rpl.rb/lib/core/operations.rb
2022-01-18 17:06:43 +01:00

272 lines
7.9 KiB
Ruby

# frozen_string_literal: true
module Rpl
module Lang
module Core
module_function
# addition
def add( stack, dictionary )
addable = %i[numeric string name]
stack, args = Rpl::Lang::Core.stack_extract( stack, [addable, addable] )
result = { type: case args[1][:type]
when :name
:name
when :string
:string
when :numeric
if args[0][:type] == :numeric
:numeric
else
:string
end
end }
args.each do |elt|
elt[:value] = elt[:value][1..-2] unless elt[:type] == :numeric
end
result[:value] = case result[:type]
when :name
"'#{args[1][:value]}#{args[0][:value]}'"
when :string
"\"#{args[1][:value]}#{args[0][:value]}\""
when :numeric
args[1][:value] + args[0][:value]
end
result[:base] = 10 if result[:type] == :numeric # TODO: what if operands have other bases ?
stack << result
[stack, dictionary]
end
# substraction
def subtract( stack, dictionary )
stack, args = Rpl::Lang::Core.stack_extract( stack, [%i[numeric], %i[numeric]] )
stack << { type: :numeric, base: infer_resulting_base( args ),
value: args[1][:value] - args[0][:value] }
[stack, dictionary]
end
# multiplication
def multiply( stack, dictionary )
stack, args = Rpl::Lang::Core.stack_extract( stack, [%i[numeric], %i[numeric]] )
stack << { type: :numeric, base: infer_resulting_base( args ),
value: args[1][:value] * args[0][:value] }
[stack, dictionary]
end
# division
def divide( stack, dictionary )
stack, args = Rpl::Lang::Core.stack_extract( stack, [%i[numeric], %i[numeric]] )
stack << { type: :numeric, base: infer_resulting_base( args ),
value: args[1][:value] / args[0][:value] }
[stack, dictionary]
end
# power
def power( stack, dictionary )
stack, args = Rpl::Lang::Core.stack_extract( stack, [%i[numeric], %i[numeric]] )
stack << { type: :numeric, base: infer_resulting_base( args ),
value: args[1][:value]**args[0][:value] }
[stack, dictionary]
end
# rpn_square root
def sqrt( stack, dictionary )
stack, args = Rpl::Lang::Core.stack_extract( stack, [%i[numeric]] )
stack << { type: :numeric, base: infer_resulting_base( args ),
value: BigMath.sqrt( BigDecimal( args[0][:value], Rpl::Lang::Core.precision ), Rpl::Lang::Core.precision ) }
[stack, dictionary]
end
# rpn_square
def sq( stack, dictionary )
stack, args = Rpl::Lang::Core.stack_extract( stack, [%i[numeric]] )
stack << { type: :numeric, base: infer_resulting_base( args ),
value: args[0][:value] * args[0][:value] }
[stack, dictionary]
end
# absolute value
def abs( stack, dictionary )
stack, args = Rpl::Lang::Core.stack_extract( stack, [%i[numeric]] )
stack << { type: :numeric, base: infer_resulting_base( args ),
value: args[0][:value].abs }
[stack, dictionary]
end
# arbitrary base representation
def base( stack, dictionary )
stack, args = Rpl::Lang::Core.stack_extract( stack, [%i[numeric], %i[numeric]] )
args[1][:base] = args[0][:value]
stack << args[1]
[stack, dictionary]
end
# 1 if number at stack level 1 is > 0, 0 if == 0, -1 if <= 0
def sign( stack, dictionary )
stack, args = Rpl::Lang::Core.stack_extract( stack, [%i[numeric]] )
value = if args[0][:value].positive?
1
elsif args[0][:value].negative?
-1
else
0
end
stack << { type: :numeric, base: infer_resulting_base( args ),
value: value }
[stack, dictionary]
end
# OPERATIONS ON REALS
# percent
def percent( stack, dictionary )
stack, args = Rpl::Lang::Core.stack_extract( stack, [%i[numeric], %i[numeric]] )
stack << { type: :numeric,
base: infer_resulting_base( args ),
value: args[0][:value] * ( args[1][:value] / 100.0 ) }
[stack, dictionary]
end
# inverse percent
def inverse_percent( stack, dictionary )
stack, args = Rpl::Lang::Core.stack_extract( stack, [%i[numeric], %i[numeric]] )
stack << { type: :numeric,
base: infer_resulting_base( args ),
value: 100.0 * ( args[0][:value] / args[1][:value] ) }
[stack, dictionary]
end
# modulo
def mod( stack, dictionary )
stack, args = Rpl::Lang::Core.stack_extract( stack, [%i[numeric], %i[numeric]] )
stack << { type: :numeric,
base: infer_resulting_base( args ),
value: args[1][:value] % args[0][:value] }
[stack, dictionary]
end
# n! for integer n or Gamma(x+1) for fractional x
def fact( stack, dictionary )
stack, args = Rpl::Lang::Core.stack_extract( stack, [%i[numeric]] )
stack << { type: :numeric,
base: infer_resulting_base( args ),
value: Math.gamma( args[0][:value] ) }
[stack, dictionary]
end
# largest number <=
def floor( stack, dictionary )
stack, args = Rpl::Lang::Core.stack_extract( stack, [%i[numeric]] )
stack << { type: :numeric,
base: infer_resulting_base( args ),
value: args[0][:value].floor }
[stack, dictionary]
end
# smallest number >=
def ceil( stack, dictionary )
stack, args = Rpl::Lang::Core.stack_extract( stack, [%i[numeric]] )
stack << { type: :numeric,
base: infer_resulting_base( args ),
value: args[0][:value].ceil }
[stack, dictionary]
end
# min of 2 real numbers
def min( stack, dictionary )
stack, args = Rpl::Lang::Core.stack_extract( stack, [%i[numeric], %i[numeric]] )
stack << ( args[0][:value] < args[1][:value] ? args[0] : args[1] )
[stack, dictionary]
end
# max of 2 real numbers
def max( stack, dictionary )
stack, args = Rpl::Lang::Core.stack_extract( stack, [%i[numeric], %i[numeric]] )
stack << ( args[0][:value] > args[1][:value] ? args[0] : args[1] )
[stack, dictionary]
end
# implemented in Rpl
# negation
def negate( stack, dictionary )
stack << { value: '« -1 * »',
type: :program }
Rpl::Lang::Core.eval( stack, dictionary )
end
# inverse
def inverse( stack, dictionary )
stack << { value: '« 1.0 swap / »',
type: :program }
Rpl::Lang::Core.eval( stack, dictionary )
end
# decimal representation
def dec( stack, dictionary )
stack << { value: '« 10 base »',
type: :program }
Rpl::Lang::Core.eval( stack, dictionary )
end
# hexadecimal representation
def hex( stack, dictionary )
stack << { value: '« 16 base »',
type: :program }
Rpl::Lang::Core.eval( stack, dictionary )
end
# binary representation
def bin( stack, dictionary )
stack << { value: '« 2 base »',
type: :program }
Rpl::Lang::Core.eval( stack, dictionary )
end
end
end
end