolygonPlaneClip(lcVector3* InPoints, int NumInPoints, lcVector3* OutPoints, int* NumOutPoints, const lcVector4& Plane)
{
lcVector3 *s, *p, i;
*NumOutPoints = 0;
s = &InPoints[NumInPoints-1];
for (int j = 0; j < NumInPoints; j++)
{
p = &InPoints[j];
if (lcDot3(*p, Plane) + Plane[3] <= 0)
{
if (lcDot3(*s, Plane) + Plane[3] <= 0)
{
// Both points inside.
OutPoints[*NumOutPoints] = *p;
*NumOutPoints = *NumOutPoints + 1;
}
else
{
// Outside, inside.
lcLinePlaneIntersection(&i, *s, *p, Plane);
OutPoints[*NumOutPoints] = i;
*NumOutPoints = *NumOutPoints + 1;
OutPoints[*NumOutPoints] = *p;
*NumOutPoints = *NumOutPoints + 1;
}
}
else
{
if (lcDot3(*s, Plane) + Plane[3] <= 0)
{
// Inside, outside.
lcLinePlaneIntersection(&i, *s, *p, Plane);
OutPoints[*NumOutPoints] = i;
*NumOutPoints = *NumOutPoints + 1;
}
}
s = p;
}
}
// Return true if a polygon intersects a set of planes.
inline bool lcTriangleIntersectsPlanes(float* p1, float* p2, float* p3, const lcVector4 Planes[6])
{
const int NumPlanes = 6;
float* Points[3] = { p1, p2, p3 };
int Outcodes[3] = { 0, 0, 0 }, i;
int NumPoints = 3;
// First do the Cohen-Sutherland out code test for trivial rejects/accepts.
for (i = 0; i < NumPoints; i++)
{
lcVector3 Pt(Points[i][0], Points[i][1], Points[i][2]);
for (int j = 0; j < NumPlanes; j++)
{
if (lcDot3(Pt, Planes[j]) + Planes[j][3] > 0)
Outcodes[i] |= 1 << j;
}
}
// Polygon completely outside a plane.
if ((Outcodes[0] & Outcodes[1] & Outcodes[2]) != 0)
return false;
// If any vertex has an out code of all zeros then we intersect the volume.
if (!Outcodes[0] || !Outcodes[1] || !Outcodes[2])
return true;
// Buffers for clipping the polygon.
lcVector3 ClipPoints[2][8];
int NumClipPoints[2];
int ClipBuffer = 0;
NumClipPoints[0] = NumPoints;
ClipPoints[0][0] = lcVector3(p1[0], p1[1], p1[2]);
ClipPoints[0][1] = lcVector3(p2[0], p2[1], p2[2]);
ClipPoints[0][2] = lcVector3(p3[0], p3[1], p3[2]);
// Now clip the polygon against the planes.
for (i = 0; i < NumPlanes; i++)
{
lcPolygonPlaneClip(ClipPoints[ClipBuffer], NumClipPoints[ClipBuffer], ClipPoints[ClipBuffer^1], &NumClipPoints[ClipBuffer^1], Planes[i]);
ClipBuffer ^= 1;
if (!NumClipPoints[ClipBuffer])
return false;
}
return true;
}
// Return true if a ray intersects a bounding box, and calculates the distance from the start of the ray (adapted from Graphics Gems).
2012-08-17 01:50:40 +02:00
inline bool lcBoundingBoxRayMinIntersectDistance(const lcVector3& Min, const lcVector3& Max, const lcVector3& Start, const lcVector3& End, float* Dist, lcVector3* Intersection)
2012-07-12 06:18:10 +02:00
{
bool MiddleQuadrant[3];
bool Inside = true;
float CandidatePlane[3];
float MaxT[3];
int i;
// Find candidate planes.
for (i = 0; i < 3; i++)
{
2012-08-17 01:50:40 +02:00
if (Start[i] < Min[i])
2012-07-12 06:18:10 +02:00
{
MiddleQuadrant[i] = false;
2012-08-17 01:50:40 +02:00
CandidatePlane[i] = Min[i];
2012-07-12 06:18:10 +02:00
Inside = false;
}
2012-08-17 01:50:40 +02:00
else if (Start[i] > Max[i])
2012-07-12 06:18:10 +02:00
{
MiddleQuadrant[i] = false;
2012-08-17 01:50:40 +02:00
CandidatePlane[i] = Max[i];
2012-07-12 06:18:10 +02:00
Inside = false;
}
else
{
MiddleQuadrant[i] = true;
}
}
// Ray origin inside box.
if (Inside)
{
*Dist = 0;
if (*Intersection)
*Intersection = Start;
return true;
}
// Calculate T distances to candidate planes.
