emu48-mirror/Sources/Emu48/I28F160.C
Gwenhael Le Moine 478b7f6efe
2006-11-24: Updated to version 1.42
Signed-off-by: Gwenhael Le Moine <gwenhael.le.moine@gmail.com>
2024-03-19 23:35:29 +01:00

716 lines
20 KiB
C

/*
* i28f160.c
*
* This file is part of Emu48
*
* Copyright (C) 2000 Christoph Gießelink
*
*/
#include "pch.h"
#include "Emu48.h"
#include "i28f160.h"
#define ARRAYSIZEOF(a) (sizeof(a) / sizeof(a[0]))
// Flash Command Set
#define READ_ARRAY 0xFF
#define READ_ID_CODES 0x90
#define READ_QUERY 0x98
#define READ_STATUS_REG 0x70
#define CLEAR_STATUS_REG 0x50
#define WRITE_BUFFER 0xE8
#define WORD_BYTE_PROG1 0x40
#define WORD_BYTE_PROG2 0x10
#define BLOCK_ERASE 0x20
#define BLOCK_ERASE_SUSPEND 0xB0
#define BLOCK_ERASE_RESUME 0xD0
#define STS_CONFIG 0xB8
#define SET_CLR_BLOCK_LOCK 0x60
#define FULL_CHIP_ERASE 0x30
#define CONFIRM 0xD0
// Status Register Definition
#define WSMS 0x80 // WRITE STATE MACHINE STATUS
#define ESS 0x40 // ERASE SUSPEND STATUS
#define ECLBS 0x20 // ERASE AND CLEAR LOCK-BIT STATUS
#define BWSLBS 0x10 // PROGRAM AND SET LOCK-BIT STATUS
#define VPPS 0x08 // Vpp STATUS
#define BWSS 0x04 // PROGRAM SUSPEND STATUS
#define DPS 0x02 // DEVICE PROTECT STATUS
// Extended Status Register Definition
#define WBS 0x80 // WRITE BUFFER STATUS
// write state defines
#define WRS_DATA 0 // idle state
#define WRS_WR_BUFFER_N 1 // write buffer no. of data
#define WRS_WR_BUFFER_D 2 // write buffer data
#define WRS_WR_BUFFER_C 3 // write buffer confirm
#define WRS_WR_BYTE 4 // write byte/word
#define WRS_BLOCK_ERASE 5 // block erase
#define WRS_CHIP_ERASE 6 // full chip erase
#define WRS_STS_PIN_CONFIG 7 // STS pin Configuration
#define WRS_LOCK_BITS 8 // Set/Clear Block Lock-Bits
// read state defines
#define RDS_DATA 0 // data read
#define RDS_ID 1 // read identifier codes
#define RDS_QUERY 2 // read query
#define RDS_SR 3 // read status register
#define RDS_XSR 4 // read extended status register
// global data
WSMSET WSMset;
BOOL bWP = FALSE; // WP# = low, locked blocks cannot be erased
// function prototypes
// write function WSM state
static VOID WrStateIdle(BYTE a, DWORD d);
static VOID WrStateE8(DWORD d);
static VOID WrStateE8N(BYTE a, DWORD d);
static VOID WrStateE8D(BYTE a, DWORD d);
static VOID WrStateE8C(BYTE a, DWORD d);
static VOID WrState40(DWORD d);
static VOID WrState40D(BYTE a, DWORD d);
static VOID WrState20(DWORD d);
static VOID WrState20C(BYTE a, DWORD d);
static VOID WrState30(DWORD d);
static VOID WrState30C(BYTE a, DWORD d);
static VOID WrStateB8(DWORD d);
static VOID WrStateB8D(BYTE a, DWORD d);
static VOID WrState60(DWORD d);
static VOID WrState60D(BYTE a, DWORD d);
static VOID (*CONST fnWrState[])(BYTE a, DWORD d) =
{
WrStateIdle,
WrStateE8N, WrStateE8D, WrStateE8C,
WrState40D,
WrState20C,
WrState30C,
WrStateB8D,
WrState60D
};
// read function WSM state
static BYTE RdStateData(DWORD d);
static BYTE RdStateId(DWORD d);
static BYTE RdStateQuery(DWORD d);
static BYTE RdStateSR(DWORD d);
static BYTE RdStateXSR(DWORD d);
static BYTE (*CONST fnRdState[])(DWORD d) =
{
RdStateData, RdStateId, RdStateQuery, RdStateSR, RdStateXSR
};
// read query table
// device address A16-A1, A0 unused
static CONST BYTE byQueryTab[] =
{
// access with "Read Identifier Codes" command
// Identifier codes
0xB0, // 00, Manufacturer Code
0xD0, // 01, Device Code (16 Mbit)
0x00, // 02, Block Lock Configuration
0x02, // 03, ??
