class BinarySearchTreeNode attr_reader :key attr_accessor :left attr_accessor :right def initialize(key) @key = key end end ## # This class represents a binary search tree (not implementing self-balancing) with distinct node keys. # Starting from the root, every node has up to two children (one left and one right child node). # # For the BST property: # - the keys of nodes in the left subtree of a node are strictly less than the key of the node; # - the keys of nodes in the right subtree of a node are strictly greater than the key of the node. # # The main operations of this data structure (insertion, deletion, membership) run - in worst case - in O(n), # where n is the number of nodes in the tree. # The average case for those operations is O(log(n)) due to the structure of the tree. class BinarySearchTree attr_reader :size attr_accessor :root def initialize(keys=[]) @size = 0 keys.each {|key| insert_key(key) } end def empty? size == 0 end def insert_key(key) @size += 1 if root.nil? @root = BinarySearchTreeNode.new(key) return end parent = root while (key < parent.key && !parent.left.nil? && parent.left.key != key) || (key > parent.key && !parent.right.nil? && parent.right.key != key) parent = key < parent.key ? parent.left : parent.right end if key < parent.key raise ArgumentError.new("Key #{key} is already present in the BinarySearchTree") unless parent.left.nil? parent.left = BinarySearchTreeNode.new(key) else raise ArgumentError.new("Key #{key} is already present in the BinarySearchTree") unless parent.right.nil? parent.right = BinarySearchTreeNode.new(key) end end def min_key(node=root) return nil if node.nil? min_key_node(node).key end def max_key(node=root) return nil if node.nil? max_key_node(node).key end def contains_key?(key) !find_node_with_key(key).nil? end def delete_key(key) parent = find_parent_of_node_with_key(key) if parent.nil? return if root.nil? || root.key != key @size -= 1 @root = adjusted_subtree_after_deletion(root.left, root.right) return end if key < parent.key node = parent.left parent.left = adjusted_subtree_after_deletion(node.left, node.right) else node = parent.right parent.right = adjusted_subtree_after_deletion(node.left, node.right) end @size -= 1 end def traverse_preorder(key_consumer, node=root) return if node.nil? key_consumer.call(node.key) traverse_preorder(key_consumer, node.left) unless node.left.nil? traverse_preorder(key_consumer, node.right) unless node.right.nil? end def traverse_inorder(key_consumer, node=root) return if node.nil? traverse_inorder(key_consumer, node.left) unless node.left.nil? key_consumer.call(node.key) traverse_inorder(key_consumer, node.right) unless node.right.nil? end def traverse_postorder(key_consumer, node=root) return if node.nil? traverse_postorder(key_consumer, node.left) unless node.left.nil? traverse_postorder(key_consumer, node.right) unless node.right.nil? key_consumer.call(node.key) end def to_array(visit_traversal=:traverse_preorder) visited = [] method(visit_traversal).call(->(key) { visited.append(key) }) visited end private def min_key_node(node=root) return nil if node.nil? until node.left.nil? node = node.left end node end def max_key_node(node=root) return nil if node.nil? until node.right.nil? node = node.right end node end def find_node_with_key(key) node = root until node.nil? || node.key == key node = key < node.key ? node.left : node.right end node end def find_parent_of_node_with_key(key) return nil if root.nil? || root.key == key parent = root until parent.nil? if key < parent.key return nil if parent.left.nil? return parent if parent.left.key == key parent = parent.left else return nil if parent.right.nil? return parent if parent.right.key == key parent = parent.right end end nil end def adjusted_subtree_after_deletion(left, right) return right if left.nil? return left if right.nil? if right.left.nil? right.left = left return right end successor_parent = right until successor_parent.left.left.nil? successor_parent = successor_parent.left end successor = successor_parent.left successor_parent.left = successor.right successor.right = right successor.left = left successor end end