emu48plus-mirror/source/SOUND.C

550 lines
14 KiB
C
Raw Permalink Normal View History

/*
* sound.c
*
* This file is part of Emu48
*
* Copyright (C) 2013 Christoph Gie<EFBFBD>elink
*
*/
#include "pch.h"
#include "Emu48.h"
// #define DEBUG_SOUND // switch for sound debug purpose
// #define SINE_APPROX // sine signal approximation
#define SAMPLES_PER_SEC 44100 // sound sampling rate
#define MILLISEC_PER_BUFFER 20 // time period of each sound buffer
#define NO_OF_BUFFERS 3 // number of reserve buffers before playing
typedef struct _MSAMPLE
{
LPBYTE pbyData;
DWORD dwBufferLength;
DWORD dwPosition;
// buffer admin part
DWORD dwIndex; // index to count no. of sample buffers
struct _MSAMPLE* pNext; // pointer to next sample buffer
} MSAMPLE, *PMSAMPLE;
DWORD dwWaveVol = 64; // wave sound volume
DWORD dwWaveTime = MILLISEC_PER_BUFFER; // time period (in ms) of each sound buffer
static HWAVEOUT hWaveDevice = NULL; // handle to the waveform-audio output device
static HANDLE hThreadWave = NULL; // thread handle of sound message handler
static DWORD dwThreadWaveId = 0; // thread id of sound message handler
static UINT uHeaders = 0; // no. of sending wave headers
static PMSAMPLE psHead = NULL; // head of sound samples
static PMSAMPLE psTail = NULL; // tail of sound samples
static CRITICAL_SECTION csSoundLock; // critical section for sound emulation
static DWORD dwSoundBufferLength; // sound buffer length for the given time period
static VOID FlushSample(VOID);
//
// sound message handler thread
//
static DWORD WINAPI SoundWndProc(LPVOID pParam)
{
MSG msg;
while (GetMessage(&msg, NULL, 0, 0))
{
if (msg.message == MM_WOM_DONE)
{
HWAVEOUT hwo = (HWAVEOUT) msg.wParam;
PWAVEHDR pwh = (PWAVEHDR) msg.lParam;
VERIFY(waveOutUnprepareHeader(hwo,pwh,sizeof(*pwh)) == MMSYSERR_NOERROR);
free(pwh->lpData); // free waveform data
free(pwh); // free wavefom header
_ASSERT(uHeaders > 0);
--uHeaders; // finished header
FlushSample(); // check for new sample
if (uHeaders == 0) // no wave headers in transmission
{
bSoundSlow = FALSE; // no sound slow down
bEnableSlow = TRUE; // reenable CPU slow down possibility
}
}
}
return 0;
UNREFERENCED_PARAMETER(pParam);
}
//
// create sound message handler thread
//
static BOOL CreateWaveThread(VOID)
{
_ASSERT(hThreadWave == NULL);
// create sound message handler thread
hThreadWave = CreateThread(NULL,0,(LPTHREAD_START_ROUTINE)&SoundWndProc,NULL,0,&dwThreadWaveId);
return hThreadWave != NULL;
}
//
// destroy sound message handler thread
//
static VOID DestroyWaveThread(VOID)
{
if (hThreadWave != NULL) // sound message handler thread running
{
// shut down thread
while (!PostThreadMessage(dwThreadWaveId,WM_QUIT,0,0))
Sleep(0);
WaitForSingleObject(hThreadWave,INFINITE);
CloseHandle(hThreadWave);
hThreadWave = NULL;
}
return;
}
//
// add sample buffer to tail of sample job list
//
static __inline VOID AddSoundBuf(PMSAMPLE psData)
{
_ASSERT(psData != NULL); // there must be a sample
psData->pNext = NULL; // last sample in job list
// add sample to list
EnterCriticalSection(&csSoundLock);
{
if (psTail == NULL) // root
{
psData->dwIndex = 0; // this is the root index
_ASSERT(psHead == NULL);
psHead = psTail = psData; // add sample at head
}
else // add at tail
{
// use next index
psData->dwIndex = psTail->dwIndex + 1;