0x00, // 04, Reserved for vendor-specific information
0x00, // 05, "
0x00, // 06, "
0x00, // 07, "
0x00, // 08, "
0x00, // 09, "
0x00, // 0A, "
0x00, // 0B, "
0x00, // 0C, "
0x00, // 0D, "
0x00, // 0E, "
0x00, // 0F, "
// access with "Read Query" command
// CFI query identification string
0x51, // 10, Query-Unique ASCII string "Q"
0x52, // 11, Query-Unique ASCII string "R"
0x59, // 12, Query-Unique ASCII string "Y"
0x01, // 13, Primary Vendor Command Set and Control Interface ID CODE
0x00, // 14, "
0x31, // 15, Address for Primary Algorithm Extended Query Table
0x00, // 16, "
0x00, // 17, Alternate Vendor Command Set and Control Interface ID Code
0x00, // 18, "
0x00, // 19, Address for Secondary Algorithm Extended Query Table
0x00, // 1A, "
// System interface information
0x30, // 1B, Vcc Logic Supply Minimum Program/Erase Voltage (0x27 intel doc, 0x30 real chip)
0x55, // 1C, Vcc Logic Supply Maximum Program/Erase Voltage
0x30, // 1D, Vpp [Programming] Supply Minimum Program/Erase Voltage (0x27 intel doc, 0x30 real chip)
0x55, // 1E, Vpp [Programming] Supply Maximum Program/Erase Voltage
0x03, // 1F, Typical Time-Out per Single Byte/Word Program
0x06, // 20, Typical Time-Out for Max. Buffer Write
0x0A, // 21, Typical Time-Out per Individual Block Erase
0x0F, // 22, Typical Time-Out for Full Chip Erase
0x04, // 23, Maximum Time-Out for Byte/Word Program
0x04, // 24, Maximum Time-Out for Buffer Write
0x04, // 25, Maximum Time-Out per Individual Block Erase
0x04, // 26, Maximum Time-Out for Full Chip Erase
0x15, // 27, Device Size
0x02, // 28, Flash Device Interface Description
0x00, // 29, "
0x05, // 2A, Maximum Number of Bytes in Write Buffer
0x00, // 2B, "
0x01, // 2C, Number of Erase Block Regions within Device
0x1F, // 2D, Erase Block Region Information
0x00, // 2E, "
0x00, // 2F, "
0x01, // 30, "
// Intel-specific extended query table
0x50, // 31, Primary Extended Query Table, Unique ASCII string "P"
0x52, // 32, Primary Extended Query Table, Unique ASCII string "R"
0x49, // 33, Primary Extended Query Table, Unique ASCII string "I"
0x31, // 34, Major Version Number, ASCII
0x30, // 35, Minor Version Number, ASCII
0x0F, // 36, Optional Feature & Command Support
0x00, // 37, "
0x00, // 38, "
0x00, // 39, "
0x01, // 3A, Supported Functions after Suspend
0x03, // 3B, Block Status Register Mask
0x00, // 3C, "
0x50, // 3D, Vcc Logic Supply Optimum Program/Erase voltage
0x50, // 3E, Vpp [Programming] Supply Optimum Program/Erase voltage
0x00 // 3F, ??
