emu48plus-mirror/source/MOPS.C

1863 lines
51 KiB
C
Raw Permalink Normal View History

/*
* mops.c
*
* This file is part of Emu48
*
* Copyright (C) 1995 Sebastien Carlier
*
*/
#include "pch.h"
#include "Emu48.h"
#include "ops.h"
#include "opcodes.h"
#include "io.h"
#include "i28f160.h" // flash support
// #define DEBUG_SERIAL // switch for SERIAL debug purpose
// #define DEBUG_IO // switch for I/O debug purpose
// #define DEBUG_FLASH // switch for FLASH MEMORY debug purpose
// defines for reading an open data bus
#define READEVEN 0x0D
#define READODD 0x0E
// on mapping boundary adjusted base addresses
#define P0MAPBASE ((BYTE)(Chipset.P0Base & ~Chipset.P0Size))
#define P1MAPBASE ((BYTE)(Chipset.P1Base & ~Chipset.P1Size))
#define P2MAPBASE ((BYTE)(Chipset.P2Base & ~Chipset.P2Size))
#define BSMAPBASE ((BYTE)(Chipset.BSBase & ~Chipset.BSSize))
BOOL bFlashRomArray = TRUE; // flag ROM mode
BYTE disp = 0; // flag for update display area
static LPBYTE pbyRomView[2] = {NULL, NULL}; // HP49G ROM views
static __inline UINT MIN(UINT a, UINT b)
{
return (a<b)?a:b;
}
static __inline UINT MAX(UINT a, UINT b)
{
return (a>b)?a:b;
}
// generate UCK signal
static __inline BYTE UckBit(BYTE byBaudIndex)
{
// table content = baudrate * 16
const DWORD dwBaudrates[] = { 19200, 30720, 38400, 61440, 76800, 122880, 153600, 245760 };
LARGE_INTEGER lLC;
_ASSERT(byBaudIndex < ARRAYSIZEOF(dwBaudrates));
if ((Chipset.IORam[IOC] & SON) == 0) // UART off
return UCK; // UCK bit always set
QueryPerformanceCounter(&lLC); // get counter value
// calculate UCK frequency
return (((BYTE)(((lLC.QuadPart - lAppStart.QuadPart) * dwBaudrates[byBaudIndex])
/ lFreq.QuadPart) & 0x1) << 3);
}
// calculate nibble based linear flash address
DWORD FlashROMAddr(DWORD d)
{
DWORD dwLinAddr;
// 6 bit of latch (was A6-A1 of address bus)
dwLinAddr = (Chipset.Bank_FF >> 1) & 0x3f;
// decode A21-A18
dwLinAddr = ((d & 0x40000) ? (dwLinAddr & 0xf) : (dwLinAddr >> 4)) << 18;
// decode A21-A18, A17-A0
dwLinAddr |= d & 0x3FFFF;
return dwLinAddr;
}
// update display
static __inline VOID UpdateDisplay(DWORD d, UINT s)
{
BYTE p[16];
DWORD u;
UINT c;
// address in display main area?
if ((d<Chipset.end1)&&(d+s>Chipset.start12))
{
// write to display main area
u = d; // copy destination ptr
c = MIN(s,Chipset.end1-d); // number of nibbles to copy
if (d < Chipset.start12) // first address is out of display area
{
u = Chipset.start12; // set destination ptr to start of display area
c -= Chipset.start12 - d; // - number of bytes that aren't in display area
}
_ASSERT(c <= ARRAYSIZEOF(p));
Npeek(p,u,c); // get source data
WriteToMainDisplay(p,u,c);
}
// address in display menu area?
if ((d<Chipset.end2)&&(d+s>Chipset.start2))
{
// write to display menu area
u = d; // copy destination ptr
c = MIN(s,Chipset.end2-d); // number of nibbles to copy
if (d < Chipset.start2) // first address is out of display area
{
u = Chipset.start2; // set destination ptr to start of display area
c -= Chipset.start2 - d; // - number of bytes that are not in display area
}
_ASSERT(c <= ARRAYSIZEOF(p));
Npeek(p,u,c); // get source data
WriteToMenuDisplay(p,u,c);
}
return;
}
// port mapping
LPBYTE RMap[256] = {NULL,};
LPBYTE WMap[256] = {NULL,};
static VOID MapP0(BYTE a, BYTE b)
{
UINT i;
DWORD p, m;
a = (BYTE)MAX(a,P0MAPBASE); // adjust base to mapping boundary
b = (BYTE)MIN(b,Chipset.P0End);
m = (Chipset.Port0Size*2048)-1;
p = (a<<12)&m; // offset to begin of P0 in nibbles
for (i=a; i<=b; i++)
{
// mapping area may have holes
if (((i ^ Chipset.P0Base) & ~Chipset.P0Size) == 0)
{
RMap[i]=Port0 + p;
WMap[i]=Port0 + p;
}
p = (p+0x1000)&m;
}
return;
}
static VOID MapBS(BYTE a, BYTE b)
{
UINT i;
a = (BYTE)MAX(a,BSMAPBASE); // adjust base to mapping boundary
b = (BYTE)MIN(b,Chipset.BSEnd);
for (i=a;i<=b;i++)
{
// mapping area may have holes
if (((i ^ Chipset.BSBase) & ~Chipset.BSSize) == 0)
{
RMap[i]=NULL; // no read cycle, open data bus
WMap[i]=NULL;
}
}
return;
}
static VOID MapP1(BYTE a, BYTE b)
{
UINT i;
DWORD p, m;
// clear mapping area if port1 is configured but not plugged
a = (BYTE)MAX(a,P1MAPBASE); // lowest address for use is P1Base
b = (BYTE)MIN(b,Chipset.P1End); // highest address for use is P1End
// port1 not plugged
if (Port1 == NULL || !(Chipset.cards_status & PORT1_PRESENT))
{
for (i=a; i<=b; i++) // scan each 2KB page
{
if (((i ^ Chipset.P1Base) & ~Chipset.P1Size) == 0)
{
RMap[i]=NULL;
WMap[i]=NULL;
}
}
return;
}
m = (Chipset.Port1Size*2048)-1; // real size of module, address mask for mirroring
p = (a<<12)&m; // offset to begin of P1 in nibbles
if (Chipset.cards_status & PORT1_WRITE) // port1 write enabled
{
for (i=a; i<=b; i++) // scan each 2KB page
{
// mapping area may have holes
if (((i ^ Chipset.P1Base) & ~Chipset.P1Size) == 0)
{
RMap[i]=Port1 + p; // save page address for read
WMap[i]=Port1 + p; // save page address for write
}
p = (p+0x1000)&m; // next page, mirror page if real size smaller allocated size
}
}
else // port1 read only
{
for (i=a; i<=b; i++) // scan each 2KB page
{
// mapping area may have holes
if (((i ^ Chipset.P1Base) & ~Chipset.P1Size) == 0)
{
RMap[i]=Port1 + p; // save page address for read
WMap[i]=NULL; // no writing
}
p = (p+0x1000)&m; // next page, mirror page if real size smaller allocated size
}
}
return;
}
static VOID MapP2(BYTE a, BYTE b)
{
UINT i;
DWORD p, m;
LPBYTE pbyTemp;
// clear mapping area if port2 is configured but not plugged
a = (BYTE)MAX(a,P2MAPBASE); // adjust base to mapping boundary
b = (BYTE)MIN(b,Chipset.P2End);
if (Chipset.Port2Size) // internal port2
{
m = (Chipset.Port2Size*2048)-1;
p = (a<<12)&m; // offset to begin of P0 in nibbles
