libx48ng/src/actions.c

1088 lines
19 KiB
C
Raw Normal View History

/*
* This file is part of x48, an emulator of the HP-48sx Calculator.
* Copyright (C) 1994 Eddie C. Dost (ecd@dressler.de)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/* $Log: actions.c,v $
* Revision 1.15 1995/01/11 18:20:01 ecd
* major update to support HP48 G/GX
*
* Revision 1.14 1994/12/07 20:20:50 ecd
* changed shutdown again: wake on TIMER1CTRL & XTRA
*
* Revision 1.14 1994/12/07 20:20:50 ecd
* changed shutdown again: wake on TIMER1CTRL & XTRA
*
* Revision 1.13 1994/11/28 02:00:51 ecd
* changed do_configure for internal debugging
*
* Revision 1.12 1994/11/02 14:40:38 ecd
* removed call to debug in do_shutdown()
*
* Revision 1.11 1994/10/09 20:29:47 ecd
* no real change, was just fiddling around with the display.
*
* Revision 1.10 1994/10/06 16:30:05 ecd
* added refresh_display()
*
* Revision 1.9 1994/10/05 08:36:44 ecd
* changed shutdown
*
* Revision 1.8 1994/10/01 10:12:53 ecd
* fixed bug in shutdown
*
* Revision 1.7 1994/09/30 12:37:09 ecd
* changed shutdown instruction
*
* Revision 1.6 1994/09/18 22:47:20 ecd
* fixed bug with overflow in timerdiff
*
* Revision 1.5 1994/09/18 15:29:22 ecd
* added SHUTDN implementation,
* started Real Time support.
*
* Revision 1.4 1994/09/13 16:57:00 ecd
* changed to plain X11
*
* Revision 1.3 1994/08/31 18:23:21 ecd
* changed memory read routines.
*
* Revision 1.2 1994/08/27 11:28:59 ecd
* changed keyboard interrupt handling.
*
* Revision 1.1 1994/08/26 11:09:02 ecd
* Initial revision
*
*
* $Id: actions.c,v 1.15 1995/01/11 18:20:01 ecd Exp ecd $
*/
/* #define DEBUG_INTERRUPT 1 */
/* #define DEBUG_KBD_INT 1 */
/* #define DEBUG_SHUTDOWN 1 */
/* #define DEBUG_CONFIG 1 */
/* #define DEBUG_ID 1 */
#include "global.h"
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include "hp48.h"
#include "hp48_emu.h"
#include "device.h"
#include "x48_x11.h"
#include "timer.h"
#include "debugger.h"
#include "romio.h"
static int interrupt_called = 0;
extern long nibble_masks[16];
int got_alarm;
int conf_bank1 = 0x00000;
int conf_bank2 = 0x00000;
void
#ifdef __FunctionProto__
do_in(void)
#else
do_in()
#endif
{
int i, in, out;
out = 0;
for (i = 2; i >= 0; i--) {
out <<= 4;
out |= saturn.OUT[i];
}
in = 0;
for (i = 0; i < 9; i++)
if (out & (1 << i))
in |= saturn.keybuf.rows[i];
#ifdef DEBUG_INOUT
fprintf(stderr, "saturn.OUT=%.3x, saturn.IN=%.4x\n", out, in);
#endif
for (i = 0; i < 4; i++) {
saturn.IN[i] = in & 0xf;
in >>= 4;
}
}
void
#ifdef __FunctionProto__
clear_program_stat(int n)
#else
clear_program_stat(n)
int n;
#endif
{
saturn.PSTAT[n] = 0;
}
void
#ifdef __FunctionProto__
set_program_stat(int n)
#else
set_program_stat(n)
int n;
#endif
{
saturn.PSTAT[n] = 1;
}
int
#ifdef __FunctionProto__
get_program_stat(int n)
#else
get_program_stat(n)
int n;
#endif
{
return saturn.PSTAT[n];
