hp-saturn/saturn_control_unit.v

335 lines
9.3 KiB
Verilog

/*
(c) Raphaël Jacquot 2019
This file is part of hp_saturn.
hp_saturn is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
any later version.
hp_saturn is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Foobar. If not, see <https://www.gnu.org/licenses/>.
*/
`default_nettype none
`include "saturn_def_buscmd.v"
`include "saturn_def_alu.v"
module saturn_control_unit (
i_clk,
i_reset,
i_phases,
i_phase,
i_cycle_ctr,
i_debug_cycle,
i_bus_busy,
o_program_data,
o_program_address,
i_program_address,
o_no_read,
i_nibble,
o_error,
/* debugger interface */
o_current_pc,
o_alu_reg_dest,
o_alu_reg_src_1,
o_alu_reg_src_2,
o_alu_imm_value,
o_alu_opcode,
o_instr_type,
o_instr_decoded
);
input wire [0:0] i_clk;
input wire [0:0] i_reset;
input wire [3:0] i_phases;
input wire [1:0] i_phase;
input wire [31:0] i_cycle_ctr;
input wire [0:0] i_debug_cycle;
input wire [0:0] i_bus_busy;
output wire [4:0] o_program_data;
output wire [4:0] o_program_address;
input wire [4:0] i_program_address;
output reg [0:0] o_no_read;
input wire [3:0] i_nibble;
output wire [0:0] o_error;
assign o_error = control_unit_error;
/* debugger interface */
output wire [19:0] o_current_pc;
output wire [4:0] o_alu_reg_dest;
output wire [4:0] o_alu_reg_src_1;
output wire [4:0] o_alu_reg_src_2;
output wire [3:0] o_alu_imm_value;
output wire [4:0] o_alu_opcode;
output wire [3:0] o_instr_type;
output wire [0:0] o_instr_decoded;
assign o_current_pc = reg_PC;
assign o_alu_reg_dest = dec_alu_reg_dest;
assign o_alu_reg_src_1 = dec_alu_reg_src_1;
assign o_alu_reg_src_2 = dec_alu_reg_src_2;
assign o_alu_imm_value = dec_alu_imm_value;
assign o_alu_opcode = dec_alu_opcode;
assign o_instr_type = dec_instr_type;
assign o_instr_decoded = dec_instr_decoded;
/**************************************************************************************************
*
* decoder module
*
*************************************************************************************************/
saturn_inst_decoder instruction_decoder(
.i_clk (i_clk),
.i_reset (i_reset),
.i_phases (i_phases),
.i_phase (i_phase),
.i_cycle_ctr (i_cycle_ctr),
.i_debug_cycle (i_debug_cycle),
.i_bus_busy (i_bus_busy),
.i_nibble (i_nibble),
.i_reg_p (reg_P),
.i_current_pc (reg_PC),
.o_alu_reg_dest (dec_alu_reg_dest),
.o_alu_reg_src_1 (dec_alu_reg_src_1),
.o_alu_reg_src_2 (dec_alu_reg_src_2),
.o_alu_imm_value (dec_alu_imm_value),
.o_alu_opcode (dec_alu_opcode),
.o_instr_type (dec_instr_type),
.o_instr_decoded (dec_instr_decoded),
.o_instr_execute (dec_instr_execute)
);
wire [4:0] dec_alu_reg_dest;
wire [4:0] dec_alu_reg_src_1;
wire [4:0] dec_alu_reg_src_2;
wire [3:0] dec_alu_imm_value;
wire [4:0] dec_alu_opcode;
wire [3:0] dec_instr_type;
wire [0:0] dec_instr_decoded;
wire [0:0] dec_instr_execute;
/*
* wires for decode shortcuts
*/
wire [0:0] reg_dest_p = (dec_alu_reg_dest == `ALU_REG_P);
wire [0:0] reg_src_1_imm = (dec_alu_reg_src_1 == `ALU_REG_IMM);
wire [0:0] aluop_copy = (dec_alu_opcode == `ALU_OP_COPY);
wire [0:0] inst_alu_p_eq_n = aluop_copy && reg_dest_p && reg_src_1_imm;
wire [0:0] inst_alu_other = !(inst_alu_p_eq_n);
/**************************************************************************************************
*
* registers module (contains A, B, C, D, R0, R1, R2, R3, R4)
*
*************************************************************************************************/
/**************************************************************************************************
*
* PC and RSTK module
*
*************************************************************************************************/
saturn_regs_pc_rstk regs_pc_rstk (
.i_clk (i_clk),
.i_reset (i_reset),
.i_phases (i_phases),
.i_phase (i_phase),