2012-08-17 01:50:40 +02:00
lcVector3 Dir = End - Start;
2012-07-12 06:18:10 +02:00
for (i = 0; i < 3; i++)
{
if (!MiddleQuadrant[i] && Dir[i] != 0.0f)
MaxT[i] = (CandidatePlane[i] - Start[i]) / Dir[i];
else
MaxT[i] = -1.0f;
}
// Get largest of the MaxT's for final choice of intersection.
int WhichPlane = 0;
for (i = 1; i < 3; i++)
if (MaxT[WhichPlane] < MaxT[i])
WhichPlane = i;
// Check final candidate actually inside box.
if (MaxT[WhichPlane] < 0.0f)
return false;
2012-08-17 01:50:40 +02:00
lcVector3 Point;
2012-07-12 06:18:10 +02:00
for (i = 0; i < 3; i++)
{
if (WhichPlane != i)
{
Point[i] = Start[i] + MaxT[WhichPlane] * Dir[i];
2012-08-17 01:50:40 +02:00
if (Point[i] < Min[i] || Point[i] > Max[i])
2012-07-12 06:18:10 +02:00
return false;
}
else
Point[i] = CandidatePlane[i];
}
2012-08-17 01:50:40 +02:00
*Dist = lcLength(Point - Start);
2012-07-12 06:18:10 +02:00
if (*Intersection)
*Intersection = Point;
return true;
}
2012-08-17 01:50:40 +02:00
inline bool lcSphereRayMinIntersectDistance(const lcVector3& Center, float Radius, const lcVector3& Start, const lcVector3& End, float* Dist)
{
lcVector3 Dir = Center - Start;
float LengthSquaredDir = lcLengthSquared(Dir);
float RadiusSquared = Radius * Radius;
if (LengthSquaredDir < RadiusSquared)
{
// Ray origin inside sphere.
*Dist = 0;
return true;
}
else
{
lcVector3 RayDir = End - Start;
float t = lcDot(Dir, RayDir) / lcLengthSquared(RayDir);
// Ray points away from sphere.
if (t < 0)
return false;
float c = (RadiusSquared - LengthSquaredDir) / lcLengthSquared(RayDir) + (t * t);
if (c > 0)
{
*Dist = t - sqrtf(c);
return true;
}
return false;
}
}
/*
float LinePointMinDistance(const Vector3& Point, const Vector3& Start, const Vector3& End)
{
Vector3 Dir = End - Start;
float t1 = Dot3(Start - Point, Dir);
float t2 = LengthSquared(Dir);
float t = -t1 / t2;
if (t < 0.0f)
t = 0.0f;
else if (t > 1.0f)
t = 1.0f;
Vector3 Closest = Start + t * Dir;
return Length(Closest - Point);
}
2012-08-23 20:47:37 +02:00
*/
// Returns true if the axis aligned box intersects the volume defined by planes.
inline bool lcBoundingBoxIntersectsVolume(const lcVector3& Min, const lcVector3& Max, const lcVector4 Planes[6])
2012-07-12 06:18:10 +02:00
{
2012-08-23 20:47:37 +02:00
const int NumPlanes = 6;
lcVector3 Points[8] =
{
Points[0] = lcVector3(Min[0], Min[1], Min[2]),
Points[1] = lcVector3(Min[0], Max[1], Min[2]),
Points[2] = lcVector3(Max[0], Max[1], Min[2]),
Points[3] = lcVector3(Max[0], Min[1], Min[2]),
Points[4] = lcVector3(Min[0], Min[1], Max[2]),
Points[5] = lcVector3(Min[0], Max[1], Max[2]),
Points[6] = lcVector3(Max[0], Max[1], Max[2]),
Points[7] = lcVector3(Max[0], Min[1], Max[2])
};
2012-07-12 06:18:10 +02:00
// Start by testing trivial reject/accept cases.
int Outcodes[8];
int i;
for (i = 0; i < 8; i++)
{
Outcodes[i] = 0;
for (int j = 0; j < NumPlanes; j++)
{
2012-08-23 20:47:37 +02:00
if (lcDot3(Points[i], Planes[j]) + Planes[j][3] > 0)
2012-07-12 06:18:10 +02:00
Outcodes[i] |= 1 << j;
}
}
int OutcodesOR = 0, OutcodesAND = 0x3f;
for (i = 0; i < 8; i++)
{
OutcodesAND &= Outcodes[i];
OutcodesOR |= Outcodes[i];
}
// All corners outside the same plane.
if (OutcodesAND != 0)
return false;
// All corners inside the volume.
if (OutcodesOR == 0)
return true;
2012-08-23 20:47:37 +02:00
int Indices[36] =
{
0, 1, 2,
0, 2, 3,
7, 6, 5,
7, 5, 4,
0, 1, 5,
0, 5, 4,
2, 3, 7,
2, 7, 6,
0, 3, 7,
0, 7, 4,
1, 2, 6,
1, 6, 5
};
for (int Idx = 0; Idx < 36; Idx += 3)
if (lcTriangleIntersectsPlanes(Points[Indices[Idx]*3], Points[Indices[Idx+1]*3], Points[Indices[Idx+2]*3], Planes))
return true;
2012-07-12 06:18:10 +02:00
2012-08-23 20:47:37 +02:00
return false;
}
/*
2012-07-12 06:18:10 +02:00
bool SphereIntersectsVolume(const Vector3& Center, float Radius, const Vector4* Planes, int NumPlanes)
{
for (int j = 0; j < NumPlanes; j++)
if (Dot3(Center, Planes[j]) + Planes[j][3] > Radius)
return false;
return true;
}*/
2012-03-29 03:10:55 +02:00
#endif // _LC_MATH_H_