};
//
// write state functions
//
static VOID WrStateIdle(BYTE a, DWORD d)
{
WSMset.bRomArray = FALSE; // register access
switch(a)
{
case READ_ARRAY: // read array mode, normal operation
WSMset.bRomArray = TRUE; // data array access
WSMset.uWrState = WRS_DATA;
WSMset.uRdState = RDS_DATA;
break;
case READ_ID_CODES: // read identifier codes register
WSMset.uRdState = RDS_ID;
break;
case READ_QUERY: // read query register
WSMset.uRdState = RDS_QUERY;
break;
case READ_STATUS_REG: // read status register
WSMset.uRdState = RDS_SR;
break;
case CLEAR_STATUS_REG: // clear status register
WSMset.byStatusReg = 0;
break;
case WRITE_BUFFER: // write to buffer
WrStateE8(d);
break;
case WORD_BYTE_PROG1:
case WORD_BYTE_PROG2: // byte/word program
WrState40(d);
break;
case BLOCK_ERASE: // block erase
WrState20(d);
break;
case BLOCK_ERASE_SUSPEND: // block erase, word/byte program suspend
WSMset.byStatusReg |= WSMS; // operation suspended
WSMset.byStatusReg &= ~ESS; // block erase completed (because no timing emulation)
WSMset.byStatusReg &= ~BWSS; // program completed (because no timing emulation)
WSMset.uRdState = RDS_SR;
break;
case BLOCK_ERASE_RESUME: // block erase, word/byte program resume
WSMset.byStatusReg &= ~WSMS; // operation in progress
WSMset.byStatusReg &= ~ESS; // block erase in progress
WSMset.byStatusReg &= ~BWSS; // program in progress
WSMset.byStatusReg |= WSMS; // operation completed (because no timing emulation)
WSMset.uRdState = RDS_SR;
break;
case STS_CONFIG:
WSMset.bRomArray = bFlashRomArray; // old access mode
WrStateB8(d);
break;
case SET_CLR_BLOCK_LOCK: // set/clear block lock-bits
WrState60(d);
break;
case FULL_CHIP_ERASE: // full chip erase
WrState30(d);
break;
default: // wrong command
WSMset.bRomArray = bFlashRomArray; // old access mode
break;
}
if(bFlashRomArray != WSMset.bRomArray) // new access mode
{
bFlashRomArray = WSMset.bRomArray; // change register access
Map(0x00,0xFF); // update memory mapping
UpdatePatches(bFlashRomArray); // patch/unpatch ROM again
}
return;
}
// write to buffer initial command
static VOID WrStateE8(DWORD d)
{
// @todo add 2nd write buffer implementation
// @todo add program timing implementation
WSMset.byExStatusReg = 0; // no write buffer
if (WSMset.byWrite1No == 0) // buffer1 available
{
WSMset.byWrite1No = 1; // buffer1 in use
WSMset.dwWrite1Addr = d; // byte block address of buffer1
WSMset.byExStatusReg = WBS; // write buffer available
// fill write buffer
FillMemory(WSMset.pbyWrite1,ARRAYSIZEOF(WSMset.pbyWrite1),0xFF);
WSMset.uWrState = WRS_WR_BUFFER_N; // set state machine
WSMset.uRdState = RDS_XSR;
}
return;
}
// write to buffer number of byte
static VOID WrStateE8N(BYTE a, DWORD d)
{
if (a < (1 << byQueryTab[0x2A])) // byte is length information
{
WSMset.byWrite1No += a; // save no. of byte to program
WSMset.byWrite1Size = a; // save size to check write buffer boundaries
WSMset.dwWrite1Addr = d; // byte block address of buffer1
WSMset.byStatusReg &= ~WSMS; // state machine busy
