mirror of
https://github.com/TheAlgorithms/Ruby
synced 2024-12-30 22:24:11 +01:00
51 lines
1.3 KiB
Ruby
51 lines
1.3 KiB
Ruby
|
|
# Given an integer array nums, find a contiguous non-empty subarray within the array that has the largest product, and return the product.
|
|
# It is guaranteed that the answer will fit in a 32-bit integer.
|
|
# A subarray is a contiguous subsequence of the array.
|
|
|
|
# Example 1:
|
|
# Input: nums = [2,3,-2,4]
|
|
# Output: 6
|
|
# Explanation: [2,3] has the largest product 6.
|
|
|
|
# Example 2:
|
|
# Input: nums = [-2,0,-1]
|
|
# Output: 0
|
|
# Explanation: The result cannot be 2, because [-2,-1] is not a subarray.
|
|
|
|
# Constraints:
|
|
# 1 <= nums.length <= 2 * 104
|
|
#-10 <= nums[i] <= 10
|
|
# The product of any prefix or suffix of nums is guaranteed to fit in a 32-bit integer.
|
|
|
|
# Dynamic Programming Approach (Kadane's Algorithm) - O(n) Time / O(1) Space
|
|
# Track both current minimum and current maximum (Due to possibility of multiple negative numbers)
|
|
# Answer is the highest value of current maximum
|
|
|
|
# @param {Integer[]} nums
|
|
# @return {Integer}
|
|
def max_product(nums)
|
|
return nums[0] if nums.length == 1
|
|
|
|
cur_min = 1
|
|
cur_max = 1
|
|
max = -11
|
|
|
|
nums.each do |val|
|
|
tmp_cur_max = cur_max
|
|
cur_max = [val, val * cur_max, val * cur_min].max
|
|
cur_min = [val, val * tmp_cur_max, val * cur_min].min
|
|
|
|
max = [max, cur_max].max
|
|
end
|
|
|
|
max
|
|
end
|
|
|
|
nums = [2, 3, -2, 4]
|
|
puts max_product(nums)
|
|
# Output: 6
|
|
|
|
nums = [-2, 0, -1]
|
|
puts max_product(nums)
|
|
# Output: 0
|