}
void
#ifdef __FunctionProto__
register_to_status(unsigned char *r)
#else
register_to_status(r)
unsigned char *r;
#endif
{
int i;
for (i = 0; i < 12; i++) {
saturn.PSTAT[i] = (r[i / 4] >> (i % 4)) & 1;
}
}
void
#ifdef __FunctionProto__
status_to_register(unsigned char *r)
#else
status_to_register(r)
unsigned char *r;
#endif
{
int i;
for (i = 0; i < 12; i++) {
if (saturn.PSTAT[i]) {
r[i / 4] |= 1 << (i % 4);
} else {
r[i / 4] &= ~(1 << (i % 4)) & 0xf;
}
}
}
void
#ifdef __FunctionProto__
swap_register_status(unsigned char *r)
#else
swap_register_status(r)
unsigned char *r;
#endif
{
int i, tmp;
for (i = 0; i < 12; i++) {
tmp = saturn.PSTAT[i];
saturn.PSTAT[i] = (r[i / 4] >> (i % 4)) & 1;
if (tmp) {
r[i / 4] |= 1 << (i % 4);
} else {
r[i / 4] &= ~(1 << (i % 4)) & 0xf;
}
}
}
void
#ifdef __FunctionProto__
clear_status(void)
#else
clear_status()
#endif
{
int i;
for (i = 0; i < 12; i++) {
saturn.PSTAT[i] = 0;
}
}
void
#ifdef __FunctionProto__
set_register_nibble(unsigned char *reg, int n, unsigned char val)
#else
set_register_nibble(reg, n, val)
unsigned char *reg;
int n;
unsigned char val;
#endif
{
reg[n] = val;
}
unsigned char
#ifdef __FunctionProto__
get_register_nibble(unsigned char *reg, int n)
#else
get_register_nibble(reg, n)
unsigned char *reg;
int n;
#endif
{
return reg[n];
}
void
#ifdef __FunctionProto__
set_register_bit(unsigned char *reg, int n)
#else
set_register_bit(reg, n)
unsigned char *reg;
int n;
#endif
{
reg[n/4] |= (1 << (n%4));
}
void
#ifdef __FunctionProto__
clear_register_bit(unsigned char *reg, int n)
#else
clear_register_bit(reg, n)
unsigned char *reg;
int n;
#endif
{
reg[n/4] &= ~(1 << (n%4));
}
int
#ifdef __FunctionProto__
get_register_bit(unsigned char *reg, int n)
#else
get_register_bit(reg, n)
unsigned char *reg;
int n;
#endif
{
return ((int)(reg[n/4] & (1 << (n%4))) > 0)?1:0;
}
short conf_tab_sx[] = { 1, 2, 2, 2, 2, 0 };
short conf_tab_gx[] = { 1, 2, 2, 2, 2, 0 };
void
#ifdef __FunctionProto__
do_reset(void)
#else
do_reset()
#endif
{
int i;
for (i = 0; i < 6; i++)
{
if (opt_gx)
saturn.mem_cntl[i].unconfigured = conf_tab_gx[i];
else
saturn.mem_cntl[i].unconfigured = conf_tab_sx[i];
saturn.mem_cntl[i].config[0] = 0x0;
saturn.mem_cntl[i].config[1] = 0x0;
}
#ifdef DEBUG_CONFIG
fprintf(stderr, "%.5lx: RESET\n", saturn.PC);
for (i = 0; i < 6; i++)
{
if (saturn.mem_cntl[i].unconfigured)
fprintf(stderr, "MEMORY CONTROLLER %d is unconfigured\n", i);
else
fprintf(stderr, "MEMORY CONTROLLER %d is configured to %.5lx, %.5lx\n",
i, saturn.mem_cntl[i].config[0], saturn.mem_cntl[i].config[1]);
}
#endif
}
void
#ifdef __FunctionProto__
do_inton(void)
#else
do_inton()
#endif
{
saturn.kbd_ien = 1;
}
void
#ifdef __FunctionProto__
do_intoff(void)
#else
do_intoff()
#endif
{
saturn.kbd_ien = 0;
}
void
#ifdef __FunctionProto__
do_return_interupt(void)
#else