WSMset.uWrState = WRS_WR_BUFFER_D;
}
else
{
WSMset.byWrite1No = 0; // free write buffer
// improper command sequence
WSMset.byStatusReg |= (ECLBS | BWSLBS);
WSMset.byStatusReg |= WSMS; // data written
WSMset.uWrState = WRS_DATA;
}
WSMset.uRdState = RDS_SR;
return;
}
// write to buffer data
static VOID WrStateE8D(BYTE a, DWORD d)
{
// first data byte
if (WSMset.byWrite1No == WSMset.byWrite1Size + 1)
{
DWORD dwBlockMask = ~(((byQueryTab[0x30] << 8) | byQueryTab[0x2F]) * 256 - 1);
// same block
if ((WSMset.dwWrite1Addr & dwBlockMask) == (d & dwBlockMask))
{
WSMset.dwWrite1Addr = d; // byte block address of buffer1
WSMset.pbyWrite1[0] = a; // save byte
}
else
{
WSMset.byWrite1No = 0; // free write buffer
// improper command sequence
WSMset.byStatusReg |= (ECLBS | BWSLBS);
WSMset.byStatusReg |= WSMS; // data written
WSMset.uWrState = WRS_DATA;
return;
}
}
else
{
// write address within buffer
if (d >= WSMset.dwWrite1Addr && d <= WSMset.dwWrite1Addr + WSMset.byWrite1Size)
{
// save byte in buffer
WSMset.pbyWrite1[d-WSMset.dwWrite1Addr] = a;
}
else
{
WSMset.byWrite1No = 0; // free write buffer
// improper command sequence
WSMset.byStatusReg |= (ECLBS | BWSLBS);
WSMset.byStatusReg |= WSMS; // data written
WSMset.uWrState = WRS_DATA;
return;
}
}
if (--WSMset.byWrite1No == 0) // last byte written
WSMset.uWrState = WRS_WR_BUFFER_C; // goto confirm state
return;
}
// write to buffer confirm
static VOID WrStateE8C(BYTE a, DWORD d)
{
if (CONFIRM == a) // write buffer confirm?
{
BYTE byPos;
d = WSMset.dwWrite1Addr << 1; // nibble start address
for (byPos = 0; byPos <= WSMset.byWrite1Size; ++byPos)
{
a = WSMset.pbyWrite1[byPos]; // get char from buffer
_ASSERT(d+1 < dwRomSize); // address valid?
// no error set in BWSLBS, because I could alway program a "0"
*(pbyRom+d++) &= (a & 0x0F); // write LSB
*(pbyRom+d++) &= (a >> 4); // write MSB
}
}
else
{
WSMset.byWrite1No = 0; // free write buffer
// improper command sequence
WSMset.byStatusReg |= (ECLBS | BWSLBS);
}
WSMset.byStatusReg |= WSMS; // data written
WSMset.uWrState = WRS_DATA;
return;
}
// byte/word program initial command
static VOID WrState40(DWORD d)
{
WSMset.byStatusReg &= ~WSMS; // state machine busy
WSMset.uWrState = WRS_WR_BYTE;
WSMset.uRdState = RDS_SR;
return;
UNREFERENCED_PARAMETER(d);
}
// byte/word program data
static VOID WrState40D(BYTE a, DWORD d)
{
d <<= 1; // nibble start address
_ASSERT(d+1 < dwRomSize); // address valid?
// no error set in BWSLBS, because I could alway program a "0"
*(pbyRom+d++) &= (a & 0x0F); // write LSB
*(pbyRom+d) &= (a >> 4); // write MSB
WSMset.byStatusReg |= WSMS; // data written
WSMset.uWrState = WRS_DATA;
return;
}
// block erase initial command
static VOID WrState20(DWORD d)
{
WSMset.byStatusReg &= ~WSMS; // state machine busy
WSMset.uWrState = WRS_BLOCK_ERASE;
WSMset.uRdState = RDS_SR;
return;
UNREFERENCED_PARAMETER(d);
}
// block erase data & confirm
static VOID WrState20C(BYTE a, DWORD d)
{
if (CONFIRM == a) // block erase confirm?
