emu48-mirror/Sources/Emu48/ENGINE.C
Gwenhael Le Moine 2cc9402f4d
2005-12-17: Updated to version 1.40
Signed-off-by: Gwenhael Le Moine <gwenhael.le.moine@gmail.com>
2024-03-19 23:35:29 +01:00

630 lines
18 KiB
C

/*
* engine.c
*
* This file is part of Emu48
*
* Copyright (C) 1995 Sebastien Carlier
*
*/
#include "pch.h"
#include "Emu48.h"
#include "Opcodes.h"
#include "io.h"
#include "debugger.h"
#define SAMPLE 16384 // speed adjust sample frequency
BOOL bInterrupt = FALSE;
UINT nState = SM_INVALID;
UINT nNextState = SM_RUN;
BOOL bRealSpeed = FALSE;
BOOL bKeySlow = FALSE; // slow down for key emulation
BOOL bCommInit = FALSE; // COM port not open
CHIPSET Chipset;
TCHAR szSerialWire[16]; // devicename for wire port
TCHAR szSerialIr[16]; // devicename for IR port
DWORD dwSXCycles = 82; // SX cpu cycles in interval
DWORD dwGXCycles = 123; // GX cpu cycles in interval
// variables for debugger engine
HANDLE hEventDebug; // event handle to stop cpu thread
BOOL bDbgAutoStateCtrl = TRUE; // debugger suspend control by SwitchToState()
INT nDbgState = DBG_OFF; // state of debugger
BOOL bDbgNOP3 = FALSE; // halt on NOP3 (#420 opcode)
BOOL bDbgRPL = FALSE; // halt on RPL entry
BOOL bDbgCode = FALSE; // halt on DOCODE entry
BOOL bDbgSkipInt = FALSE; // execute interrupt handler
DWORD dwDbgStopPC = -1; // stop address for goto cursor
DWORD dwDbgRplPC = -1; // stop address for RPL breakpoint
DWORD dwDbgRstkp; // stack recursion level of step over end
DWORD dwDbgRstk; // possible return address
DWORD *pdwInstrArray = NULL; // last instruction array
WORD wInstrSize; // size of last instruction array
WORD wInstrWp; // write pointer of instruction array
WORD wInstrRp; // read pointer of instruction array
static INT nDbgRplBreak = BN_ASM; // flag for RPL breakpoint detection
static INT nDbgOldState = DBG_OFF; // old state of debugger for suspend/resume
static BOOL bCpuSlow = FALSE; // enable/disable real speed
static DWORD dwEDbgT2 = 0; // debugger timer2 emulation
static DWORD dwEDbgCycles = 0; // debugger cycle counter
static DWORD dwOldCyc; // cpu cycles at last event
static DWORD dwSpeedRef; // timer value at last event
static DWORD dwTickRef; // sample timer ticks
#include "Ops.h"
// save last instruction in circular instruction buffer
static __inline VOID SaveInstrAddr(DWORD dwAddr)
{
if (pdwInstrArray) // circular buffer allocated
{
pdwInstrArray[wInstrWp] = dwAddr;
wInstrWp = (wInstrWp + 1) % wInstrSize;
if (wInstrWp == wInstrRp)
wInstrRp = (wInstrRp + 1) % wInstrSize;
}
return;
}
static __inline VOID Debugger(VOID) // debugger part
{
LARGE_INTEGER lDummyInt; // sample timer ticks
BOOL bStopEmulation;
LPBYTE I = FASTPTR(Chipset.pc); // get opcode stream
UpdateDbgCycleCounter(); // update 64 bit cpu cycle counter
SaveInstrAddr(Chipset.pc); // save pc in last instruction buffer
nDbgRplBreak = BN_ASM; // notify ASM breakpoint
// check for code breakpoints
bStopEmulation = CheckBreakpoint(Chipset.pc, 1, BP_EXEC);
// check for memory breakpoints, opcode #14x or #15x
if (I[0] == 0x1 && (I[1] == 0x4 || I[1] == 0x5))
{
DWORD dwData = (I[2] & 0x1) ? Chipset.d1 : Chipset.d0;
UINT nType = (I[2] & 0x2) ? BP_READ : BP_WRITE;
DWORD dwRange;
if (I[1] == 0x4) // B,A
{
dwRange = (I[2] & 0x8) ? 2 : 5;
}