psTail->pNext = psData; // add sample at tail
psTail = psData;
}
}
LeaveCriticalSection(&csSoundLock);
return;
}
//
// remove sample buffer from head of sample job list
//
static __inline BOOL GetSoundBuf(PMSAMPLE *ppsData)
{
BOOL bSucc;
EnterCriticalSection(&csSoundLock);
{
if ((bSucc = (psHead != NULL))) // data in head
{
*ppsData = psHead; // get sample
psHead = psHead->pNext; // and remove it from head
if (psHead == NULL) // was last one in head
{
psTail = NULL; // so tail is also the last one
}
}
}
LeaveCriticalSection(&csSoundLock);
return bSucc;
}
//
// number of sample buffers in sample job list
//
static DWORD GetSoundBufSize(VOID)
{
DWORD dwNoSamples;
EnterCriticalSection(&csSoundLock);
{
// no. of samples in buffer
dwNoSamples = (psTail == NULL)
? 0
: (psTail->dwIndex - psHead->dwIndex) + 1;
}
LeaveCriticalSection(&csSoundLock);
return dwNoSamples;
}
//
// allocate new sample buffer and add the
// buffer to the tail of the sample job list
//
static __inline BOOL AllocSample(PMSAMPLE *ppsData)
{
// alloc new sample buffer
*ppsData = (PMSAMPLE) malloc(sizeof(**ppsData));
if (*ppsData != NULL)
{
(*ppsData)->dwPosition = 0; // begin of buffer
(*ppsData)->dwBufferLength = dwSoundBufferLength;
(*ppsData)->pbyData = (LPBYTE) malloc((*ppsData)->dwBufferLength);
if ((*ppsData)->pbyData != NULL)
{
// buffers allocated
_ASSERT(*ppsData != NULL && (*ppsData)->pbyData != NULL);
AddSoundBuf(*ppsData); // add sample buffer to list
}
else
{
free(*ppsData); // data alloc failed, delete sample buffer
*ppsData = NULL;
}
}
return *ppsData != NULL;
}
//
// write samples to sample buffer
//
static BOOL AddSamples(DWORD dwSamples, BYTE byLevel)
{
PMSAMPLE psData;
DWORD dwBufSamples;
#if defined SINE_APPROX
INT w,s,ss,x,y;
#endif
BOOL bSucc = TRUE;
if (dwSamples == 0) return TRUE; // nothing to add
#if defined SINE_APPROX
// calculate constants
w = (INT) (byLevel - 0x80); // max. wave level
s = (INT) dwSamples; // interval length (pi)
ss = s * s; // interval length ^ 2
x = 1; // sample no.
#endif
EnterCriticalSection(&csSoundLock);
{
psData = psTail; // get last sample buffer
do
{
// number of free sound samples in current buffer
dwBufSamples = (psData != NULL)
? (psData->dwBufferLength - psData->dwPosition)
: 0;
if (dwBufSamples == 0) // sample buffer is full
{
// alloc new sample buffer
VERIFY(bSucc = AllocSample(&psData));
if (!bSucc) break;
_ASSERT( psData != NULL
&& psData->pbyData != NULL
&& psData->dwPosition == 0);
dwBufSamples = psData->dwBufferLength;
}
if (dwSamples < dwBufSamples) // free sample buffer is larger then needed
dwBufSamples = dwSamples; // fill only the necessary no. of samples
dwSamples -= dwBufSamples; // remaining samples after buffer fill
// fill buffer with level for beep
#if defined SINE_APPROX
for (; dwBufSamples > 0; --dwBufSamples)
{
// sine approximation function
y = w - w * (4 * x * (x - s) + ss ) / ss;
++x; // next sample
psData->pbyData[psData->dwPosition++] = (BYTE) (y + 0x80);
}
#else
FillMemory(&psData->pbyData[psData->dwPosition],dwBufSamples,byLevel);
psData->dwPosition += dwBufSamples;
#endif
}
while (dwSamples > 0);
}
LeaveCriticalSection(&csSoundLock);
return bSucc;
}
//
// write sample buffer from head of sample job list
// to waveform-audio output device and delete the