for (i=a; i<=b; i++)
{
// mapping area may have holes
if (((i ^ Chipset.P2Base) & ~Chipset.P2Size) == 0)
{
RMap[i]=Port2 + p;
WMap[i]=Port2 + p;
}
p = (p+0x1000)&m;
}
return;
}
// HP48SX / HP48GX
// only fill mapping table when CE2.2 is set
for (i=a; i<=b; i++) // fill mapping area with not configured
{
// mapping area may have holes
if (((i ^ Chipset.P2Base) & ~Chipset.P2Size) == 0)
{
RMap[i]=NULL;
WMap[i]=NULL;
}
}
// port2 not plugged
if (pbyPort2 == NULL || !(Chipset.cards_status & PORT2_PRESENT))
return;
pbyTemp = pbyPort2;
if (cCurrentRomType != 'S') // bank switching only with GX
{
// Chipset.Port2_Bank is the saved port2 FF content
pbyTemp += (((Chipset.Bank_FF>>1)-1)&dwPort2Mask) << 18;
}
// max. size per bank is 128KB
m = (dwPort2Size > 128) ? 128 : dwPort2Size;
m = (m * 2048) - 1; // real size of module, address mask for mirroring
p = (a << 12) & m; // offset to begin of P2 in nibbles
// SX: CE2.2 = CE2
// GX: CE2.2 = BEN & /DA19 & /NCE3
if (cCurrentRomType == 'S' || ((Chipset.IORam[0x29]&DA19) == 0 && (Chipset.Bank_FF&0x40)))
{
if (bPort2Writeable)
{
for (i=a; i<=b; i++)
{
// mapping area may have holes
if (((i ^ Chipset.P2Base) & ~Chipset.P2Size) == 0)
{
RMap[i]=pbyTemp + p;
WMap[i]=pbyTemp + p;
}
p = (p+0x1000)&m;
}
}
else
{
for (i=a; i<=b; i++)
{
// mapping area may have holes
if (((i ^ Chipset.P2Base) & ~Chipset.P2Size) == 0)
{
RMap[i]=pbyTemp + p;
}
p = (p+0x1000)&m;
}
}
}
return;
}
static VOID MapROM(BYTE a, BYTE b)
{
UINT i;
DWORD p, m;
// HP39(+)/40G, HP49G/g+ HP48gII // CdB for HP: add apples memory
if (cCurrentRomType == 'E' || cCurrentRomType == 'X' || cCurrentRomType == 'P' || cCurrentRomType == '2' || cCurrentRomType == 'Q')
{
if (bFlashRomArray) // view flash ROM data
{
_ASSERT(pbyRomView[0]); // check ROM bank set
_ASSERT(pbyRomView[1]);
m = (128*1024*2)-1; // mapped in 128KB pages
p = (a<<12)&m; // offset to the begin of ROM in nibbles
for (i=a; i<=b; i++) // scan each 2KB page
{
RMap[i]=pbyRomView[(i & 0x40)!=0] + p;
WMap[i]=NULL; // no writing
p = (p+0x1000)&m;
}
}
else // view flash ROM register
{
for (i=a; i<=b; i++) // scan each 2KB page
{
RMap[i]=NULL; // view flash register
WMap[i]=NULL; // no writing
}
}
return;
}
// HP38G / HP48SX / HP48GX
m = dwRomSize - 1; // ROM address mask for mirroring
// when 512KB ROM and DA19=0 (ROM disabled)
if ((m & 0x80000) != 0 && (Chipset.IORam[0x29]&DA19) == 0)
m >>= 1; // mirror ROM at #80000 (AR18=0)
p = (a*0x1000)&m; // data offset in nibbles
for (i=a;i<=b;i++) // scan each 2KB page
{
RMap[i]=pbyRom + p; // save page address for read
WMap[i]=NULL; // no writing
p = (p+0x1000)&m; // next page, mirror page if real size smaller allocated size
}
return;
}
VOID Map(BYTE a, BYTE b) // maps 2KB pages with priority
{
// On HP39/40G and HP49G Chipset.cards_status must be 0xF
_ASSERT((cCurrentRomType!='E' && cCurrentRomType!='X' && cCurrentRomType!='P' && cCurrentRomType!='2' && cCurrentRomType!='Q') || !Chipset.P1Cfig || Chipset.cards_status == 0xF); // CdB for HP: add apples
// priority order is HDW, RAM, CE2, CE1, NCE3, ROM
MapROM(a,b); // ROM, lowest priority, always mapped
if (cCurrentRomType == 'S') // HP48SX
{
if (Chipset.BSCfig) MapBS(a,b); // NCE3, not used in S(X)
if (Chipset.P1Cfig) MapP1(a,b); // CE1, port1 (lower priority than CE2)
if (Chipset.P2Cfig) MapP2(a,b); // CE2, port2 (higher priority than CE1)
}
else // HP48GX / HP49G
{
if (Chipset.P2Cfig) // NCE3, port2
{
// LED bit set on a HP49
if ((cCurrentRomType=='X' || cCurrentRomType=='Q') && (Chipset.IORam[LCR]&LED)) // CdB for HP: add apples
MapROM(a,b); // NCE3, ROM
else
MapP2(a,b); // NCE3, port2
}
if (Chipset.BSCfig) MapBS(a,b); // CE1, bank select (lower priority than CE2)
if (Chipset.P1Cfig) MapP1(a,b); // CE2, port1 (higher priority than CE1)
}
if (Chipset.P0Cfig) MapP0(a,b); // RAM, highest priority (execpt HDW)
// CdB for HP: add apples header
// @todo cg, bug if display header area is mapped to addr 0
if (Chipset.d0address!=0)
{
RMap[Chipset.d0address]=&(Chipset.d0memory[0]); RMap[Chipset.d0address+1]=&(Chipset.d0memory[2048*2]);
WMap[Chipset.d0address]=&(Chipset.d0memory[0]); WMap[Chipset.d0address+1]=&(Chipset.d0memory[2048*2]);
}
return;
}
VOID RomSwitch(DWORD adr)
{
// only HP39/40G, HP49G
if (cCurrentRomType=='E' || cCurrentRomType=='X' || cCurrentRomType=='P' || cCurrentRomType=='2' || cCurrentRomType=='Q') // CdB for HP: add apples
{
Chipset.Bank_FF = adr; // save address line
adr = (adr >> 1) & 0x3f; // 6 bit of latch (was A6-A1 of address bus)
// lower 4 bit (16 banks) for 2nd ROM view
pbyRomView[1] = pbyRom + (((adr & 0xf) * 128 * 1024 * 2) & (dwRomSize - 1));
// higher 2 bit (4 banks) for 1st ROM view
pbyRomView[0] = pbyRom + (((adr >> 4) * 128 * 1024 * 2) & (dwRomSize - 1));
}
Map(0x00,0xFF); // update memory mapping
return;
}
////////////////////////////////////////////////////////////////////////////////
//
// Bus Commands
//
////////////////////////////////////////////////////////////////////////////////
VOID Config() // configure modules in fixed order
{
DWORD d = Npack(Chipset.C,5); // decode size or address
BYTE b = (BYTE)(d>>12); // number of 2KB pages or page address
BYTE s = (BYTE)(b^0xFF); // size in pages-1, offset to last page
// config order is HDW, RAM, CE1, CE2, NCE3
if (!Chipset.IOCfig) // address of HDW, first module, ROM always configured
{
Chipset.IOCfig = TRUE;
Chipset.IOBase = d&0xFFFC0; // save HDW base on a 64 nib boundary
Map(b,b);
return;
}
if (!Chipset.P0Cfg2) // RAM size, port0
{
Chipset.P0Cfg2 = TRUE;
Chipset.P0Size = s; // offset to last used page
return;
}
if (!Chipset.P0Cfig) // RAM address, port0
{
Chipset.P0Cfig = TRUE;