.i_cycle_ctr (i_cycle_ctr),
.i_debug_cycle (i_debug_cycle),
.i_bus_busy (i_bus_busy),
.i_nibble (i_nibble),
.o_current_pc (reg_PC)
);
/**************************************************************************************************
*
* other processor registers
*
*************************************************************************************************/
reg [3:0] reg_P;
wire [19:0] reg_PC;
/**************************************************************************************************
*
* the control unit
*
*************************************************************************************************/
reg [0:0] control_unit_error;
reg [0:0] just_reset;
reg [0:0] control_unit_ready;
reg [4:0] bus_program[0:31];
reg [4:0] bus_prog_addr;
reg [2:0] addr_nibble_ptr;
wire [3:0] reg_PC_nibble = reg_PC[addr_nibble_ptr*4+:4];
assign o_program_data = bus_program[i_program_address];
assign o_program_address = bus_prog_addr;
initial begin
/* control variables */
o_no_read = 1'b0;
control_unit_error = 1'b0;
just_reset = 1'b1;
control_unit_ready = 1'b0;
bus_prog_addr = 5'd0;
addr_nibble_ptr = 3'd0;
/* registers */
reg_P = 4'b0;
end
always @(posedge i_clk) begin
/************************
*
* we're just starting, load the PC into the controller and modules
* this could also be used when loading the PC on jumps, need to identify conditions
*
*/
if (!i_debug_cycle && just_reset && i_phases[3]) begin
/* this happend right after reset */
if (just_reset) begin
`ifdef SIM
$display("CTRL %0d: [%d] we are in the control unit", i_phase, i_cycle_ctr);
`endif
just_reset <= 1'b0;
end
/* this loads the PC to the modules */
bus_program[bus_prog_addr] <= {1'b1, `BUSCMD_LOAD_PC };
`ifdef SIM
$display("CTRL %0d: [%d] pushing LOAD_PC command to pos %d", i_phase, i_cycle_ctr, bus_prog_addr);
`endif
addr_nibble_ptr <= 3'b0;
bus_prog_addr <= bus_prog_addr + 5'd1;
end
/* loop to fill the initial PC value in the program */
if (!i_debug_cycle && !control_unit_ready && (bus_prog_addr != 5'b0)) begin
/*
* this should load the actual PC values...
*/
bus_program[bus_prog_addr] <= {1'b0, reg_PC_nibble };
addr_nibble_ptr <= addr_nibble_ptr + 3'd1;
bus_prog_addr <= bus_prog_addr + 5'd1;
`ifdef SIM
$write("CTRL %0d: [%d] pushing ADDR : prog[%0d] <= PC[%0d] (%h)", i_phase, i_cycle_ctr,
bus_prog_addr, addr_nibble_ptr, {1'b0, reg_PC[addr_nibble_ptr*4+:4]});
`endif
if (bus_prog_addr == 5'd5) begin
control_unit_ready <= 1'b1;
`ifdef SIM
$write(" done");
`endif
end
`ifdef SIM
$write("\n");
`endif
end
/************************
*
* main execution loop
*
*/
if (!i_debug_cycle && control_unit_ready && !i_bus_busy) begin
// `ifdef SIM
// $display("CTRL %0d: [%d] starting to do things", i_phase, i_cycle_ctr);
// `endif
if (i_cycle_ctr == 10) begin
control_unit_error <= 1'b1;
$display("CTRL %0d: [%d] enough cycles for now", i_phase, i_cycle_ctr);
end
if (i_phases[2]) begin
$display("CTRL %0d: [%d] interpreting %h", i_phase, i_cycle_ctr, i_nibble);
end
if (i_phases[3] && dec_instr_execute) begin
case (dec_instr_type)
`INSTR_TYPE_NOP: begin
$display("CTRL %0d: [%d] NOP instruction", i_phase, i_cycle_ctr);
end
`INSTR_TYPE_ALU: begin
$display("CTRL %0d: [%d] ALU instruction", i_phase, i_cycle_ctr);
/*
* treat special cases
*/
if (inst_alu_p_eq_n) begin
$display("CTRL %0d: [%d] exec : P= %h", i_phase, i_cycle_ctr, dec_alu_imm_value);
reg_P <= dec_alu_imm_value;
end
/*
* the general case
*/
end
default: begin
$display("CTRL %0d: [%d] unsupported instruction", i_phase, i_cycle_ctr);
end
endcase
end
end
if (i_reset) begin
/* control variables */
o_no_read <= 1'b0;
control_unit_error <= 1'b0;
just_reset <= 1'b1;
control_unit_ready <= 1'b0;
bus_prog_addr <= 5'd0;
addr_nibble_ptr <= 3'd0;
/* registers */
reg_P <= 4'b0;
end
end
endmodule