// sample buffer control from head of sample job list
//
static VOID FlushSample(VOID)
{
PMSAMPLE psData;
_ASSERT(hWaveDevice != NULL);
if (GetSoundBuf(&psData) == TRUE) // fetch sample buffer
{
PWAVEHDR pwh;
// allocate new wave header
if ((pwh = (PWAVEHDR) malloc(sizeof(*pwh))) != NULL)
{
pwh->lpData = (LPSTR) psData->pbyData;
pwh->dwBufferLength = psData->dwPosition;
pwh->dwBytesRecorded = 0;
pwh->dwUser = 0;
pwh->dwFlags = 0;
pwh->dwLoops = 0;
++uHeaders; // add header
// prepare sample
VERIFY(waveOutPrepareHeader(hWaveDevice,pwh,sizeof(*pwh)) == MMSYSERR_NOERROR);
// send sample
VERIFY(waveOutWrite(hWaveDevice,pwh,sizeof(*pwh)) == MMSYSERR_NOERROR);
}
free(psData); // delete sample buffer
}
return;
}
//
// 44.1 kHz, mono, 8-bit waveform-audio output device available
//
BOOL SoundAvailable(UINT uDeviceID)
{
WAVEOUTCAPS woc;
return waveOutGetDevCaps(uDeviceID,&woc,sizeof(woc)) == MMSYSERR_NOERROR
&& (woc.dwFormats & WAVE_FORMAT_4M08) != 0;
}
//
// get the device ID of the current waveform-audio output device
//
BOOL SoundGetDeviceID(UINT *puDeviceID)
{
BOOL bSucc = FALSE;
if (hWaveDevice) // have sound device
{
bSucc = (waveOutGetID(hWaveDevice,puDeviceID) == MMSYSERR_NOERROR);
}
return bSucc;
}
//
// open waveform-audio output device
//
BOOL SoundOpen(UINT uDeviceID)
{
// check if sound device is already open
if (hWaveDevice == NULL && SoundAvailable(uDeviceID))
{
WAVEFORMATEX wf;
BOOL bSucc;
wf.wFormatTag = WAVE_FORMAT_PCM;
wf.nChannels = 1;
wf.nSamplesPerSec = SAMPLES_PER_SEC;
wf.wBitsPerSample = 8;
wf.nBlockAlign = wf.nChannels * wf.wBitsPerSample / 8;
wf.nAvgBytesPerSec = wf.nBlockAlign * wf.nSamplesPerSec;
wf.cbSize = 0;
InitializeCriticalSection(&csSoundLock);
// sound buffer length for the given time period
dwSoundBufferLength = SAMPLES_PER_SEC * dwWaveTime / 1000;
if ((bSucc = CreateWaveThread())) // create sound message handler
{
// create a sound device, use the CALLBACK_THREAD flag because with the
// CALLBACK_FUNCTION flag unfortunately the called callback function
// can only call a specific set of Windows functions. Attempting to
// call other functions at the wrong time will result in a deadlock.
bSucc = (waveOutOpen(&hWaveDevice,uDeviceID,&wf,dwThreadWaveId,0,CALLBACK_THREAD) == MMSYSERR_NOERROR);
}
if (!bSucc)
{
DestroyWaveThread(); // shut down message thread
DeleteCriticalSection(&csSoundLock);
hWaveDevice = NULL;
}
}
return hWaveDevice != NULL;
}
//
// close waveform-audio output device
//
VOID SoundClose(VOID)
{
if (hWaveDevice != NULL)
{
EnterCriticalSection(&csSoundLock);
{
while (psHead != NULL) // cleanup remaining sample buffers
{
PMSAMPLE psNext = psHead->pNext;
free(psHead->pbyData);
free(psHead);
psHead = psNext;
}
psTail = NULL;
}
LeaveCriticalSection(&csSoundLock);
// abandon all pending wave headers
VERIFY(waveOutReset(hWaveDevice) == MMSYSERR_NOERROR);
DestroyWaveThread(); // shut down message thread
VERIFY(waveOutClose(hWaveDevice) == MMSYSERR_NOERROR);
DeleteCriticalSection(&csSoundLock);
hWaveDevice = NULL;
}
uHeaders = 0; // no wave headers in transmission
bSoundSlow = FALSE; // no sound slow down
bEnableSlow = TRUE; // reenable CPU slow down possibility
return;
}
//
// calculate the wave level from the beeper bit state
//
static BYTE WaveLevel(WORD wOut)