Chipset.P0Base = b; // save first page address
b &= ~Chipset.P0Size; // adjust base to mapping boundary
Chipset.P0End = b+Chipset.P0Size; // save last page address
Map(b,Chipset.P0End); // refresh mapping
return;
}
if (cCurrentRomType=='S') // HP48SX
{
if (!Chipset.P1Cfg2) // CE1 size, port1
{
Chipset.P1Cfg2 = TRUE;
Chipset.P1Size = s;
return;
}
if (!Chipset.P1Cfig) // CE1 address, port1
{
Chipset.P1Cfig = TRUE;
Chipset.P1Base = b;
b &= ~Chipset.P1Size; // adjust base to mapping boundary
Chipset.P1End = b+Chipset.P1Size;
Map(b,Chipset.P1End); // refresh mapping
return;
}
if (!Chipset.P2Cfg2) // CE2 size, port2
{
Chipset.P2Cfg2 = TRUE;
Chipset.P2Size = s;
return;
}
if (!Chipset.P2Cfig) // CE2 address, port2
{
Chipset.P2Cfig = TRUE;
Chipset.P2Base = b;
b &= ~Chipset.P2Size; // adjust base to mapping boundary
Chipset.P2End = b+Chipset.P2Size;
Map(b,Chipset.P2End); // refresh mapping
return;
}
if (!Chipset.BSCfg2) // NCE3 size, not used in S(X)
{
Chipset.BSCfg2 = TRUE;
Chipset.BSSize = s;
return;
}
if (!Chipset.BSCfig) // NCE3 address, not used in S(X)
{
Chipset.BSCfig = TRUE;
Chipset.BSBase = b;
b &= ~Chipset.BSSize; // adjust base to mapping boundary
Chipset.BSEnd = b+Chipset.BSSize;
Map(b,Chipset.BSEnd); // refresh mapping
return;
}
}
else // HP48GX / HP49G
{
if (!Chipset.BSCfg2) // CE1 size, bank select
{
Chipset.BSCfg2 = TRUE;
Chipset.BSSize = s;
return;
}
if (!Chipset.BSCfig) // CE1 address, bank select
{
Chipset.BSCfig = TRUE;
Chipset.BSBase = b;
b &= ~Chipset.BSSize; // adjust base to mapping boundary
Chipset.BSEnd = b+Chipset.BSSize;
Map(b,Chipset.BSEnd); // refresh mapping
return;
}
if (!Chipset.P1Cfg2) // CE2 size, port1
{
Chipset.P1Cfg2 = TRUE;
Chipset.P1Size = s;
return;
}
if (!Chipset.P1Cfig) // CE2 address, port1
{
Chipset.P1Cfig = TRUE;
Chipset.P1Base = b;
b &= ~Chipset.P1Size; // adjust base to mapping boundary
Chipset.P1End = b+Chipset.P1Size;
Map(b,Chipset.P1End); // refresh mapping
return;
}
if (!Chipset.P2Cfg2) // NCE3 size, port2
{
Chipset.P2Cfg2 = TRUE;
Chipset.P2Size = s;
return;
}
if (!Chipset.P2Cfig) // NCE3 address, port2
{
Chipset.P2Cfig = TRUE;
Chipset.P2Base = b;
b &= ~Chipset.P2Size; // adjust base to mapping boundary
Chipset.P2End = b+Chipset.P2Size;
Map(b,Chipset.P2End); // refresh mapping
return;
}
}
return;
}
VOID Uncnfg()
{
DWORD d=Npack(Chipset.C,5); // decode address
BYTE b=(BYTE)(d>>12); // page address
// unconfig order is HDW, RAM, CE2, CE1, NCE3
if ((Chipset.IOCfig)&&((d&0xFFFC0)==Chipset.IOBase))
{Chipset.IOCfig=FALSE;Map(b,b);return;}
if ((Chipset.P0Cfig)&&((b&~Chipset.P0Size)==P0MAPBASE))
{Chipset.P0Cfig=FALSE;Chipset.P0Cfg2=FALSE;Map(P0MAPBASE,Chipset.P0End);return;}
if (cCurrentRomType=='S') // HP48SX
{
if ((Chipset.P2Cfig)&&((b&~Chipset.P2Size)==P2MAPBASE))
{Chipset.P2Cfig=FALSE;Chipset.P2Cfg2=FALSE;Map(P2MAPBASE,Chipset.P2End);return;}
if ((Chipset.P1Cfig)&&((b&~Chipset.P1Size)==P1MAPBASE))
{Chipset.P1Cfig=FALSE;Chipset.P1Cfg2=FALSE;Map(P1MAPBASE,Chipset.P1End);return;}
if ((Chipset.BSCfig)&&((b&~Chipset.BSSize)==BSMAPBASE))
{Chipset.BSCfig=FALSE;Chipset.BSCfg2=FALSE;Map(BSMAPBASE,Chipset.BSEnd);return;}
}
else // HP48GX / HP49G
{
if ((Chipset.P1Cfig)&&((b&~Chipset.P1Size)==P1MAPBASE))
{Chipset.P1Cfig=FALSE;Chipset.P1Cfg2=FALSE;Map(P1MAPBASE,Chipset.P1End);return;}
if ((Chipset.BSCfig)&&((b&~Chipset.BSSize)==BSMAPBASE))
{Chipset.BSCfig=FALSE;Chipset.BSCfg2=FALSE;Map(BSMAPBASE,Chipset.BSEnd);return;}
if ((Chipset.P2Cfig)&&((b&~Chipset.P2Size)==P2MAPBASE))
{Chipset.P2Cfig=FALSE;Chipset.P2Cfg2=FALSE;Map(P2MAPBASE,Chipset.P2End);return;}
}
return;
}
VOID Reset()
{
Chipset.IOCfig=FALSE;Chipset.IOBase=0x100000;
Chipset.P0Cfig=FALSE;Chipset.P0Cfg2=FALSE;Chipset.P0Base=0;Chipset.P0Size=0;Chipset.P0End=0;
Chipset.BSCfig=FALSE;Chipset.BSCfg2=FALSE;Chipset.BSBase=0;Chipset.BSSize=0;Chipset.BSEnd=0;
Chipset.P1Cfig=FALSE;Chipset.P1Cfg2=FALSE;Chipset.P1Base=0;Chipset.P1Size=0;Chipset.P1End=0;
Chipset.P2Cfig=FALSE;Chipset.P2Cfg2=FALSE;Chipset.P2Base=0;Chipset.P2Size=0;Chipset.P2End=0;
Map(0x00,0xFF); // refresh mapping
return;
}
VOID C_Eq_Id()
{
// config order is HDW, RAM, CE1, CE2, NCE3
if (!Chipset.IOCfig) {Nunpack(Chipset.C,(Chipset.IOBase) ^0x00019,5);return;}
if (!Chipset.P0Cfg2) {Nunpack(Chipset.C,(Chipset.P0Size*0x1000)^0xFF003,5);return;}
if (!Chipset.P0Cfig) {Nunpack(Chipset.C,(Chipset.P0Base*0x1000)^0x000F4,5);return;}
if (cCurrentRomType=='S') // HP48SX
{
if (!Chipset.P1Cfg2) {Nunpack(Chipset.C,(Chipset.P1Size*0x1000)^0xFF005,5);return;}
if (!Chipset.P1Cfig) {Nunpack(Chipset.C,(Chipset.P1Base*0x1000)^0x000F6,5);return;}
if (!Chipset.P2Cfg2) {Nunpack(Chipset.C,(Chipset.P2Size*0x1000)^0xFF007,5);return;}
if (!Chipset.P2Cfig) {Nunpack(Chipset.C,(Chipset.P2Base*0x1000)^0x000F8,5);return;}
if (!Chipset.BSCfg2) {Nunpack(Chipset.C,(Chipset.BSSize*0x1000)^0xFF001,5);return;}
if (!Chipset.BSCfig) {Nunpack(Chipset.C,(Chipset.BSBase*0x1000)^0x000F2,5);return;}
}
else // HP48GX / HP49G
{
if (!Chipset.BSCfg2) {Nunpack(Chipset.C,(Chipset.BSSize*0x1000)^0xFF005,5);return;}
if (!Chipset.BSCfig) {Nunpack(Chipset.C,(Chipset.BSBase*0x1000)^0x000F6,5);return;}
if (!Chipset.P1Cfg2) {Nunpack(Chipset.C,(Chipset.P1Size*0x1000)^0xFF007,5);return;}
if (!Chipset.P1Cfig) {Nunpack(Chipset.C,(Chipset.P1Base*0x1000)^0x000F8,5);return;}
if (!Chipset.P2Cfg2) {Nunpack(Chipset.C,(Chipset.P2Size*0x1000)^0xFF001,5);return;}
if (!Chipset.P2Cfig) {Nunpack(Chipset.C,(Chipset.P2Base*0x1000)^0x000F2,5);return;}
}
memset(Chipset.C,0,5);
return;
}
enum MMUMAP MapData(DWORD d) // check MMU area
{
BYTE u = (BYTE) (d>>12);
if (Chipset.IOCfig && ((d&0xFFFC0)==Chipset.IOBase)) return M_IO;