else // number of nibbles, (P,WP,XS,X,S,M,W)
{
dwRange = (I[2] & 0x8) ? (I[3]+1) : (F_l[I[3]]);
}
#if defined DEBUG_DEBUGGER
{
TCHAR buffer[256];
wsprintf(buffer,_T("Memory breakpoint %.5lx, %u\n",dwData,dwRange));
OutputDebugString(buffer);
}
#endif
bStopEmulation |= CheckBreakpoint(dwData, dwRange, nType);
}
// check for step cursor
bStopEmulation |= (dwDbgStopPC == Chipset.pc);
// NOP3, opcode #420 (GOC)
if (bDbgNOP3 && I[0] == 0x4 && I[1] == 0x2 && I[2] == 0x0)
bStopEmulation = TRUE;
// stop on first instruction of DOCODE object
if (bDbgCode && (Chipset.pc == 0x02DDE || Chipset.pc == 0x02E3C))
{
// return address
DWORD dwAddr = Chipset.rstk[(Chipset.rstkp-1)&7];
_ASSERT(I[0] == 0 && I[1] == 1); // stopped at RTN opcode
if (MapData(dwAddr) != M_ROM) // address not in ROM
dwDbgStopPC = dwAddr; // then stop
}
// check for RPL breakpoint
if (dwDbgRplPC == Chipset.pc)
{
dwDbgRplPC = -1;
nDbgRplBreak = bStopEmulation ? BN_ASM_BT : BN_RPL;
bStopEmulation = TRUE;
}
// RPL breakpoints, PC=(A), opcode #808C or PC=(C), opcode #808E
if (I[0] == 0x8 && I[1] == 0x0 && I[2] == 0x8 && (I[3] == 0xC || I[3] == 0xE ))
{
// get next RPL entry
DWORD dwAddr = Npack((I[3] == 0xC) ? Chipset.A : Chipset.C,5);
if (bDbgRPL || CheckBreakpoint(dwAddr, 1, BP_RPL))
{
BYTE byRplPtr[5];
Npeek(byRplPtr,dwAddr,5); // get PC address of next opcode
dwDbgRplPC = Npack(byRplPtr,5); // set RPL breakpoint
}
}
// step over interrupt execution
if (bDbgSkipInt && !bStopEmulation && !Chipset.inte)
return;
// check for step into
bStopEmulation |= (nDbgState == DBG_STEPINTO);
// check for step over
bStopEmulation |= (nDbgState == DBG_STEPOVER) && dwDbgRstkp == Chipset.rstkp;
// check for step out, something was popped from hardware stack
if (nDbgState == DBG_STEPOUT && dwDbgRstkp == Chipset.rstkp)
{
_ASSERT(bStopEmulation == FALSE);
if ((bStopEmulation = (Chipset.pc == dwDbgRstk)) == FALSE)
{
// it was C=RSTK, check for next object popped from hardware stack
dwDbgRstkp = (Chipset.rstkp-1)&7;
dwDbgRstk = Chipset.rstk[dwDbgRstkp];
}
}
if (bStopEmulation) // stop condition
{
StopTimers(); // hold timer values when emulator is stopped
if (Chipset.IORam[TIMER2_CTRL]&RUN) // check if timer running
{
if (dwEDbgT2 == Chipset.t2)
{
// cpu cycles for one timer2 tick elapsed
if ((DWORD) (Chipset.cycles & 0xFFFFFFFF) - dwEDbgCycles
>= (SAMPLE / 8192) * (DWORD) T2CYCLES)
{
--Chipset.t2;
// adjust cycles reference
dwEDbgCycles += (SAMPLE / 8192) * T2CYCLES;
}
}
else // new timer2 value
{
// new cycle reference
dwEDbgCycles = (DWORD) (Chipset.cycles & 0xFFFFFFFF);
}
// check rising edge of Bit 8 of timer2
if ((dwEDbgT2 & 0x100) == 0 && (Chipset.t2 & 0x100) != 0)
Chipset.t1 = (Chipset.t1 - 1) & 0xF;
}
dwEDbgT2 = Chipset.t2; // timer2 check reference value
// redraw debugger window and stop
NotifyDebugger(nDbgRplBreak);
WaitForSingleObject(hEventDebug,INFINITE);
StartTimers(); // continue timers
if (nDbgState >= DBG_OFF) // if debugger is active
{
Chipset.Shutdn = FALSE;
Chipset.bShutdnWake = FALSE;
}
// init slow down part
dwOldCyc = (DWORD) (Chipset.cycles & 0xFFFFFFFF);
QueryPerformanceCounter(&lDummyInt);
dwSpeedRef = lDummyInt.LowPart;
}
return;
}
VOID SuspendDebugger(VOID)
{
// auto control enabled, emulation halted by debugger