{
wOut >>= 11; // mask out beeper bit OR[11]
return (BYTE) (wOut & 0x01) + 1; // return 1 or 2
}
//
// decode change of beeper OUT bits
//
VOID SoundOut(CHIPSET* w, WORD wOut)
{
static DWORD dwLastCyc; // last timer value at beeper bit change
DWORD dwCycles,dwDiffSatCycles,dwDiffCycles,dwCpuFreq,dwSamples;
BYTE byWaveLevel;
// sound device not opened or waveform-audio output device not available
if (hWaveDevice == NULL)
return;
// actual timestamp
dwCycles = (DWORD) (w->cycles & 0xFFFFFFFF);
dwDiffSatCycles = dwCycles - dwLastCyc; // time difference from syncpoint in original Saturn cycles
// theoretical CPU frequency from given T2CYCLES
dwCpuFreq = dwT2Cycles * 16384;
if (dwDiffSatCycles > dwCpuFreq / 2) // frequency < 1 Hz
{
dwLastCyc = dwCycles; // initial call for start beeping
return;
}
// estimated CPU cycles for Clarke/Yorke chip
dwDiffCycles = (cCurrentRomType == 'S')
? (dwDiffSatCycles * 26) / 25 // Clarke * 1.04
: (dwDiffSatCycles * 11) / 10; // Yorke * 1.10
// adjust original CPU cycles
w->cycles += (dwDiffCycles - dwDiffSatCycles);
dwLastCyc = (DWORD) (w->cycles & 0xFFFFFFFF); // new syncpoint
// calculate no. of sound samples from CPU cycles, !! intermediate result maybe > 32bit !!
dwSamples = (DWORD) ((2 * (QWORD) dwDiffCycles + 1) * SAMPLES_PER_SEC / 2 / dwCpuFreq);
if (dwSamples == 0) // frequency too high -> play nothing
return;
#if defined DEBUG_SOUND
{
TCHAR buffer[256];
// calculate rounded time in us
QWORD lDuration = 1000000 * (2 * (QWORD) dwDiffCycles + 1) / (2 * dwCpuFreq);
wsprintf(buffer,_T("State %u: Time = %I64u us f = %u Hz, Time = %I64u us f = %u Hz\n"),
wOut >> 11,lDuration,(DWORD) (1000000 / 2 / lDuration),
(QWORD) dwSamples * 1000000 / SAMPLES_PER_SEC,SAMPLES_PER_SEC / 2 / dwSamples);
OutputDebugString(buffer);
}
#endif
// begin of beep
if (uHeaders == 0 && GetSoundBufSize() == 0)
{
// use silence buffers to start output engine
AddSamples(dwSoundBufferLength * NO_OF_BUFFERS,0x80);
}
// offset for wave level
byWaveLevel = 0x80 + (BYTE) (dwWaveVol * (WaveLevel(wOut) - WaveLevel(w->out)) / 2);
AddSamples(dwSamples,byWaveLevel); // add samples to latest wave sample buffer
if (GetSoundBufSize() > NO_OF_BUFFERS) // have more than 3 wave sample buffers
{
FlushSample(); // send 2 of them
FlushSample();
}
// ran out of buffers -> disable CPU slow down
InitAdjustSpeed(); // init variables if necessary
bEnableSlow = (GetSoundBufSize() > 1);
if (bSoundSlow == FALSE)
{
InitAdjustSpeed(); // init variables if necessary
bSoundSlow = TRUE; // CPU slow down
}
return;
}
//
// beep with frequency (Hz) and duration (ms)
//
VOID SoundBeep(DWORD dwFrequency, DWORD dwDuration)
{
QWORD lPeriods;
DWORD dwSamples;
BYTE byLevel;
// waveform-audio output device opened and have frequency
if (hWaveDevice && dwFrequency > 0)
{
// samples for 1/2 of time period
dwSamples = SAMPLES_PER_SEC / 2 / dwFrequency;
// overall half periods
lPeriods = (QWORD) dwFrequency * dwDuration / 500;
while (lPeriods-- > 0) // create sample buffers
{
// signal level
byLevel = 0x80 + (BYTE) ((((DWORD) lPeriods & 1) * 2 - 1) * (dwWaveVol / 2));
AddSamples(dwSamples,byLevel); // add half period sample
}
while (GetSoundBufSize() > 0) // samples in job list
FlushSample(); // send sample buffer
}
Sleep(dwDuration);
return;
}