do_return_interupt()
#endif
{
if (saturn.int_pending) {
#ifdef DEBUG_INTERRUPT
fprintf(stderr, "PC = %.5lx: RTI SERVICE PENDING INTERRUPT\n",
saturn.PC);
#endif
saturn.int_pending = 0;
saturn.intenable = 0;
saturn.PC = 0xf;
} else {
#ifdef DEBUG_INTERRUPT
fprintf(stderr, "PC = %.5lx: RETURN INTERRUPT to ", saturn.PC);
#endif
saturn.PC = pop_return_addr();
#ifdef DEBUG_INTERRUPT
fprintf(stderr, "%.5lx\n", saturn.PC);
#endif
saturn.intenable = 1;
if (adj_time_pending) {
schedule_event = 0;
sched_adjtime = 0;
}
}
}
void
#ifdef __FunctionProto__
do_interupt(void)
#else
do_interupt()
#endif
{
interrupt_called = 1;
if (saturn.intenable) {
#ifdef DEBUG_INTERRUPT
fprintf(stderr, "PC = %.5lx: INTERRUPT\n", saturn.PC);
#endif
push_return_addr(saturn.PC);
saturn.PC = 0xf;
saturn.intenable = 0;
}
}
void
#ifdef __FunctionProto__
do_kbd_int(void)
#else
do_kbd_int()
#endif
{
interrupt_called = 1;
if (saturn.intenable) {
#ifdef DEBUG_KBD_INT
fprintf(stderr, "PC = %.5lx: KBD INT\n", saturn.PC);
#endif
push_return_addr(saturn.PC);
saturn.PC = 0xf;
saturn.intenable = 0;
} else {
#ifdef DEBUG_KBD_INT
fprintf(stderr, "PC = %.5lx: KBD INT PENDING\n", saturn.PC);
#endif
saturn.int_pending = 1;
}
}
void
#ifdef __FunctionProto__
do_reset_interrupt_system(void)
#else
do_reset_interrupt_system()
#endif
{
int i, gen_intr;
saturn.kbd_ien = 1;
gen_intr = 0;
for (i = 0; i < 9; i++) {
if (saturn.keybuf.rows[i] != 0) {
gen_intr = 1;
break;
}
}
if (gen_intr) {
do_kbd_int();
}
}
void
#ifdef __FunctionProto__
do_unconfigure(void)
#else
do_unconfigure()
#endif
{
int i;
unsigned int conf;
conf = 0;
for (i = 4; i >= 0; i--) {
conf <<= 4;
conf |= saturn.C[i];
}
for (i = 0; i < 6; i++)
{
if (saturn.mem_cntl[i].config[0] == conf)
{
if (opt_gx)
saturn.mem_cntl[i].unconfigured = conf_tab_gx[i];
else
saturn.mem_cntl[i].unconfigured = conf_tab_sx[i];
saturn.mem_cntl[i].config[0] = 0x0;
saturn.mem_cntl[i].config[1] = 0x0;
break;
}
}
#ifdef DEBUG_CONFIG
fprintf(stderr, "%.5lx: UNCNFG %.5x:\n", saturn.PC, conf);
for (i = 0; i < 6; i++)
{
if (saturn.mem_cntl[i].unconfigured)
fprintf(stderr, "MEMORY CONTROLLER %d is unconfigured\n", i);
else
fprintf(stderr, "MEMORY CONTROLLER %d is configured to %.5lx, %.5lx\n",
i, saturn.mem_cntl[i].config[0], saturn.mem_cntl[i].config[1]);
}
#endif
}
void
#ifdef __FunctionProto__
do_configure(void)
#else
do_configure()
#endif
{
int i;
unsigned long conf;
conf = 0;
for (i = 4; i >= 0; i--) {
conf <<= 4;
conf |= saturn.C[i];
}
for (i = 0; i < 6; i++)
{
if (saturn.mem_cntl[i].unconfigured)
{
saturn.mem_cntl[i].unconfigured--;
saturn.mem_cntl[i].config[saturn.mem_cntl[i].unconfigured] = conf;
break;
}
}
#ifdef DEBUG_CONFIG
fprintf(stderr, "%.5lx: CONFIG %.5lx:\n", saturn.PC, conf);
for (i = 0; i < 6; i++)
{
if (saturn.mem_cntl[i].unconfigured)
fprintf(stderr, "MEMORY CONTROLLER %d is unconfigured\n", i);