if (bDbgAutoStateCtrl && nDbgState > DBG_OFF)
{
nDbgOldState = nDbgState; // save old state
nDbgState = DBG_SUSPEND; // suspend state
SetEvent(hEventDebug); // exit debugger
}
return;
}
VOID ResumeDebugger(VOID)
{
// auto control enabled, debugger is suspended
if (bDbgAutoStateCtrl && nDbgState == DBG_SUSPEND)
{
// active RPL breakpoint
if (nDbgRplBreak) dwDbgRplPC = Chipset.pc;
nDbgState = nDbgOldState; // set to old debugger state
if (Chipset.Shutdn) // inside shutdown
SetEvent(hEventShutdn); // leave it to call debugger
}
return;
}
static __inline VOID CheckDisp(BOOL bSync)
{
if (disp == 0) return; // no display update need
// update display when drawing top line or display is off
if (bSync && GetLineCounter() != 0x3F && (Chipset.IORam[0x00]&8))
return;
_ASSERT((disp & DISP_POINTER) == 0); // display pointer already updated
if (disp & DISP_MAIN) UpdateMainDisplay();
if (disp & DISP_MENUE) UpdateMenuDisplay();
_ASSERT((disp & DISP_ANNUN) == 0); // annunciators already updated
disp = 0; // display updated
return;
}
static __inline VOID AdjustSpeed(VOID) // adjust emulation speed
{
if (bCpuSlow || bKeySlow) // emulation slow down
{
DWORD dwCycles,dwTicks;
EnterCriticalSection(&csSlowLock);
{
// cycles elapsed for next check
if ((dwCycles = (DWORD) (Chipset.cycles & 0xFFFFFFFF)-dwOldCyc) >= (DWORD) T2CYCLES)
{
LARGE_INTEGER lAct;
do
{
VERIFY(QueryPerformanceCounter(&lAct));
// get time difference
dwTicks = lAct.LowPart - dwSpeedRef;
}
// ticks elapsed or negative number (workaround for QueryPerformanceCounter() in Win2k)
while(dwTicks <= dwTickRef || (dwTicks & 0x80000000) != 0);
dwOldCyc += T2CYCLES; // adjust cycles reference
dwSpeedRef += dwTickRef; // adjust reference time
}
}
LeaveCriticalSection(&csSlowLock);
}
return;
}
VOID CheckSerial(VOID)
{
// COM port closed and serial on
if (bCommInit == FALSE && (Chipset.IORam[IOC] & SON) != 0)
{
bCommInit = CommOpen(szSerialWire,szSerialIr); // open COM ports
}
// COM port opened and serial off
if (bCommInit == TRUE && (Chipset.IORam[IOC] & SON) == 0)
{
CommClose(); // close COM port
bCommInit = FALSE;
}
return;
}
VOID AdjKeySpeed(VOID) // slow down key repeat
{
WORD i;
BOOL bKey;
if (bCpuSlow) return; // no need to slow down
bKey = FALSE; // search for a pressed key
for (i = 0;i < ARRAYSIZEOF(Chipset.Keyboard_Row) && !bKey;++i)
bKey = (Chipset.Keyboard_Row[i] != 0);
EnterCriticalSection(&csSlowLock);
{
if (!bKeySlow && bKey) // key pressed, init variables
{
LARGE_INTEGER lTime; // sample timer ticks
// save reference cycles
dwOldCyc = (DWORD) (Chipset.cycles & 0xFFFFFFFF);
QueryPerformanceCounter(&lTime); // get timer ticks
dwSpeedRef = lTime.LowPart; // save reference time
}
bKeySlow = bKey; // save new state
}
LeaveCriticalSection(&csSlowLock);
return;
}
VOID SetSpeed(BOOL bAdjust) // set emulation speed
{
EnterCriticalSection(&csSlowLock);
{
if (bAdjust) // switch to real speed
{
LARGE_INTEGER lTime; // sample timer ticks
// save reference cycles
dwOldCyc = (DWORD) (Chipset.cycles & 0xFFFFFFFF);
QueryPerformanceCounter(&lTime); // get timer ticks
dwSpeedRef = lTime.LowPart; // save reference time
}
bCpuSlow = bAdjust; // save emulation speed
}
LeaveCriticalSection(&csSlowLock);
return;
}
VOID UpdateKdnBit(VOID) // update KDN bit
{