{
_ASSERT((d>>16) < ARRAYSIZEOF(WSMset.byLockCnfg));
if (WSMset.byLockCnfg[d>>16] & 1) // lock bit of block is set
{
WSMset.byStatusReg |= ECLBS; // error in block erasure
WSMset.byStatusReg |= DPS; // lock bit detected
}
else
{
DWORD dwBlockSize = ((byQueryTab[0x30] << 8) | byQueryTab[0x2F]) * 256;
d &= ~(dwBlockSize-1); // start of block
dwBlockSize *= 2; // block size in nibbles
_ASSERT(d+dwBlockSize <= dwRomSize); // address valid?
// write 128K nibble
FillMemory(pbyRom + (d << 1),dwBlockSize,0x0F);
}
}
else
{
// improper command sequence
WSMset.byStatusReg |= (ECLBS | BWSLBS);
}
WSMset.byStatusReg |= WSMS; // block erased
WSMset.uWrState = WRS_DATA;
return;
}
// full chip erase initial command
static VOID WrState30(DWORD d)
{
WSMset.byStatusReg &= ~WSMS; // state machine busy
WSMset.uWrState = WRS_CHIP_ERASE;
WSMset.uRdState = RDS_SR;
return;
UNREFERENCED_PARAMETER(d);
}
// full chip erase confirm
static VOID WrState30C(BYTE a, DWORD d)
{
if (CONFIRM == a) // chip erase confirm?
{
UINT i;
WORD wNoOfBlocks = (byQueryTab[0x2E] << 8) | byQueryTab[0x2D];
DWORD dwBlockSize = ((byQueryTab[0x30] << 8) | byQueryTab[0x2F]) * 256;
LPBYTE pbyBlock = pbyRom;
dwBlockSize *= 2; // block size in nibbles
for (i = 0; i <= wNoOfBlocks; ++i) // check all blocks
{
_ASSERT((i+1)*dwBlockSize <= dwRomSize);
_ASSERT(i < ARRAYSIZEOF(WSMset.byLockCnfg));
// lock bit of block is set & WP# = low, locked blocks cannot be erased
if ((WSMset.byLockCnfg[i] & 1) == 0 || bWP != FALSE)
{
WSMset.byLockCnfg[i] = 0; // clear block lock bit
// write 128K nibble
FillMemory(pbyBlock,dwBlockSize,0x0F);
}
pbyBlock += dwBlockSize; // next block
}
}
else
{
// improper command sequence
WSMset.byStatusReg |= (ECLBS | BWSLBS);
}
WSMset.byStatusReg |= WSMS; // chip erased
WSMset.uWrState = WRS_DATA;
return;
UNREFERENCED_PARAMETER(d);
}
// STS pin Configuration initial command
static VOID WrStateB8(DWORD d)
{
WSMset.uWrState = WRS_STS_PIN_CONFIG;
return;
UNREFERENCED_PARAMETER(d);
}
// STS pin Configuration data
static VOID WrStateB8D(BYTE a, DWORD d)
{
// no emulation of STS pin Configuration
WSMset.uWrState = WRS_DATA;
return;
UNREFERENCED_PARAMETER(a);
UNREFERENCED_PARAMETER(d);
}
// Set/Clear block Lock-Bits initial command
static VOID WrState60(DWORD d)
{
WSMset.byStatusReg &= ~WSMS; // state machine busy
WSMset.uWrState = WRS_LOCK_BITS;
WSMset.uRdState = RDS_SR;
return;
UNREFERENCED_PARAMETER(d);
}
// Set/Clear block Lock-Bits confirm
static VOID WrState60D(BYTE a, DWORD d)
{
UINT i;
switch(a)
{
case 0x01: // set block lock bit
_ASSERT((d>>16) < ARRAYSIZEOF(WSMset.byLockCnfg));
if (bWP) // WP# = high, can change block lock status
WSMset.byLockCnfg[d>>16] = 1; // set block lock bit
else