else
fprintf(stderr, "MEMORY CONTROLLER %d at %.5lx, %.5lx\n",
i, saturn.mem_cntl[i].config[0], saturn.mem_cntl[i].config[1]);
}
#endif
}
int
#ifdef __FunctionProto__
get_identification(void)
#else
get_identification()
#endif
{
int i;
static int chip_id[]
= { 0, 0, 0, 0, 0x05, 0xf6, 0x07, 0xf8, 0x01, 0xf2, 0, 0 };
int id;
for (i = 0; i < 6; i++)
{
if (saturn.mem_cntl[i].unconfigured)
break;
}
if (i < 6)
id = chip_id[2 * i + (2 - saturn.mem_cntl[i].unconfigured)];
else
id = 0;
#ifdef DEBUG_ID
fprintf(stderr, "%.5lx: C=ID, returning: %x\n", saturn.PC, id);
for (i = 0; i < 6; i++)
{
if (saturn.mem_cntl[i].unconfigured == 2)
fprintf(stderr, "MEMORY CONTROLLER %d is unconfigured\n", i);
else if (saturn.mem_cntl[i].unconfigured == 1)
{
if (i == 0)
fprintf(stderr, "MEMORY CONTROLLER %d unconfigured\n", i);
else
fprintf(stderr, "MEMORY CONTROLLER %d configured to ????? %.5lx\n",
i, saturn.mem_cntl[i].config[1]);
}
else
fprintf(stderr, "MEMORY CONTROLLER %d configured to %.5lx, %.5lx\n",
i, saturn.mem_cntl[i].config[0], saturn.mem_cntl[i].config[1]);
}
#endif
for (i = 0; i < 3; i++)
{
saturn.C[i] = id & 0x0f;
id >>= 4;
}
return 0;
}
void
#ifdef __FunctionProto__
do_shutdown(void)
#else
do_shutdown()
#endif
{
int wake, alarms;
t1_t2_ticks ticks;
if (device.display_touched) {
device.display_touched = 0;
update_display();
#ifdef HAVE_XSHM
if (disp.display_update) refresh_display();
#endif
}
stop_timer(RUN_TIMER);
start_timer(IDLE_TIMER);
if (is_zero_register(saturn.OUT, OUT_FIELD)) {
#ifdef DEBUG_SHUTDOWN
fprintf(stderr, "%.5lx: SHUTDN: PC = 0\n", saturn.PC);
#endif
saturn.intenable = 1;
saturn.int_pending = 0;
}
#ifdef DEBUG_SHUTDOWN
fprintf(stderr, "%.5lx:\tSHUTDN: Timer 1 Control = %x, Timer 1 = %d\n",
saturn.PC, saturn.t1_ctrl, saturn.timer1);
fprintf(stderr, "%.5lx:\tSHUTDN: Timer 2 Control = %x, Timer 2 = %ld\n",
saturn.PC, saturn.t2_ctrl, saturn.timer2);
#endif
if (in_debugger)
wake = 1;
else
wake = 0;
alarms = 0;
do {
pause();
if (got_alarm) {
got_alarm = 0;
#ifdef HAVE_XSHM
if (disp.display_update) refresh_display();
#endif
ticks = get_t1_t2();
if (saturn.t2_ctrl & 0x01) {
saturn.timer2 = ticks.t2_ticks;
}
saturn.timer1 = set_t1 - ticks.t1_ticks;
set_t1 = ticks.t1_ticks;
interrupt_called = 0;
if (GetEvent()) {
if (interrupt_called)
wake = 1;
}
if (saturn.timer2 <= 0)
{
if (saturn.t2_ctrl & 0x04)
{
wake = 1;
}
if (saturn.t2_ctrl & 0x02)
{
wake = 1;
saturn.t2_ctrl |= 0x08;
do_interupt();
}
}
if (saturn.timer1 <= 0)
{
saturn.timer1 &= 0x0f;
if (saturn.t1_ctrl & 0x04)
{
wake = 1;
}
if (saturn.t1_ctrl & 0x03)
{
wake = 1;
saturn.t1_ctrl |= 0x08;
do_interupt();
}
}
if (wake == 0) {
interrupt_called = 0;
receive_char();
if (interrupt_called)
wake = 1;
}
alarms++;
}
if (enter_debugger)
{
wake = 1;
}
} while (wake == 0);
stop_timer(IDLE_TIMER);
start_timer(RUN_TIMER);