if (Chipset.P0Cfig && (((u^Chipset.P0Base) & ~Chipset.P0Size) == 0)) return M_RAM;
if (cCurrentRomType == 'S')
{
if (Chipset.P2Cfig && (((u^Chipset.P2Base) & ~Chipset.P2Size) == 0)) return M_P2;
if (Chipset.P1Cfig && (((u^Chipset.P1Base) & ~Chipset.P1Size) == 0)) return M_P1;
if (Chipset.BSCfig && (((u^Chipset.BSBase) & ~Chipset.BSSize) == 0)) return M_BS;
}
else
{
if (Chipset.P1Cfig && (((u^Chipset.P1Base) & ~Chipset.P1Size) == 0)) return M_P1;
if (Chipset.BSCfig && (((u^Chipset.BSBase) & ~Chipset.BSSize) == 0)) return M_BS;
if (Chipset.P2Cfig && (((u^Chipset.P2Base) & ~Chipset.P2Size) == 0)) return M_P2;
}
return M_ROM;
}
VOID CpuReset(VOID) // register setting after Cpu Reset
{
StopTimers(); // stop timer, do here because function change Chipset.t2
Chipset.pc = 0;
Chipset.rstkp = 0;
ZeroMemory(Chipset.rstk,sizeof(Chipset.rstk));
Chipset.HST = 0;
Chipset.SoftInt = FALSE;
Chipset.Shutdn = TRUE;
Chipset.inte = TRUE; // enable interrupts
Chipset.intk = TRUE; // INTON
Chipset.intd = FALSE; // no keyboard interrupts pending
Chipset.crc = 0;
Chipset.Bank_FF = 0; // state of bank switcher FF
Chipset.FlashRomState = 0; // WSM state of flash memory
ZeroMemory(Chipset.IORam,sizeof(Chipset.IORam));
Chipset.IORam[LPE] = RST; // set ReSeT bit at hardware reset
Reset(); // reset MMU
Chipset.t1 = 0; // reset timer values
Chipset.t2 = 0;
Chipset.loffset = 0; // right margin
Chipset.boffset = 0; // left margin
Chipset.lcounter = 0; // number of main display lines
Chipset.contrast = 0; // contrast dark
UpdateContrast(Chipset.contrast); // update contrast
// display update when changing to run state
CommSetBaud(); // new baudrate
CheckSerial(); // close serial port
RomSwitch(Chipset.Bank_FF); // force new memory mapping
return;
}
VOID Npeek(BYTE *a, DWORD d, UINT s)
{
enum MMUMAP eMap;
DWORD u, v;
UINT c;
BYTE *p;
do
{
eMap = MapData(d); // get active memory controller
if (M_IO == eMap) // I/O access
{
v = d&0x3F;
do
{
if (v == LPE)
{
// don't read LPE content with the function ReadIO()
c = 1;
memcpy(a, Chipset.IORam+v, c);
break;
}
if (v >= RBR_LSB && v <= RBR_MSB)
{
// don't read RBR content with the function ReadIO()
c = MIN(s,RBR_MSB-v+1);
memcpy(a, Chipset.IORam+v, c);
break;
}
// all others registers
do
{
if (v < LPE)
{
c = MIN(s,LPE-v);
break;
}
if (v < RBR_LSB && (v+s) > RBR_LSB)
{
c = MIN(s,RBR_LSB-v);
break;
}
c = MIN(s,0x40-v);
}
while (0);
ReadIO(a,v,c,FALSE);
}
while (0);
}
else
{
u = d>>12;
v = d&0xFFF;
c = MIN(s,0x1000-v);
// Flash memory Read access
if ((cCurrentRomType=='X' || cCurrentRomType=='2' || cCurrentRomType=='P' || cCurrentRomType=='Q') && (Chipset.IORam[LCR] & LED) && M_P2 == eMap) // CdB for HP: add apples
{
FlashRead(a, FlashROMAddr(d), c);
}
else
{
if ((p=RMap[u]) != NULL) // module mapped
{
memcpy(a, p+v, c);
}
else // open data bus
{
for (u=0; u<c; ++u) // fill all nibbles
{
if ((v+u) & 1) // odd address
a[u] = READODD;
else // even address
a[u] = READEVEN;
}
}
}
}
a+=c;
d=(d+c)&0xFFFFF;
} while (s-=c);
return;
}
VOID Nread(BYTE *a, DWORD d, UINT s)
{
enum MMUMAP eMap;
DWORD u, v;
UINT c;
BYTE *p;
do
{
eMap = MapData(d); // get active memory controller
if (M_IO == eMap) // I/O access
{
v = d&0x3F;
c = MIN(s,0x40-v);
ReadIO(a,v,c,TRUE);
// reading MSB of timer2 update the CRC register
if (v+c == 0x40) // timer2 MSB touched
{
// update the CRC register
Chipset.crc = UpCRC(Chipset.crc,a[c-1]);
}
}
else
{
u = d>>12;
v = d&0xFFF;
c = MIN(s,0x1000-v);
// bank switcher access
if (cCurrentRomType!='S' && M_BS == eMap)
{
if (cCurrentRomType=='G') // HP48GX
{
Chipset.Bank_FF = v+c; // save FF value
Map(Chipset.P2Base,Chipset.P2End);
}
if (cCurrentRomType=='E' || cCurrentRomType=='X' || cCurrentRomType=='2' || cCurrentRomType=='P' || cCurrentRomType=='Q') // HP39/40G, HP49G // CdB for HP: add apples
{
RomSwitch(v+c);
}
}
// Flash memory Read access
if ((cCurrentRomType=='X' || cCurrentRomType=='2' || cCurrentRomType=='P' || cCurrentRomType=='Q') && (Chipset.IORam[LCR] & LED) && M_P2 == eMap) // CdB for HP: add apples
{
DWORD dwLinAddr = FlashROMAddr(d);
FlashRead(a, dwLinAddr, c);
#if defined DEBUG_FLASH
{
TCHAR buffer[256];
DWORD j;
int i;
i = wsprintf(buffer,_T("%.5lx: Flash Read : %.5x (%.6x),%u = "),Chipset.pc,d,dwLinAddr,c);
for (j = 0;j < c;++j,++i)
{
buffer[i] = a[j];
if (buffer[i] > 9) buffer[i] += _T('a') - _T('9') - 1;
buffer[i] += _T('0');
}
buffer[i++] = _T('\n');
buffer[i] = 0;
OutputDebugString(buffer);
}
#endif
}
else
{
if ((p=RMap[u]) != NULL) // module mapped
{
memcpy(a, p+v, c);
}
// simulate open data bus
else // open data bus
{
for (u=0; u<c; ++u) // fill all nibbles
{
if ((v+u) & 1) // odd address
a[u] = READODD;
else // even address
a[u] = READEVEN;
}
}
}
for (u=0; u<c; u++) // update CRC
Chipset.crc = UpCRC(Chipset.crc,a[u]);
}
a+=c;
d=(d+c)&0xFFFFF;
} while (s-=c);
return;
}
VOID Nwrite(BYTE *a, DWORD d, UINT s)
{
enum MMUMAP eMap;
DWORD u, v;
UINT c;
BYTE *p;
do
{
eMap = MapData(d); // get active memory controller
if (M_IO == eMap) // I/O access
{
v = d&0x3F;
c = MIN(s,0x40-v);
WriteIO(a, v, c);
}
else
{
u = d>>12;
v = d&0xFFF;
c = MIN(s,0x1000-v);
// bank switcher access
if (cCurrentRomType!='S' && M_BS == eMap)
{
BOOL bWrite = FALSE;
// write enabled
if (Chipset.cards_status & PORT2_WRITE)
{
Chipset.Bank_FF = v+c-1;// save FF value
bWrite = TRUE; // bank switched
}
else // write disabled, so latch last read cycle
{
if ((v & 1) != 0) // low address odd
{
Chipset.Bank_FF = v;// save FF value
bWrite = TRUE; // bank switched
}
if (((v+c) & 1) != 0) // high address odd
{
Chipset.Bank_FF = v+c-1;// save FF value
bWrite = TRUE; // bank switched
}
}
if (bWrite) // write cycle?