if ( Chipset.intk
&& (Chipset.IORam[TIMER2_CTRL]&RUN) != 0
&& (DWORD) (Chipset.cycles & 0xFFFFFFFF) - Chipset.dwKdnCycles > (DWORD) T2CYCLES * 16)
IOBit(SRQ2,KDN,Chipset.in != 0);
return;
}
BOOL WaitForSleepState(VOID) // wait for cpu SHUTDN then sleep state
{
DWORD dwRefTime;
SuspendDebugger(); // suspend debugger
dwRefTime = timeGetTime();
// wait for the SHUTDN command with 1.5 sec timeout
while (timeGetTime() - dwRefTime < 1500L && !Chipset.Shutdn)
Sleep(0);
if (Chipset.Shutdn) // not timeout, cpu is down
SwitchToState(SM_SLEEP); // go to sleep state
else
ResumeDebugger(); // timeout, resume to debugger
return SM_SLEEP != nNextState; // state not changed, emulator was busy
}
UINT SwitchToState(UINT nNewState)
{
UINT nOldState = nState;
if (nState == nNewState) return nOldState;
switch (nState)
{
case SM_RUN: // Run
switch (nNewState)
{
case SM_INVALID: // -> Invalid
nNextState = SM_INVALID;
if (Chipset.Shutdn)
SetEvent(hEventShutdn);
else
bInterrupt = TRUE;
SuspendDebugger(); // suspend debugger
while (nState!=nNextState) Sleep(0);
UpdateWindowStatus();
break;
case SM_RETURN: // -> Return
DisableDebugger(); // disable debugger
nNextState = SM_INVALID;
if (Chipset.Shutdn)
SetEvent(hEventShutdn);
else
bInterrupt = TRUE;
while (nState!=nNextState) Sleep(0);
nNextState = SM_RETURN;
SetEvent(hEventShutdn);
WaitForSingleObject(hThread,INFINITE);
UpdateWindowStatus();
break;
case SM_SLEEP: // -> Sleep
nNextState = SM_SLEEP;
bInterrupt = TRUE; // exit main loop
SuspendDebugger(); // suspend debugger
SetEvent(hEventShutdn); // exit shutdown
while (nState!=nNextState) Sleep(0);
bInterrupt = FALSE;
ResetEvent(hEventDebug);
ResetEvent(hEventShutdn);
break;
}
break;
case SM_INVALID: // Invalid
switch (nNewState)
{
case SM_RUN: // -> Run
nNextState = SM_RUN;
// don't enter opcode loop on interrupt request
bInterrupt = Chipset.Shutdn || Chipset.SoftInt;
ResumeDebugger();
SetEvent(hEventShutdn);
while (nState!=nNextState) Sleep(0);
UpdateWindowStatus();
break;
case SM_RETURN: // -> Return
DisableDebugger(); // disable debugger
nNextState = SM_RETURN;
SetEvent(hEventShutdn);
WaitForSingleObject(hThread,INFINITE);
break;
case SM_SLEEP: // -> Sleep
nNextState = SM_SLEEP;
SetEvent(hEventShutdn);
while (nState!=nNextState) Sleep(0);
UpdateWindowStatus();
break;
}
break;
case SM_SLEEP: // Sleep
switch (nNewState)
{
case SM_RUN: // -> Run
nNextState = SM_RUN;
// don't enter opcode loop on interrupt request
bInterrupt = (nDbgState == DBG_OFF) && (Chipset.Shutdn || Chipset.SoftInt);
ResumeDebugger();
SetEvent(hEventShutdn); // leave sleep state
break;
case SM_INVALID: // -> Invalid
nNextState = SM_INVALID;
SetEvent(hEventShutdn);
while (nState!=nNextState) Sleep(0);
UpdateWindowStatus();
break;
case SM_RETURN: // -> Return
DisableDebugger(); // disable debugger
nNextState = SM_INVALID;
SetEvent(hEventShutdn);
while (nState!=nNextState) Sleep(0);
nNextState = SM_RETURN;
SetEvent(hEventShutdn);
WaitForSingleObject(hThread,INFINITE);
UpdateWindowStatus();
break;
}
break;
}
return nOldState;
}
UINT WorkerThread(LPVOID pParam)
{
LARGE_INTEGER lDummyInt; // sample timer ticks
QueryPerformanceFrequency(&lDummyInt); // init timer ticks
lDummyInt.QuadPart /= SAMPLE; // calculate sample ticks
