/* (c) Raphaƫl Jacquot 2019 This file is part of hp_saturn. hp_saturn is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or any later version. hp_saturn is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Foobar. If not, see . */ `default_nettype none `include "saturn_def_buscmd.v" `include "saturn_def_alu.v" module saturn_control_unit ( i_clk, i_reset, i_phases, i_phase, i_cycle_ctr, i_debug_cycle, i_bus_busy, o_program_data, o_program_address, i_program_address, o_no_read, i_nibble, o_error, /* debugger interface */ o_current_pc, o_alu_reg_dest, o_alu_reg_src_1, o_alu_reg_src_2, o_alu_imm_value, o_alu_opcode, o_instr_type, o_instr_decoded ); input wire [0:0] i_clk; input wire [0:0] i_reset; input wire [3:0] i_phases; input wire [1:0] i_phase; input wire [31:0] i_cycle_ctr; input wire [0:0] i_debug_cycle; input wire [0:0] i_bus_busy; output wire [4:0] o_program_data; output wire [4:0] o_program_address; input wire [4:0] i_program_address; output reg [0:0] o_no_read; input wire [3:0] i_nibble; output wire [0:0] o_error; assign o_error = control_unit_error; /* debugger interface */ output wire [19:0] o_current_pc; output wire [4:0] o_alu_reg_dest; output wire [4:0] o_alu_reg_src_1; output wire [4:0] o_alu_reg_src_2; output wire [3:0] o_alu_imm_value; output wire [4:0] o_alu_opcode; output wire [3:0] o_instr_type; output wire [0:0] o_instr_decoded; assign o_current_pc = reg_PC; assign o_alu_reg_dest = dec_alu_reg_dest; assign o_alu_reg_src_1 = dec_alu_reg_src_1; assign o_alu_reg_src_2 = dec_alu_reg_src_2; assign o_alu_imm_value = dec_alu_imm_value; assign o_alu_opcode = dec_alu_opcode; assign o_instr_type = dec_instr_type; assign o_instr_decoded = dec_instr_decoded; /************************************************************************************************** * * decoder module * *************************************************************************************************/ saturn_inst_decoder instruction_decoder( .i_clk (i_clk), .i_reset (i_reset), .i_phases (i_phases), .i_phase (i_phase), .i_cycle_ctr (i_cycle_ctr), .i_debug_cycle (i_debug_cycle), .i_bus_busy (i_bus_busy), .i_nibble (i_nibble), .i_reg_p (reg_P), .i_current_pc (reg_PC), .o_alu_reg_dest (dec_alu_reg_dest), .o_alu_reg_src_1 (dec_alu_reg_src_1), .o_alu_reg_src_2 (dec_alu_reg_src_2), .o_alu_imm_value (dec_alu_imm_value), .o_alu_opcode (dec_alu_opcode), .o_instr_type (dec_instr_type), .o_instr_decoded (dec_instr_decoded), .o_instr_execute (dec_instr_execute) ); wire [4:0] dec_alu_reg_dest; wire [4:0] dec_alu_reg_src_1; wire [4:0] dec_alu_reg_src_2; wire [3:0] dec_alu_imm_value; wire [4:0] dec_alu_opcode; wire [3:0] dec_instr_type; wire [0:0] dec_instr_decoded; wire [0:0] dec_instr_execute; /* * wires for decode shortcuts */ wire [0:0] reg_dest_p = (dec_alu_reg_dest == `ALU_REG_P); wire [0:0] reg_src_1_imm = (dec_alu_reg_src_1 == `ALU_REG_IMM); wire [0:0] aluop_copy = (dec_alu_opcode == `ALU_OP_COPY); wire [0:0] inst_alu_p_eq_n = aluop_copy && reg_dest_p && reg_src_1_imm; wire [0:0] inst_alu_other = !(inst_alu_p_eq_n); /************************************************************************************************** * * registers module (contains A, B, C, D, R0, R1, R2, R3, R4) * *************************************************************************************************/ /************************************************************************************************** * * PC and RSTK module * *************************************************************************************************/ saturn_regs_pc_rstk regs_pc_rstk ( .i_clk (i_clk), .i_reset (i_reset), .i_phases (i_phases), .i_phase (i_phase), .i_cycle_ctr (i_cycle_ctr), .i_debug_cycle (i_debug_cycle), .i_bus_busy (i_bus_busy), .i_nibble (i_nibble), .o_current_pc (reg_PC) ); /************************************************************************************************** * * other processor registers * *************************************************************************************************/ reg [3:0] reg_P; wire [19:0] reg_PC; /************************************************************************************************** * * the control unit * *************************************************************************************************/ reg [0:0] control_unit_error; reg [0:0] just_reset; reg [0:0] control_unit_ready; reg [4:0] bus_program[0:31]; reg [4:0] bus_prog_addr; reg [2:0] addr_nibble_ptr; wire [3:0] reg_PC_nibble = reg_PC[addr_nibble_ptr*4+:4]; assign o_program_data = bus_program[i_program_address]; assign o_program_address = bus_prog_addr; initial begin /* control variables */ o_no_read = 1'b0; control_unit_error = 1'b0; just_reset = 1'b1; control_unit_ready = 1'b0; bus_prog_addr = 5'd0; addr_nibble_ptr = 3'd0; /* registers */ reg_P = 4'b0; end always @(posedge i_clk) begin /************************ * * we're just starting, load the PC into the controller and modules * this could also be used when loading the PC on jumps, need to identify conditions * */ if (!i_debug_cycle && just_reset && i_phases[3]) begin /* this happend right after reset */ if (just_reset) begin `ifdef SIM $display("CTRL %0d: [%d] we are in the control unit", i_phase, i_cycle_ctr); `endif just_reset <= 1'b0; end /* this loads the PC to the modules */ bus_program[bus_prog_addr] <= {1'b1, `BUSCMD_LOAD_PC }; `ifdef SIM $display("CTRL %0d: [%d] pushing LOAD_PC command to pos %d", i_phase, i_cycle_ctr, bus_prog_addr); `endif addr_nibble_ptr <= 3'b0; bus_prog_addr <= bus_prog_addr + 5'd1; end /* loop to fill the initial PC value in the program */ if (!i_debug_cycle && !control_unit_ready && (bus_prog_addr != 5'b0)) begin /* * this should load the actual PC values... */ bus_program[bus_prog_addr] <= {1'b0, reg_PC_nibble }; addr_nibble_ptr <= addr_nibble_ptr + 3'd1; bus_prog_addr <= bus_prog_addr + 5'd1; `ifdef SIM $write("CTRL %0d: [%d] pushing ADDR : prog[%0d] <= PC[%0d] (%h)", i_phase, i_cycle_ctr, bus_prog_addr, addr_nibble_ptr, {1'b0, reg_PC[addr_nibble_ptr*4+:4]}); `endif if (bus_prog_addr == 5'd5) begin control_unit_ready <= 1'b1; `ifdef SIM $write(" done"); `endif end `ifdef SIM $write("\n"); `endif end /************************ * * main execution loop * */ if (!i_debug_cycle && control_unit_ready && !i_bus_busy) begin // `ifdef SIM // $display("CTRL %0d: [%d] starting to do things", i_phase, i_cycle_ctr); // `endif if (i_cycle_ctr == 10) begin control_unit_error <= 1'b1; $display("CTRL %0d: [%d] enough cycles for now", i_phase, i_cycle_ctr); end if (i_phases[2]) begin $display("CTRL %0d: [%d] interpreting %h", i_phase, i_cycle_ctr, i_nibble); end if (i_phases[3] && dec_instr_execute) begin case (dec_instr_type) `INSTR_TYPE_NOP: begin $display("CTRL %0d: [%d] NOP instruction", i_phase, i_cycle_ctr); end `INSTR_TYPE_ALU: begin $display("CTRL %0d: [%d] ALU instruction", i_phase, i_cycle_ctr); /* * treat special cases */ if (inst_alu_p_eq_n) begin $display("CTRL %0d: [%d] exec : P= %h", i_phase, i_cycle_ctr, dec_alu_imm_value); reg_P <= dec_alu_imm_value; end /* * the general case */ end default: begin $display("CTRL %0d: [%d] unsupported instruction", i_phase, i_cycle_ctr); end endcase end end if (i_reset) begin /* control variables */ o_no_read <= 1'b0; control_unit_error <= 1'b0; just_reset <= 1'b1; control_unit_ready <= 1'b0; bus_prog_addr <= 5'd0; addr_nibble_ptr <= 3'd0; /* registers */ reg_P <= 4'b0; end end endmodule