{
// HP48GX
if (cCurrentRomType=='G') Map(Chipset.P2Base,Chipset.P2End);
// HP39/40G, HP49G
if (cCurrentRomType=='E' || cCurrentRomType=='X' || cCurrentRomType=='2' || cCurrentRomType=='P' || cCurrentRomType=='Q') RomSwitch(Chipset.Bank_FF); // CdB for HP: add apples
}
}
// Flash memory Write access
if ((cCurrentRomType=='X' || cCurrentRomType=='2' || cCurrentRomType=='P' || cCurrentRomType=='Q') && (Chipset.IORam[LCR] & LED) && M_P2 == eMap) // CdB for HP: add apples
{
DWORD dwLinAddr = FlashROMAddr(d);
FlashWrite(a, dwLinAddr, c);
#if defined DEBUG_FLASH
{
TCHAR buffer[256];
DWORD j;
int i;
i = wsprintf(buffer,_T("%.5lx: Flash Write: %.5x (%.6x),%u = "),Chipset.pc,d,dwLinAddr,c);
for (j = 0;j < c;++j,++i)
{
buffer[i] = a[j];
if (buffer[i] > 9) buffer[i] += _T('a') - _T('9') - 1;
buffer[i] += _T('0');
}
buffer[i++] = _T('\n');
buffer[i] = 0;
OutputDebugString(buffer);
}
#endif
}
else
{
if ((p=WMap[u]) != NULL) memcpy(p+v, a, c);
}
}
if (!bGrayscale) UpdateDisplay(d, c); // update display
a+=c;
d=(d+c)&0xFFFFF;
} while (s-=c);
return;
}
DWORD Read5(DWORD d)
{
BYTE p[5];
Npeek(p,d,5);
return Npack(p,5);
}
BYTE Read2(DWORD d)
{
BYTE p[2];
Npeek(p,d,2);
return (BYTE)(p[0]|(p[1]<<4));
}
VOID Write5(DWORD d, DWORD n)
{
BYTE p[5];
Nunpack(p,n,5);
Nwrite(p,d,5);
return;
}
VOID Write2(DWORD d, BYTE n)
{
BYTE p[2];
Nunpack(p,n,2);
Nwrite(p,d,2);
return;
}
VOID IOBit(DWORD d, BYTE b, BOOL s) // set/clear bit in I/O section
{
EnterCriticalSection(&csIOLock);
{
if (s)
Chipset.IORam[d] |= b; // set bit
else
Chipset.IORam[d] &= ~b; // clear bit
}
LeaveCriticalSection(&csIOLock);
}
static DWORD ReadT2Acc(VOID)
{
static DWORD dwCyc = 0; // CPU cycle counter at last timer2 read access
DWORD dwCycDif;
// CPU cycles since last call
dwCycDif = (DWORD) (Chipset.cycles & 0xFFFFFFFF) - dwCyc;
dwCyc = (DWORD) (Chipset.cycles & 0xFFFFFFFF);
// maybe CPU speed measurement, slow down the next 10 CPU opcodes
if (dwCycDif < 150)
{
InitAdjustSpeed(); // init variables if necessary
EnterCriticalSection(&csSlowLock);
{
nOpcSlow = 10; // slow down next 10 opcodes
}
LeaveCriticalSection(&csSlowLock);
}
return ReadT2();
}
VOID ReadIO(BYTE *a, DWORD d, DWORD s, BOOL bUpdate)
{
BOOL bNINT,bNINT2;
BOOL bLBI,bVLBI;
BYTE c = 0xFF; // LINECOUNT not initialized
BOOL rbr_acc = FALSE; // flag to receive data
#if defined DEBUG_IO
{
TCHAR buffer[256];
wsprintf(buffer,_T("%.5lx: IO read : %02x,%u\n"),Chipset.pc,d,s);
OutputDebugString(buffer);
}
#endif
do
{
switch (d)
{
case 0x00: *a = (Chipset.IORam[d]&DON)|Chipset.boffset; break;
case 0x01: *a = Chipset.contrast&0xF; break;
case 0x02: *a = Chipset.contrast>>4; break;
case 0x03: *a = 0;
case 0x04: *a = (Chipset.crc )&0xF; break;
case 0x05: *a = (Chipset.crc>> 4)&0xF; break;
case 0x06: *a = (Chipset.crc>> 8)&0xF; break;
case 0x07: *a = (Chipset.crc>>12)&0xF; break;
case 0x08: // LPD
// LB2 and LB1 not emulated, must be 0
_ASSERT((Chipset.IORam[LPD] & (LB2 | LB1)) == 0);
GetBatteryState(&bLBI,&bVLBI); // get battery state
// check if battery states enabled
bLBI = bLBI && ((Chipset.IORam[LPE] & ELBI) != 0);
bVLBI = bVLBI && ((Chipset.IORam[LPE] & EVLBI) != 0);
// set IO bits
IOBit(LPD,LB0,bLBI);
IOBit(LPD,VLBI,bVLBI);
IOBit(SRQ1,VSRQ,bVLBI);
*a = Chipset.IORam[d];
break;
case 0x09: // LPE
*a = Chipset.IORam[d];
if (bUpdate)
{
Chipset.IORam[d] &= ~RST; // clear RST bit after reading
}
break;
case 0x0A: *a = 0; break;
// case 0x0B: *a = Chipset.IORam[d]; break;
// case 0x0C: *a = Chipset.IORam[d]; break;
case 0x0D: // BAUD
if (isModelApple(cCurrentRomType))
{
*a = Chipset.IORam[d];
#if defined DEBUG_SERIAL // return BAUD value
{
TCHAR buffer[256];
wsprintf(buffer,_T("%.5lx: BAUD Read: %x\n"),Chipset.pc,*a);
OutputDebugString(buffer);
}
#endif
} // Clarke / Yorke chip
else
{
*a = Chipset.IORam[d] & 0x7;
#if defined DEBUG_SERIAL // return BAUD value
if (bUpdate)
{
TCHAR buffer[256];
wsprintf(buffer,_T("%.5lx: BAUD Read: %x\n"),Chipset.pc,*a);
OutputDebugString(buffer);
}
#endif
*a |= UckBit(*a); // add UCK bit to BAUD rate register
}
break;
case 0x0E:
// SMP is !NINT and SWINT is always 0
// clear SMP and SWINT bit
Chipset.IORam[d] &= (ECDT | RCDT);
// SMP is !NINT
if ((Chipset.IORam[SRQ2] & NINT) == 0)
Chipset.IORam[d] |= SMP;
*a = Chipset.IORam[d];
break;
case 0x0F:
// card detection disabled
if ((Chipset.IORam[CARDCTL] & ECDT) == 0)
{
*a = 0; // no cards
}
else
{
// on a HP30/40G and HP49G Chipset.cards_status bust always be 0xF
_ASSERT((cCurrentRomType!='E' && cCurrentRomType!='X' && cCurrentRomType!='2' && cCurrentRomType!='P' && cCurrentRomType!='Q') || Chipset.cards_status == 0xF); // CdB for HP: add apples
*a = Chipset.cards_status;
}
break;
case 0x10: // IO CONTROL
*a = Chipset.IORam[d]; // return IO CONTROL value
#if defined DEBUG_SERIAL
if (bUpdate)
{
TCHAR buffer[256];
wsprintf(buffer,_T("%.5lx: IOC Read: %x\n"),Chipset.pc,*a);
OutputDebugString(buffer);
}
#endif
break;
case 0x11: // RCS
*a = Chipset.IORam[d] | RX; // return RCS value
#if defined DEBUG_SERIAL
if (bUpdate)
{
TCHAR buffer[256];
wsprintf(buffer,_T("%.5lx: RCS Read: %x\n"),Chipset.pc,*a);
OutputDebugString(buffer);
}
#endif
break;
case 0x12: // TCS
*a = Chipset.IORam[d]; // return TCS value
if ((*a & TBF)) // Transmit buffer full
{
// the G-series XModem implementation has a timeout loop counter
// waiting for transmit buffer empty, so on fast hosts with
// CPU running with max. speed we may get a timeout overflow
// -> to avoid this slow down CPU speed on transmit buffer full
InitAdjustSpeed(); // init variables if necessary
EnterCriticalSection(&csSlowLock);
{
nOpcSlow = 10; // slow down next 10 opcodes
}
LeaveCriticalSection(&csSlowLock);
}
#if defined DEBUG_SERIAL
if (bUpdate)
{
TCHAR buffer[256];
wsprintf(buffer,_T("%.5lx: TCS Read: %x\n"),Chipset.pc,*a);
OutputDebugString(buffer);
}
#endif
break;
case 0x13: // CRER
*a = 0;
break;
case 0x14: // RBR LSB
case 0x15: // RBR MSB
if (bUpdate)
{
*a = Chipset.IORam[d]; // return RBR value
if (d==0x15) // reading RBR MSB
{
Chipset.IORam[RCS] &= ~RBF; // clear Receive Buffer Full flag
}
UpdateUSRQ(); // update USRQ
rbr_acc = TRUE; // search for new RBR value
#if defined DEBUG_SERIAL
{
TCHAR buffer[256];
wsprintf(buffer,_T("%.5lx: RBR %s Read: %x\n"),Chipset.pc,(d==0x14) ? "LSB" : "MSB",*a);
OutputDebugString(buffer);
}
#endif
}
else
{
*a = Chipset.IORam[d]; // return RBR value
UpdateUSRQ(); // update USRQ
}
break;
// case 0x16: *a = Chipset.IORam[d]; break; // TBR LSB
// case 0x17: *a = Chipset.IORam[d]; break; // TBR MSB
case 0x19: // SREQ? MSB
UpdateKdnBit(); // update KDN bit
bNINT2 = Chipset.IORam[SRQ1] == 0 && (Chipset.IORam[SRQ2] & LSRQ) == 0;
bNINT = (Chipset.IORam[SRQ2] & NINT) != 0;
// card detection off and timer running
if ((Chipset.IORam[CARDCTL] & ECDT) == 0 && (Chipset.IORam[TIMER2_CTRL] & RUN) != 0)
{
// state of CDT2
bNINT2 = bNINT2 && (Chipset.cards_status & (P2W|P2C)) != P2C;
// state of CDT1
bNINT = bNINT && (Chipset.cards_status & (P1W|P1C)) != P1C;
}
IOBit(SRQ2,NINT2,bNINT2);
IOBit(SRQ2,NINT,bNINT);
// no break!
