eliot/game/results.cpp

348 lines
8.9 KiB
C++
Raw Permalink Normal View History

/*****************************************************************************
* Eliot
* Copyright (C) 2005-2012 Antoine Fraboulet & Olivier Teuli<EFBFBD>re
* Authors: Antoine Fraboulet <antoine.fraboulet @@ free.fr>
* Olivier Teuli<EFBFBD>re <ipkiss @@ gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*****************************************************************************/
#include <boost/foreach.hpp>
#include <algorithm>
#include <functional>
#include <cwctype>
#include <cmath>
#include "results.h"
#include "tile.h"
#include "round.h"
#include "board.h"
#include "move_selector.h"
#include "debug.h"
2012-02-18 22:26:52 +01:00
INIT_LOGGER(game, Results);
bool tileCompare(const Tile &t1, const Tile &t2)
{
return t1.toCode() < t2.toCode();
}
struct less_points : public binary_function<const Round&, const Round&, bool>
{
bool operator()(const Round &r1, const Round &r2)
{
// We want higher scores first, so we use '>' instead of '<'
if (r1.getPoints() > r2.getPoints())
return true;
else if (r1.getPoints() < r2.getPoints())
return false;
else
{
// If the scores are equal, sort alphabetically (i.e. in the
// order of the letters in the dictionary), ignoring the case
const wstring &s1 = r1.getWord();
const wstring &s2 = r2.getWord();
if (std::lexicographical_compare(r1.getTiles().begin(),
r1.getTiles().end(),
r2.getTiles().begin(),
r2.getTiles().end(),
tileCompare))
{
return true;;
}
else if (std::lexicographical_compare(r2.getTiles().begin(),
r2.getTiles().end(),
r1.getTiles().begin(),
r1.getTiles().end(),
tileCompare))
{
return false;
}
else
{
// If the rounds are still equal, compare the coordinates
const wstring &c1 = r1.getCoord().toString();
const wstring &c2 = r2.getCoord().toString();
if (c1 < c2)
return true;
else if (c2 < c1)
return false;
else
{
// Still equal? This time compare taking the case into
// account. After that, we are sure that the rounds will
// be different...
return std::lexicographical_compare(s1.begin(),
s1.end(),
s2.begin(),
s2.end());
}
}
}
}
};
const Round & Results::get(unsigned int i) const
{
ASSERT(i < size(), "Results index out of bounds");
return m_rounds[i];
}
void Results::sort()
{
less_points lp;
std::sort(m_rounds.begin(), m_rounds.end(), lp);
}
BestResults::BestResults()
: m_bestScore(0)
{
}
void BestResults::search(const Dictionary &iDic, const Board &iBoard,
const Rack &iRack, bool iFirstWord)
{
clear();
if (iFirstWord)
iBoard.searchFirst(iDic, iRack, *this);
else
iBoard.search(iDic, iRack, *this);
sort();
}
void BestResults::add(const Round &iRound)
{
// Ignore too low scores
if (m_bestScore > iRound.getPoints())
return;
if (m_bestScore < iRound.getPoints())
{
// New best score: clear the stored results
m_bestScore = iRound.getPoints();
m_rounds.clear();
}
m_rounds.push_back(iRound);
}
void BestResults::clear()
{
m_rounds.clear();
m_bestScore = 0;
}
PercentResults::PercentResults(float iPercent)
: m_percent(iPercent), m_bestScore(0), m_minScore(0)
{
}
class Predicate
{
public:
Predicate(int iPoints) : m_chosenPoints(iPoints) {}
bool operator()(const Round &iRound) const
{
return iRound.getPoints() != m_chosenPoints;
}
private:
const int m_chosenPoints;
};
void PercentResults::search(const Dictionary &iDic, const Board &iBoard,
const Rack &iRack, bool iFirstWord)
{
clear();
if (iFirstWord)
iBoard.searchFirst(iDic, iRack, *this);
else
iBoard.search(iDic, iRack, *this);
if (m_rounds.empty())
return;
// At this point, add() has been called, so the best score is valid
// Find the lowest score at least equal to the min_score
int chosenPoints = m_bestScore;
BOOST_FOREACH(const Round &iRound, m_rounds)
{
int points = iRound.getPoints();
if (points >= m_minScore && points < chosenPoints)
{
chosenPoints = points;
}
}
// Keep only the rounds with the "chosenPoints" score
vector<Round>::iterator last =
std::remove_if(m_rounds.begin(), m_rounds.end(), Predicate(chosenPoints));
m_rounds.erase(last, m_rounds.end());
ASSERT(!m_rounds.empty(), "Bug in PercentResults");
// Sort the remaining rounds
sort();
}
void PercentResults::add(const Round &iRound)
{
// Ignore too low scores
if (m_minScore > iRound.getPoints())
return;
if (m_bestScore < iRound.getPoints())
{
m_bestScore = iRound.getPoints();
m_minScore = lrint(ceil(m_bestScore * m_percent));
}
m_rounds.push_back(iRound);
}
void PercentResults::clear()
{
m_rounds.clear();
m_bestScore = 0;
m_minScore = 0;
}
LimitResults::LimitResults(int iLimit)
: m_limit(iLimit), m_total(0), m_minScore(-1)
{
}
void LimitResults::search(const Dictionary &iDic, const Board &iBoard,
const Rack &iRack, bool iFirstWord)
{
clear();
if (iFirstWord)
iBoard.searchFirst(iDic, iRack, *this);
else
iBoard.search(iDic, iRack, *this);
if (m_rounds.empty())
return;
// Sort the rounds
sort();
// Truncate the results to respect the limit
if (m_limit != 0 && m_rounds.size() > (unsigned int) m_limit)
m_rounds.resize(m_limit);
}
void LimitResults::add(const Round &iRound)
{
// If we ignore the limit, simply add the round
if (m_limit == 0)
{
m_rounds.push_back(iRound);
return;
}
// Ignore too low scores
if (m_minScore >= iRound.getPoints())
return;
// Add the round
m_rounds.push_back(iRound);
++m_total;
++m_scoresCount[iRound.getPoints()];
// Can we increase the minimum score required?
if (m_total - m_scoresCount[m_minScore] >= m_limit)
{
// Yes! "Forget" the rounds of score m_minScore
// They are still present in m_rounds, but they will be removed
// for real later in the search() method
m_total -= m_scoresCount[m_minScore];
m_scoresCount.erase(m_minScore);
// Find the new min score
map<int, int>::const_iterator it =
m_scoresCount.lower_bound(m_minScore);
ASSERT(it != m_scoresCount.end(), "Bug in LimitResults::add())");
m_minScore = it->first;
}
}
void LimitResults::clear()
{
m_rounds.clear();
m_scoresCount.clear();
m_minScore = -1;
m_total = 0;
}
MasterResults::MasterResults(const Bag &iBag)
: m_bag(iBag)
{
}
void MasterResults::search(const Dictionary &iDic, const Board &iBoard,
const Rack &iRack, bool iFirstWord)
{
// Perform the search of the best results
m_bestResults.search(iDic, iBoard, iRack, iFirstWord);
// If the search yields no result, there is nothing else to do
if (m_bestResults.isEmpty())
return;
// Find the best round, according to the heuristics in MoveSelector
2013-01-17 19:52:49 +01:00
MoveSelector selector(m_bag, iDic, iBoard, iRack);
const Round &round = selector.selectMaster(m_bestResults);
m_rounds.push_back(round);
}
void MasterResults::add(const Round &iRound)
{
m_bestResults.add(iRound);
}
void MasterResults::clear()
{
m_rounds.clear();
m_bestResults.clear();
}