mirror of
https://github.com/TheAlgorithms/Ruby
synced 2024-12-26 21:58:56 +01:00
add output for max_product algorithm
This commit is contained in:
parent
bd92198fc8
commit
b7d623a303
1 changed files with 42 additions and 35 deletions
|
@ -1,44 +1,51 @@
|
||||||
#Given an integer array nums, find a contiguous non-empty subarray within the array that has the largest product, and return the product.
|
|
||||||
#It is guaranteed that the answer will fit in a 32-bit integer.
|
|
||||||
#A subarray is a contiguous subsequence of the array.
|
|
||||||
|
|
||||||
#Example 1:
|
# Given an integer array nums, find a contiguous non-empty subarray within the array that has the largest product, and return the product.
|
||||||
#Input: nums = [2,3,-2,4]
|
# It is guaranteed that the answer will fit in a 32-bit integer.
|
||||||
#Output: 6
|
# A subarray is a contiguous subsequence of the array.
|
||||||
#Explanation: [2,3] has the largest product 6.
|
|
||||||
|
|
||||||
#Example 2:
|
# Example 1:
|
||||||
#Input: nums = [-2,0,-1]
|
# Input: nums = [2,3,-2,4]
|
||||||
#Output: 0
|
# Output: 6
|
||||||
#Explanation: The result cannot be 2, because [-2,-1] is not a subarray.
|
# Explanation: [2,3] has the largest product 6.
|
||||||
|
|
||||||
#Constraints:
|
# Example 2:
|
||||||
#1 <= nums.length <= 2 * 104
|
# Input: nums = [-2,0,-1]
|
||||||
|
# Output: 0
|
||||||
|
# Explanation: The result cannot be 2, because [-2,-1] is not a subarray.
|
||||||
|
|
||||||
|
# Constraints:
|
||||||
|
# 1 <= nums.length <= 2 * 104
|
||||||
#-10 <= nums[i] <= 10
|
#-10 <= nums[i] <= 10
|
||||||
#The product of any prefix or suffix of nums is guaranteed to fit in a 32-bit integer.
|
# The product of any prefix or suffix of nums is guaranteed to fit in a 32-bit integer.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
#Dynamic Programming Approach (Kadane's Algorithm) - O(n) Time / O(1) Space
|
|
||||||
#Track both current minimum and current maximum (Due to possibility of multiple negative numbers)
|
|
||||||
#Answer is the highest value of current maximum
|
|
||||||
|
|
||||||
|
# Dynamic Programming Approach (Kadane's Algorithm) - O(n) Time / O(1) Space
|
||||||
|
# Track both current minimum and current maximum (Due to possibility of multiple negative numbers)
|
||||||
|
# Answer is the highest value of current maximum
|
||||||
|
|
||||||
# @param {Integer[]} nums
|
# @param {Integer[]} nums
|
||||||
# @return {Integer}
|
# @return {Integer}
|
||||||
def max_product(nums)
|
def max_product(nums)
|
||||||
return nums[0] if nums.length == 1
|
return nums[0] if nums.length == 1
|
||||||
|
|
||||||
cur_min, cur_max, max = 1, 1, -11
|
cur_min = 1
|
||||||
|
cur_max = 1
|
||||||
nums.each do |val|
|
max = -11
|
||||||
tmp_cur_max = cur_max
|
|
||||||
cur_max = [val, val*cur_max, val*cur_min].max
|
nums.each do |val|
|
||||||
cur_min = [val, val*tmp_cur_max, val*cur_min].min
|
tmp_cur_max = cur_max
|
||||||
|
cur_max = [val, val * cur_max, val * cur_min].max
|
||||||
max = [max, cur_max].max
|
cur_min = [val, val * tmp_cur_max, val * cur_min].min
|
||||||
end
|
|
||||||
|
max = [max, cur_max].max
|
||||||
max
|
end
|
||||||
end
|
|
||||||
|
max
|
||||||
|
end
|
||||||
|
|
||||||
|
nums = [2, 3, -2, 4]
|
||||||
|
puts max_product(nums)
|
||||||
|
# Output: 6
|
||||||
|
|
||||||
|
nums = [-2, 0, -1]
|
||||||
|
puts max_product(nums)
|
||||||
|
# Output: 0
|
||||||
|
|
Loading…
Reference in a new issue