case 0x18: // SREQ? LSB
*a = Chipset.IORam[d]; // return SREQ value
#if defined DEBUG_SERIAL
if (bUpdate)
{
TCHAR buffer[256];
wsprintf(buffer,_T("%.5lx: SEQ %s Read: %x\n"),Chipset.pc,(d==0x18) ? "LSB" : "MSB",*a);
OutputDebugString(buffer);
}
#endif
break;
case 0x1A: // IR CONTROL
if (cCurrentRomType=='E') // HP39/40G
{
Chipset.IORam[d] = (nCurrentClass != 40)
? (Chipset.IORam[d] & ~IRI) // HP39G
: (Chipset.IORam[d] | IRI); // HP40G
}
*a = Chipset.IORam[d]; // return IR CONTROL value
#if defined DEBUG_SERIAL
{
TCHAR buffer[256];
wsprintf(buffer,_T("%.5lx: IRC Read: %x\n"),Chipset.pc,*a);
OutputDebugString(buffer);
}
#endif
break;
case 0x1B: *a = 0; break;
case 0x1C: // LED CONTROL
// put LBF and LBZ always to zero to indicate a free REDEYE buffer and formatter
*a = (Chipset.IORam[d] & (LED|ELBE));
break;
case 0x1D: // LED BUFFER
*a = (Chipset.IORam[d] & LBO);
break;
// case 0x1E: *a = Chipset.IORam[d]; break;
// case 0x1F: *a = Chipset.IORam[d]; break;
case 0x20: *a = 3; break;
case 0x21: *a = 3; break;
case 0x22: *a = 3; break;
case 0x23: *a = 3; break;
case 0x24: *a = 3; break;
case 0x25: *a = 3; break;
case 0x26: *a = 3; break;
case 0x27: *a = 3; break;
case 0x28: // LINECOUNT LSB
case 0x29: // LINECOUNT MSB + DA19 M32
if (Chipset.IORam[0x00]&DON) // display on
{
if (c == 0xFF) // no actual line information
{
c = GetLineCounter(); // get LCD update line
// save line information in IO registers
Chipset.IORam[0x28] = c & 0xF;
Chipset.IORam[0x29] = (Chipset.IORam[0x29] & (DA19|M32)) | (c >> 4);
}
}
*a = Chipset.IORam[d];
if (d==0x29) // address 0x29 is mirrored to 0x2A-0x2D
{
Chipset.IORam[0x2A] = *a;
Chipset.IORam[0x2B] = *a;
Chipset.IORam[0x2C] = *a;
Chipset.IORam[0x2D] = *a;
}
break;
// case 0x2A: *a = 0; break;
// case 0x2B: *a = 0; break;
// case 0x2C: *a = 0; break;
// case 0x2D: *a = 0; break;
case 0x2E:
ReadT1(); // dummy read for update timer1 control register
*a = Chipset.IORam[d];
break;
case 0x2F:
ReadT2(); // dummy read for update timer2 control register
*a = Chipset.IORam[d];
break;
case 0x30: *a = 3; break;
case 0x31: *a = 3; break;
case 0x32: *a = 3; break;
case 0x33: *a = 3; break;
case 0x34: *a = 3; break;
case 0x35: *a = 0; break;
case 0x36: *a = 0; break;
case 0x37: *a = ReadT1(); break;
case 0x38: Nunpack(a, ReadT2Acc() , s); return;
case 0x39: Nunpack(a, ReadT2Acc()>> 4, s); return;
case 0x3A: Nunpack(a, ReadT2Acc()>> 8, s); return;
case 0x3B: Nunpack(a, ReadT2Acc()>>12, s); return;
case 0x3C: Nunpack(a, ReadT2Acc()>>16, s); return;
case 0x3D: Nunpack(a, ReadT2Acc()>>20, s); return;
case 0x3E: Nunpack(a, ReadT2Acc()>>24, s); return;
case 0x3F: Nunpack(a, ReadT2Acc()>>28, s); return;
default: *a = Chipset.IORam[d];
}
d++; a++;
} while (--s);
if (rbr_acc) CommReceive(); // look for new character
return;
}
VOID WriteIO(BYTE *a, DWORD d, DWORD s)
{
DWORD b;
BYTE c;
BOOL tbr_acc = FALSE; // flag to transmit data
BOOL bDISPADDR = FALSE; // flag addr 0x120-0x124 changed
BOOL bLINEOFFS = FALSE; // flag addr 0x125-0x127 changed
BOOL bMENUADDR = FALSE; // flag addr 0x130-0x134 changed
DWORD dwAnnunciator = 0; // no annunciator write
#if defined DEBUG_IO
{
TCHAR buffer[256];
DWORD j;
int i;
i = wsprintf(buffer,_T("%.5lx: IO write: %02x,%u = "),Chipset.pc,d,s);
for (j = 0;j < s;++j,++i)
{
buffer[i] = a[j];
if (buffer[i] > 9) buffer[i] += _T('a') - _T('9') - 1;
buffer[i] += _T('0');
}
buffer[i++] = _T('\n');
buffer[i] = 0;
OutputDebugString(buffer);
}
#endif
do
{
c = *a;
switch (d)
{
// 00100 = NS:DISPIO
// 00100 @ Display bit offset and DON [DON OFF2 OFF1 OFF0]
// 00100 @ 3 nibs for display offset (scrolling), DON=Display ON
case 0x00:
if ((c^Chipset.IORam[d])&DON) // DON bit changed
{
disp |= (DISP_POINTER | DISP_MAIN | DISP_MENUE);
// adjust VBL counter start/stop values
if ((c & DON) != 0) // set display on
{
Chipset.IORam[d] |= DON; // for StartDisplay();
UpdateContrast(Chipset.contrast);
StartDisplay((BYTE) Chipset.lcounter); // start display update
}
else // display is off
{
Chipset.IORam[d] &= ~DON;
UpdateContrast(Chipset.contrast);
StopDisplay(); // stop display update
}
}
// OFF bits changed
if ((c^Chipset.IORam[d]) & (OFF2 | OFF1 | OFF0))
{
Chipset.boffset = c & (OFF2 | OFF1 | OFF0);
disp |= (DISP_POINTER | DISP_MAIN);
}
Chipset.IORam[d] = c;
break;
// 00101 = NS:CONTRLSB
// 00101 @ Contrast Control [CON3 CON2 CON1 CON0]
// 00101 @ Higher value = darker screen
case 0x01:
if (c!=Chipset.IORam[d])
{
Chipset.IORam[d]=c;
Chipset.contrast = (Chipset.contrast&0x10)|c;
UpdateContrast(Chipset.contrast);
disp |= (DISP_MAIN | DISP_MENUE);
}
break;
// 00102 = NS:DISPTEST
// 00102 @ Display test [VDIG LID TRIM CON4] [LRT LRTD LRTC BIN]
// 00102 @ Normally zeros
case 0x02:
if (c!=Chipset.IORam[d])
{
Chipset.IORam[d]=c;
Chipset.contrast = (Chipset.contrast&0x0f)|((c&1)<<4);
UpdateContrast(Chipset.contrast);
disp |= (DISP_MAIN | DISP_MENUE);
}
break;
case 0x03: Chipset.IORam[d]=c; break;
// 00104 = HP:CRC
// 00104 @ 16 bit hardware CRC (104-107) (X^16+X^12+X^5+1)
// 00104 @ crc = ( crc >> 4 ) ^ ( ( ( crc ^ nib ) & 0x000F ) * 0x1081 );
case 0x04: Chipset.crc = (Chipset.crc&0xfff0)|(c*0x0001); break;
case 0x05: Chipset.crc = (Chipset.crc&0xff0f)|(c*0x0010); break;
case 0x06: Chipset.crc = (Chipset.crc&0xf0ff)|(c*0x0100); break;
case 0x07: Chipset.crc = (Chipset.crc&0x0fff)|(c*0x1000); break;