dwTickRef = lDummyInt.LowPart; // sample timer ticks
_ASSERT(dwTickRef); // tick resolution error
loop:
while (nNextState == SM_INVALID) // go into invalid state
{
OnToolMacroStop(); // close open keyboard macro handler
CommClose(); // close COM port
bCommInit = FALSE; // COM port not open
nState = SM_INVALID; // in invalid state
WaitForSingleObject(hEventShutdn,INFINITE);
if (nNextState == SM_RETURN) // go into return state
{
nState = SM_RETURN; // in return state
return 0; // kill thread
}
CheckSerial(); // test if UART on
}
while (nNextState == SM_RUN)
{
if (nState != SM_RUN)
{
nState = SM_RUN;
// clear port2 status bits
Chipset.cards_status &= ~(PORT2_PRESENT | PORT2_WRITE);
if (pbyPort2 || Chipset.Port2) // card plugged in port2
{
Chipset.cards_status |= PORT2_PRESENT;
if (bPort2Writeable) // is card writeable
Chipset.cards_status |= PORT2_WRITE;
}
// card detection off and timer running
if ((Chipset.IORam[CARDCTL] & ECDT) == 0 && (Chipset.IORam[TIMER2_CTRL] & RUN) != 0)
{
BOOL bNINT2 = Chipset.IORam[SRQ1] == 0 && (Chipset.IORam[SRQ2] & LSRQ) == 0;
BOOL bNINT = (Chipset.IORam[CARDCTL] & SMP) == 0;
// state of CDT2
bNINT2 = bNINT2 && (Chipset.cards_status & (P2W|P2C)) != P2C;
// state of CDT1
bNINT = bNINT && (Chipset.cards_status & (P1W|P1C)) != P1C;
IOBit(SRQ2,NINT2,bNINT2);
IOBit(SRQ2,NINT,bNINT);
}
RomSwitch(Chipset.Bank_FF); // select HP49G ROM bank and update memory mapping
UpdateContrast(Chipset.contrast);
UpdateDisplayPointers();
UpdateMainDisplay();
UpdateMenuDisplay();
UpdateAnnunciators();
// init speed reference
dwOldCyc = (DWORD) (Chipset.cycles & 0xFFFFFFFF);
QueryPerformanceCounter(&lDummyInt);
dwSpeedRef = lDummyInt.LowPart;
SetHP48Time(); // update HP48 time & date
StartTimers();
// start display counter/update engine
StartDisplay((BYTE)(((Chipset.IORam[LINECOUNT+1]<<4)|Chipset.IORam[LINECOUNT])&0x3F));
}
PCHANGED;
while (!bInterrupt)
{
if (nDbgState > DBG_OFF) // debugger active
{
Debugger();
// if suspended skip next opcode execution
if (nDbgState == DBG_SUSPEND)
{
if (Chipset.Shutdn) break;
continue;
}
}
EvalOpcode(FASTPTR(Chipset.pc)); // execute opcode
// check for display update in BW mode
if (!bGrayscale) CheckDisp(!Chipset.Shutdn);
AdjustSpeed(); // adjust emulation speed
}
bInterrupt = FALSE; // be sure to reenter opcode loop
// enter SHUTDN handler only in RUN mode
if (Chipset.Shutdn && !(nDbgState == DBG_STEPINTO || nDbgState == DBG_STEPOVER))
{
if (!Chipset.SoftInt) // ignore SHUTDN on interrupt request
WaitForSingleObject(hEventShutdn,INFINITE);
else
Chipset.bShutdnWake = TRUE; // waked by interrupt
if (Chipset.bShutdnWake) // waked up by timer, keyboard or serial
{
Chipset.bShutdnWake = FALSE;
Chipset.Shutdn = FALSE;
// init speed reference
dwOldCyc = (DWORD) (Chipset.cycles & 0xFFFFFFFF);
QueryPerformanceCounter(&lDummyInt);
dwSpeedRef = lDummyInt.LowPart;
}
}
if (Chipset.SoftInt)
{
Chipset.SoftInt = FALSE;
if (Chipset.inte)
{
Chipset.inte = FALSE;
rstkpush(Chipset.pc);
Chipset.pc = 0xf;
}
}
}
_ASSERT(nNextState != SM_RUN);
StopDisplay(); // stop display counter/update
StopTimers();
while (nNextState == SM_SLEEP) // go into sleep state
{
nState = SM_SLEEP; // in sleep state
WaitForSingleObject(hEventShutdn,INFINITE);
}
goto loop;
UNREFERENCED_PARAMETER(pParam);
}