}
void
#ifdef __FunctionProto__
set_hardware_stat(int op)
#else
set_hardware_stat(op)
int op;
#endif
{
if (op & 1) saturn.XM = 1;
if (op & 2) saturn.SB = 1;
if (op & 4) saturn.SR = 1;
if (op & 8) saturn.MP = 1;
}
void
#ifdef __FunctionProto__
clear_hardware_stat(int op)
#else
clear_hardware_stat(op)
int op;
#endif
{
if (op & 1) saturn.XM = 0;
if (op & 2) saturn.SB = 0;
if (op & 4) saturn.SR = 0;
if (op & 8) saturn.MP = 0;
}
int
#ifdef __FunctionProto__
is_zero_hardware_stat(int op)
#else
is_zero_hardware_stat(op)
int op;
#endif
{
if (op & 1) if (saturn.XM != 0) return 0;
if (op & 2) if (saturn.SB != 0) return 0;
if (op & 4) if (saturn.SR != 0) return 0;
if (op & 8) if (saturn.MP != 0) return 0;
return 1;
}
void
#ifdef __FunctionProto__
push_return_addr(long addr)
#else
push_return_addr(addr)
long addr;
#endif
{
int i;
if (++saturn.rstkp >= NR_RSTK) {
#if 0
fprintf(stderr, "%.5lx: RSTK overflow !!!\n", saturn.PC);
for (i = saturn.rstkp - 1; i >= 0; i--) {
fprintf(stderr, "\tRSTK[%d] %.5lx\n", i, saturn.rstk[i]);
}
#endif
for (i = 1; i < NR_RSTK; i++)
saturn.rstk[i-1] = saturn.rstk[i];
saturn.rstkp--;
}
saturn.rstk[saturn.rstkp] = addr;
#ifdef DEBUG_RSTK
fprintf(stderr, "PUSH %.5x:\n", addr);
for (i = saturn.rstkp; i >= 0; i--) {
fprintf(stderr, "RSTK[%d] %.5x\n", i, saturn.rstk[i]);
}
#endif
}
long
#ifdef __FunctionProto__
pop_return_addr(void)
#else
pop_return_addr()
#endif
{
#ifdef DEBUG_RSTK
int i;
for (i = saturn.rstkp; i >= 0; i--) {
fprintf(stderr, "RSTK[%d] %.5x\n", i, saturn.rstk[i]);
}
fprintf(stderr, "POP %.5x:\n",
(saturn.rstkp >= 0) ? saturn.rstk[saturn.rstkp]:0);
#endif
if (saturn.rstkp < 0)
return 0;
return saturn.rstk[saturn.rstkp--];
}
char *
#ifdef __FunctionProto__
make_hexstr(long addr, int n)
#else
make_hexstr(addr, n)
long addr;
int n;
#endif
{
static char str[44];
int i, t, trunc;
trunc = 0;
if (n > 40) {
n = 40;
trunc = 1;
}
for (i = 0; i < n; i++) {
t = read_nibble(addr+i);
if (t <= 9)
str[i] = '0' + t;
else
str[i] = 'a' + (t - 10);
}
str[n] = '\0';
if (trunc) {
str[n] = '.';
str[n+1] = '.';
str[n+2] = '.';
str[n+3] = '\0';
}
return str;
}
void
#ifdef __FunctionProto__
load_constant(unsigned char *reg, int n, long addr)
#else
load_constant(reg, n, addr)
unsigned char *reg;
int n;
long addr;
#endif
{
int i, p;
p = saturn.P;
for (i = 0; i < n; i++) {
reg[p] = read_nibble(addr + i);
p = (p + 1) & 0xf;
}
}
void
#ifdef __FunctionProto__
load_addr(word_20 *dat, long addr, int n)
#else
load_addr(dat, addr, n)
word_20 *dat;
long addr;
int n;
#endif
{
int i;
for (i = 0; i < n; i++) {
*dat &= ~nibble_masks[i];
*dat |= read_nibble(addr + i) << (i * 4);
}
}
void
#ifdef __FunctionProto__
load_address(unsigned char *reg, long addr, int n)
#else
load_address(reg, addr, n)
unsigned char *reg;
long addr;
int n;
#endif
{
int i;
for (i = 0; i < n; i++) {