// 00108 = NS:POWERSTATUS
// 00108 @ Low power registers (108-109)
// 00108 @ [LB2 LB1 LB0 VLBI] (read only)
// 00108 @ LowBat(2) LowBat(1) LowBat(S) VeryLowBat
case 0x08: break; // read-only
// 00109 = NS:POWERCTRL
// 00109 @ [ELBI EVLBI GRST RST] (read/write)
case 0x09:
Chipset.IORam[d]=c;
if (c & RST)
{
CpuReset(); // emulate NRES signal
disp |= (DISP_POINTER | DISP_MAIN | DISP_MENUE);
dwAnnunciator = 0x3F; // update all annunciators
bInterrupt = TRUE; // SHUTDN
}
break;
// 0010A = NS:MODE
// 0010A @ Mode Register (read-only)
case 0x0A: break; // read-only
// 0010B = HP:ANNCTRL
// 0010B @ Annunciator control [LA4 LA3 LA2 LA1] = [ alarm alpha -> <- ]
case 0x0B:
case 0x0C:
// annunciator changed
dwAnnunciator |= ((Chipset.IORam[d] ^c) << ((d - 0x0B) * 4)) & 0x3F;
Chipset.IORam[d] = c;
break;
// 0010D = NS:BAUD
// 0010D @ Serial baud rate [UCK BD2 BD1 BD0] (bit 3 is read-only)
// 0010D @ 3 bits = {1200 1920 2400 3840 4800 7680 9600 15360}
case 0x0D:
if (isModelApple(cCurrentRomType))
{
Chipset.IORam[d] = c;
}
else // Clarke / Yorke chip
{
Chipset.IORam[d]=(Chipset.IORam[d]&8)|(c&7); // bit 3 is read-only
}
CommSetBaud(); // set baudrate
#if defined DEBUG_SERIAL
{
TCHAR buffer[256];
wsprintf(buffer,_T("%.5lx: BAUD write: %x\n"),Chipset.pc,Chipset.IORam[d]);
OutputDebugString(buffer);
}
#endif
break;
// 0010E = NS:CARDCTL
// 0010E @ [ECDT RCDT SMP SWINT] (read/write)
// 0010E @ Enable Card Det., Run Card Det., Set Module Pulled, Software interrupt
case 0x0E:
if (c & SWINT) // SWINT bit set
{
c &= (ECDT | RCDT | SMP); // clear SWINT bit
Chipset.SoftInt = TRUE;
bInterrupt = TRUE;
}
if ((c & SMP) == 0) // SMP bit cleared
{
BOOL bNINT = TRUE; // ack NINT interrupt -> NINT high
// card detect disabled and CDT1 low -> retrigger
if ((c & ECDT) == 0 && (Chipset.IORam[TIMER2_CTRL] & RUN) != 0)
bNINT = (Chipset.cards_status & (P1W|P1C)) != P1C;
IOBit(SRQ2,NINT,bNINT);
}
// falling edge of Enable Card Detect bit and timer running
if ( ((c^Chipset.IORam[d]) & ECDT) != 0 && (c & ECDT) == 0
&& (Chipset.IORam[TIMER2_CTRL] & RUN) != 0)
{
BOOL bNINT = (Chipset.IORam[SRQ2] & NINT) != 0;
// card in slot1 isn't Read Only
if ((Chipset.cards_status & (P1W|P1C)) != P1C)
{
// use random state of NINT line
bNINT = bNINT && (ReadT2() & 0x1) != 0;
}
IOBit(SRQ2,NINT,bNINT);
Chipset.HST |= MP; // set Module Pulled
// Port1 and Port2 plugged and writeable or NINT2/NINT interrupt
if ( Chipset.cards_status != (P2W|P1W|P2C|P1C)
|| (Chipset.IORam[SRQ2] & NINT2) == 0
|| (Chipset.IORam[SRQ2] & NINT ) == 0
)
{
Chipset.SoftInt = TRUE; // set interrupt
bInterrupt = TRUE;
}
}
Chipset.IORam[d]=c;
break;
// 0010F = NS:CARDSTATUS
// 0010F @ [P2W P1W P2C P1C] (read-only) Port 2 writable .. Port 1 inserted
case 0x0F: break; // read-only
// 00110 = HP:IOC
// 00110 @ Serial I/O Control [SON ETBE ERBF ERBZ]
// 00110 @ Serial On, Interrupt On Recv.Buf.Empty, Full, Buzy
case 0x10:
Chipset.IORam[d]=c;
CheckSerial(); // handle UART on/off
if ((c & SON) == 0) // SON bit cleared
{
Chipset.IORam[IOC] = 0; // clear IOC
Chipset.IORam[RCS] = 0; // clear RCS
Chipset.IORam[TCS] = 0; // clear TCS
Chipset.IORam[RBR_LSB] = 0; // clear RBR
Chipset.IORam[RBR_MSB] = 0;
Chipset.IORam[TBR_LSB] = 0; // clear TBR
Chipset.IORam[TBR_MSB] = 0;
}
if (UpdateUSRQ()) INTERRUPT; // update USRQ bit
#if defined DEBUG_SERIAL
{
TCHAR buffer[256];
wsprintf(buffer,_T("%.5lx: IOC write: %x\n"),Chipset.pc,Chipset.IORam[d]);
OutputDebugString(buffer);
}
#endif
break;
// 00111 = HP:RCS
// 00111 Serial Receive Control/Status [RX RER RBZ RBF] (bit 3 is read-only)
case 0x11:
if (Chipset.IORam[IOC] & SON)
{
EnterCriticalSection(&csIOLock);
{
// critical section because of RER access
Chipset.IORam[d]=(Chipset.IORam[d]&8)|(c&7);
}
LeaveCriticalSection(&csIOLock);
#if defined DEBUG_SERIAL
{
TCHAR buffer[256];
wsprintf(buffer,_T("%.5lx: RCS write: %x\n"),Chipset.pc,Chipset.IORam[d]);
OutputDebugString(buffer);
}
#endif
}
break;
// 00112 = HP:TCS
// 00112 @ Serial Transmit Control/Status [BRK LPB TBZ TBF]
case 0x12:
if (Chipset.IORam[IOC] & SON)
{
Chipset.IORam[d]=c;
CommTxBRK(); // update BRK condition
#if defined DEBUG_SERIAL
{
TCHAR buffer[256];
wsprintf(buffer,_T("%.5lx: TCS write: %x\n"),Chipset.pc,Chipset.IORam[d]);
OutputDebugString(buffer);
}
#endif
}
break;
// 00113 = HP:CRER
// 00113 @ Serial Clear RER (writing anything clears RER bit)
case 0x13:
IOBit(RCS,RER,FALSE);
#if defined DEBUG_SERIAL
{
TCHAR buffer[256];
wsprintf(buffer,_T("%.5lx: CRER write: %x\n"),Chipset.pc,Chipset.IORam[d]);
OutputDebugString(buffer);
}
#endif
break;
// 00114 = HP:RBR
// 00114 @ Serial Receive Buffer Register (Reading clears RBF bit)
case 0x14: break; // read-only
case 0x15: break; // read-only
// 00116 = HP:TBR
// 00116 @ Serial Transmit Buffer Register (Writing sets TBF bit)
case 0x16:
case 0x17:
if (Chipset.IORam[IOC] & SON)
{
Chipset.IORam[d]=c;
tbr_acc = TRUE; // new TBR value
#if defined DEBUG_SERIAL
{
TCHAR buffer[256];
wsprintf(buffer,_T("%.5lx: TBR %s write: %x\n"),Chipset.pc,(d==0x16) ? "LSB" : "MSB",*a);
OutputDebugString(buffer);
}
#endif
}
break;
// 00118 = NS:SRR
// 00118 @ Service Request Register (read-only)
// 00118 @ [ISRQ TSRQ USRQ VSRQ] [KDN NINT2 NINT LSRQ]
case 0x18: break; // read-only
case 0x19: break; // read-only
// 0011A = HP:IRC
// 0011A @ IR Control Register [IRI EIRU EIRI IRE] (bit 3 is read-only)
