TheAlgorithms-Ruby/data_structures/binary_trees/bst.rb
2023-02-17 00:13:27 +01:00

176 lines
4.6 KiB
Ruby

class BinarySearchTreeNode
attr_reader :key
attr_accessor :left
attr_accessor :right
def initialize(key)
@key = key
end
end
##
# This class represents a binary search tree (not implementing self-balancing) with distinct node keys.
# Starting from the root, every node has up to two children (one left and one right child node).
#
# For the BST property:
# - the keys of nodes in the left subtree of a node are strictly less than the key of the node;
# - the keys of nodes in the right subtree of a node are strictly greater than the key of the node.
#
# The main operations of this data structure (insertion, deletion, membership) run - in worst case - in O(n),
# where n is the number of nodes in the tree.
# The average case for those operations is O(log(n)) due to the structure of the tree.
class BinarySearchTree
attr_reader :size
attr_accessor :root
def initialize(keys=[])
@size = 0
keys.each {|key| insert_key(key) }
end
def empty?
size == 0
end
def insert_key(key)
@size += 1
if root.nil?
@root = BinarySearchTreeNode.new(key)
return
end
parent = root
while (key < parent.key && !parent.left.nil? && parent.left.key != key) ||
(key > parent.key && !parent.right.nil? && parent.right.key != key)
parent = key < parent.key ? parent.left : parent.right
end
if key < parent.key
raise ArgumentError.new("Key #{key} is already present in the BinarySearchTree") unless parent.left.nil?
parent.left = BinarySearchTreeNode.new(key)
else
raise ArgumentError.new("Key #{key} is already present in the BinarySearchTree") unless parent.right.nil?
parent.right = BinarySearchTreeNode.new(key)
end
end
def min_key(node=root)
return nil if node.nil?
min_key_node(node).key
end
def max_key(node=root)
return nil if node.nil?
max_key_node(node).key
end
def contains_key?(key)
!find_node_with_key(key).nil?
end
def delete_key(key)
parent = find_parent_of_node_with_key(key)
if parent.nil?
return if root.nil? || root.key != key
@size -= 1
@root = adjusted_subtree_after_deletion(root.left, root.right)
return
end
if key < parent.key
node = parent.left
parent.left = adjusted_subtree_after_deletion(node.left, node.right)
else
node = parent.right
parent.right = adjusted_subtree_after_deletion(node.left, node.right)
end
@size -= 1
end
def traverse_preorder(key_consumer, node=root)
return if node.nil?
key_consumer.call(node.key)
traverse_preorder(key_consumer, node.left) unless node.left.nil?
traverse_preorder(key_consumer, node.right) unless node.right.nil?
end
def traverse_inorder(key_consumer, node=root)
return if node.nil?
traverse_inorder(key_consumer, node.left) unless node.left.nil?
key_consumer.call(node.key)
traverse_inorder(key_consumer, node.right) unless node.right.nil?
end
def traverse_postorder(key_consumer, node=root)
return if node.nil?
traverse_postorder(key_consumer, node.left) unless node.left.nil?
traverse_postorder(key_consumer, node.right) unless node.right.nil?
key_consumer.call(node.key)
end
def to_array(visit_traversal=:traverse_preorder)
visited = []
method(visit_traversal).call(->(key) { visited.append(key) })
visited
end
private
def min_key_node(node=root)
return nil if node.nil?
until node.left.nil?
node = node.left
end
node
end
def max_key_node(node=root)
return nil if node.nil?
until node.right.nil?
node = node.right
end
node
end
def find_node_with_key(key)
node = root
until node.nil? || node.key == key
node = key < node.key ? node.left : node.right
end
node
end
def find_parent_of_node_with_key(key)
return nil if root.nil? || root.key == key
parent = root
until parent.nil?
if key < parent.key
return nil if parent.left.nil?
return parent if parent.left.key == key
parent = parent.left
else
return nil if parent.right.nil?
return parent if parent.right.key == key
parent = parent.right
end
end
nil
end
def adjusted_subtree_after_deletion(left, right)
return right if left.nil?
return left if right.nil?
if right.left.nil?
right.left = left
return right
end
successor_parent = right
until successor_parent.left.left.nil?
successor_parent = successor_parent.left
end
successor = successor_parent.left
successor_parent.left = successor.right
successor.right = right
successor.left = left
successor
end
end