reg[i] = read_nibble(addr + i);
}
}
void
#ifdef __FunctionProto__
register_to_address(unsigned char *reg, word_20 *dat, int s)
#else
register_to_address(reg, dat, s)
unsigned char *reg;
word_20 *dat;
int s;
#endif
{
int i, n;
if (s)
n = 4;
else
n = 5;
for (i = 0; i < n; i++) {
*dat &= ~nibble_masks[i];
*dat |= (reg[i] & 0x0f) << (i * 4);
}
}
void
#ifdef __FunctionProto__
address_to_register(word_20 dat, unsigned char *reg, int s)
#else
address_to_register(dat, reg, s)
word_20 dat;
unsigned char *reg;
int s;
#endif
{
int i, n;
if (s)
n = 4;
else
n = 5;
for (i = 0; i < n; i++) {
reg[i] = dat & 0x0f;
dat >>= 4;
}
}
long
#ifdef __FunctionProto__
dat_to_addr(unsigned char *dat)
#else
dat_to_addr(dat)
unsigned char *dat;
#endif
{
int i;
long addr;
addr = 0;
for (i = 4; i >= 0; i--) {
addr <<= 4;
addr |= (dat[i] & 0xf);
}
return addr;
}
void
#ifdef __FunctionProto__
addr_to_dat(long addr, unsigned char *dat)
#else
addr_to_dat(addr, dat)
long addr;
unsigned char *dat;
#endif
{
int i;
for (i = 0; i < 5; i++) {
dat[i] = (addr & 0xf);
addr >>= 4;
}
}
void
#ifdef __FunctionProto__
add_address(word_20 *dat, int add)
#else
add_address(dat, add)
word_20 *dat;
int add;
#endif
{
*dat += add;
if (*dat & (word_20)0xfff00000) {
saturn.CARRY = 1;
} else {
saturn.CARRY = 0;
}
*dat &= 0xfffff;
}
static int start_fields[] = {
-1, 0, 2, 0, 15, 3, 0, 0,
-1, 0, 2, 0, 15, 3, 0, 0,
0, 0, 0
};
static int end_fields[] = {
-1, -1, 2, 2, 15, 14, 1, 15,
-1, -1, 2, 2, 15, 14, 1, 4,
3, 2, 0
};
static inline int
#ifdef __FunctionProto__
get_start(int code)
#else
get_start(code)
int code;
#endif
{
int s;
if ((s = start_fields[code]) == -1) {
s = saturn.P;
}
return s;
}
static inline int
#ifdef __FuntionProto__
get_end(int code)
#else
get_end(code)
int code;
#endif
{
int e;
if ((e = end_fields[code]) == -1) {
e = saturn.P;
}
return e;
}
void
#ifdef __FunctionProto__
store(word_20 dat, unsigned char *reg, int code)
#else
store(dat, reg, code)
word_20 dat;
unsigned char *reg;
int code;
#endif
{
int i, s, e;
s = get_start(code);
e = get_end(code);
for (i = s; i <= e; i++) {
write_nibble(dat++, reg[i]);
}
}
void
#ifdef __FunctionProto__
store_n(word_20 dat, unsigned char *reg, int n)
#else
store_n(dat, reg, n)
word_20 dat;
unsigned char *reg;
int n;
#endif
{
int i;
for (i = 0; i < n; i++) {
write_nibble(dat++, reg[i]);
}
}
void
#ifdef __FunctionProto__
recall(unsigned char *reg, word_20 dat, int code)
#else
recall(reg, dat, code)
unsigned char *reg;
word_20 dat;
int code;
#endif
{
int i, s, e;
s = get_start(code);
e = get_end(code);
for (i = s; i <= e; i++) {
reg[i] = read_nibble_crc(dat++);
}
}
void
#ifdef __FunctionProto__
recall_n(unsigned char *reg, word_20 dat, int n)
#else
recall_n(reg, dat, n)
unsigned char *reg;
word_20 dat;
int n;
#endif
{
int i;
for (i = 0; i < n; i++) {
reg[i] = read_nibble_crc(dat++);
}
}