// 0011A @ IR Input, Enable IR UART mode, Enable IR Interrupt, IR Event
case 0x1A:
// EIRU bit changed
if (((c^Chipset.IORam[d]) & EIRU) != 0)
{
// save new value for COM open
Chipset.IORam[d]=(Chipset.IORam[d]&8)|(c&7);
// reopen COM port with new setting
CommOpen(szSerialWire,szSerialIr);
}
Chipset.IORam[d]=(Chipset.IORam[d]&8)|(c&7);
#if defined DEBUG_SERIAL
{
TCHAR buffer[256];
wsprintf(buffer,_T("%.5lx: IRC write: %x\n"),Chipset.pc,Chipset.IORam[d]);
OutputDebugString(buffer);
}
#endif
break;
// 0011B = NS:BASENIBOFF
// 0011B @ Used as addressto get BASENIB from 11F to the 5th nibble
case 0x1B: break;
// 0011C = NS:LCR
// 0011C @ Led Control Register [LED ELBE LBZ LBF] (Setting LED is draining)
case 0x1C:
// HP49G new mapping on LED bit change
if (cCurrentRomType=='X' && ((c^Chipset.IORam[d])&LED))
{
Chipset.IORam[d]=c; // save new value for mapping
Map(Chipset.P2Base,Chipset.P2End); // new ROM mapping
#if defined DEBUG_FLASH
{
TCHAR buffer[256];
wsprintf(buffer,_T("%.5lx: NCE3: R%cM\n"),Chipset.pc,(c&LED) ? 'O' : 'A');
OutputDebugString(buffer);
}
#endif
}
// Saturnator on apples has no ELBE bit simulation
if (cCurrentRomType!='Q' && cCurrentRomType!='2' && cCurrentRomType!='P')
{
if ((c^Chipset.IORam[d])&ELBE) // ELBE bit changed
{
// Led Service ReQuest on Led Buffer Empty enabled
BOOL bLSRQ = (c & (ELBE | LBF)) == ELBE;
IOBit(SRQ2,LSRQ,bLSRQ); // update LSRQ bit
if (bLSRQ) // interrupt on Led Buffer Empty enabled
{
Chipset.SoftInt = TRUE;
bInterrupt = TRUE;
}
}
}
Chipset.IORam[d]=c;
break;
// 0011D = NS:LBR
// 0011D @ Led Buffer Register [0 0 0 LBO] (bits 1-3 read zero)
case 0x1D:
IrPrinter((BYTE)(c&LBO));
Chipset.IORam[d]=c&LBO;
break;
// 0011E = NS:SCRATCHPAD
// 0011E @ Scratch pad
case 0x1E: Chipset.IORam[d]=c; break;
// 0011F = NS:BASENIB
// 0011F @ 7 or 8 for base memory
case 0x1F: Chipset.IORam[d]=c; break;
// 00120 = NS:DISPADDR
// 00120 @ Display Start Address (write only)
// 00120 @ bit 0 is ignored (display must start on byte boundary)
case 0x20:
case 0x21:
case 0x22:
case 0x23:
case 0x24:
Chipset.IORam[d]=c;
bDISPADDR = TRUE; // addr 0x120-0x124 changed
break;
// 00125 = NS:LINEOFFS
// 00125 @ Display Line offset (write only) (no of bytes skipped after each line)
// 00125 @ MSG sign extended
case 0x25:
case 0x26:
case 0x27:
Chipset.IORam[d]=c;
bLINEOFFS = TRUE; // addr 0x125-0x127 changed
break;
// 00128 = NS:LINECOUNT
// 00128 @ Display Line Counter and miscellaneous (28-29)
// 00128 @ [LC3 LC2 LC1 LC0] [DA19 M32 LC5 LC4]
// 00128 @ Line counter 6 bits -> max = 2^6-1 = 63 = disp height
// 00128 @ Normally has 55 -> Menu starts at display row 56
case 0x28:
// LSB of LINECOUNT changed
if (c != (BYTE) (Chipset.lcounter & 0xf))
{
Chipset.lcounter = (Chipset.lcounter & ~0xF) | c;
disp |= (DISP_POINTER | DISP_MAIN | DISP_MENUE);
}
break;
case 0x29:
// MSB of LINECOUNT changed
b = (c & 0x3) << 4; // upper two bits
if (b != (Chipset.lcounter & 0x30))
{
Chipset.lcounter = (Chipset.lcounter & ~0x30) | b;
disp |= (DISP_POINTER | DISP_MAIN | DISP_MENUE);
}
if ((c^Chipset.IORam[d])&DA19) // DA19 changed
{
Chipset.IORam[d]^=DA19; // save new DA19
Map(0x00,0xFF); // new ROM mapping
}
break;
case 0x2A: break;
case 0x2B: break;
case 0x2C: break;
case 0x2D: break;
// 0012E = NS:TIMER1CTRL
// 0012E @ TIMER1 Control [SRQ WKE INT XTRA]
case 0x2E:
Chipset.IORam[d]=c; // don't clear XTRA bit
ReadT1(); // dummy read for checking control bits
break;
// 0012F = NS:TIMER2CTRL
// 0012F @ TIMER2 Control [SRQ WKE INT RUN]
case 0x2F:
Chipset.IORam[d]=c;
ReadT2(); // dummy read for checking control bits
if (c&1)
StartTimers();
else
StopTimers();
dwAnnunciator = 0x3F; // update all annunciators
break;
// 00130 = NS:MENUADDR
// 00130 @ Display Secondary Start Address (write only) (30-34)
// 00130 @ Menu Display Address, no line offsets
case 0x30:
case 0x31:
case 0x32:
case 0x33:
case 0x34:
Chipset.IORam[d]=c;
bMENUADDR = TRUE; // addr 0x130-0x134 changed
break;
case 0x35: break;
case 0x36: break;
// 00137 = HP:TIMER1
// 00137 @ Decremented 16 times/s
case 0x37:
SetT1(c); // set new value
break;
// 00138 = HP:TIMER2
// 00138 @ hardware timer (38-3F), decremented 8192 times/s
// nothing - fall through to default
default:
Chipset.IORam[d]=c; // write data
if (d >= TIMER2) // timer2 update
{
Nunpack(Chipset.IORam+TIMER2,ReadT2(),8);
memcpy(Chipset.IORam+d,a,s);
SetT2(Npack(Chipset.IORam+TIMER2,8));
goto finish;
}
}
a++; d++;
} while (--s);
finish:
if (bDISPADDR) // 0x120-0x124 changed
{
b = Npack(Chipset.IORam+DISP1CTL,5)&0xFFFFE;
if (b != Chipset.start1)
{
Chipset.start1 = b;
disp |= (DISP_POINTER | DISP_MAIN);
}
}
if (bLINEOFFS) // addr 0x125-0x127 changed
{
signed short lo = (signed short)Npack(Chipset.IORam+LINENIBS,3);
if (lo&0x800) lo-=0x1000;
if (lo != Chipset.loffset)
{
Chipset.loffset = lo;
disp |= (DISP_POINTER | DISP_MAIN);
}
}
if (bMENUADDR) // addr 0x130-0x134 changed
{
b = Npack(Chipset.IORam+DISP2CTL,5)&0xFFFFE;
if (b != Chipset.start2)
{
Chipset.start2 = b;
disp |= (DISP_POINTER | DISP_MENUE);
}
}
if (tbr_acc) // addr 0x116-0x117 changed
{
IOBit(TCS,TBF,TRUE); // set transmit buffer full bit
CommTransmit(); // transmit char
}
if (disp & DISP_POINTER)
{
disp &= ~DISP_POINTER; // display pointer updated
UpdateDisplayPointers();
}
if (dwAnnunciator)
{
UpdateAnnunciators(dwAnnunciator);
}
return;
}