WSMset.byStatusReg |= (BWSLBS | DPS); // device protect detect, WP# = low
break;
case CONFIRM: // clear block lock bits
if (bWP) // WP# = high, can change block lock status
{
WORD wNoOfBlocks = (byQueryTab[0x2E] << 8) | byQueryTab[0x2D];
for (i = 0; i <= wNoOfBlocks; ++i) // clear all lock bits
{
_ASSERT(i < ARRAYSIZEOF(WSMset.byLockCnfg));
WSMset.byLockCnfg[i] = 0; // clear block lock bit
}
}
else
{
WSMset.byStatusReg |= (ECLBS | DPS); // device protect detect, WP# = low
}
break;
default: // improper command sequence
WSMset.byStatusReg |= (ECLBS | BWSLBS);
}
WSMset.byStatusReg |= WSMS; // block lock-bit changed
WSMset.uWrState = WRS_DATA;
return;
}
//
// read state functions
//
// read array
static BYTE RdStateData(DWORD d)
{
d <<= 1; // nibble address
_ASSERT(d+1 < dwRomSize); // address valid?
return *(pbyRom+d)|(*(pbyRom+d+1)<<4); // get byte
}
// read identifier codes
static BYTE RdStateId(DWORD d)
{
BYTE byData;
d >>= 1; // A0 is not connected, ignore it
if ((d & 0x03) != 0x02) // id code request
{
d &= 0x03; // data repetition
byData = byQueryTab[d]; // get data from first 4 bytes id/query table
}
else // block lock table
{
UINT uIndex = d >> 15; // index into lock table
_ASSERT(uIndex < ARRAYSIZEOF(WSMset.byLockCnfg));
byData = WSMset.byLockCnfg[uIndex]; // get data from block lock table
d &= 0x1F; // data repetition
if (d >= 4) byData |= 0x02; // set bit 1 on wrong ID adresses
}
return byData;
}
// read query
static BYTE RdStateQuery(DWORD d)
{
BYTE byData;
d >>= 1; // A0 is not connected, ignore it
if ((d & 0x7F) != 0x02) // query request
{
d &= 0x7F; // data repetition
// get data from id/query table
byData = (d >= 0x40 && d < 0x50) ? 0 : byQueryTab[d&0x3F];
}
else // block lock table
{
UINT uIndex = d >> 15; // index into lock table
_ASSERT(uIndex < ARRAYSIZEOF(WSMset.byLockCnfg));
byData = WSMset.byLockCnfg[uIndex]; // get data from block lock table
}
return byData;
}
// read status register
static BYTE RdStateSR(DWORD d)
{
return WSMset.byStatusReg;
UNREFERENCED_PARAMETER(d);
}
// read extended status register
static BYTE RdStateXSR(DWORD d)
{
return WSMset.byExStatusReg;
UNREFERENCED_PARAMETER(d);
}
//
// public functions
//
VOID FlashInit(VOID)
{
ZeroMemory(&WSMset,sizeof(WSMset));
strcpy(WSMset.byType,"WSM"); // Write State Machine header
WSMset.uSize = sizeof(WSMset); // size of this structure
WSMset.byVersion = WSMVER; // version of flash implementation structure
// factory setting of locking bits
WSMset.byLockCnfg[0] = 0x01; // first 64KB block is locked
WSMset.uWrState = WRS_DATA;
WSMset.uRdState = RDS_DATA;
// data mode of ROM
WSMset.bRomArray = bFlashRomArray = TRUE;
return;
}
VOID FlashRead(BYTE *a, DWORD d, UINT s)
{
BYTE v;
while (s) // each nibble
{
// output muliplexer
_ASSERT(WSMset.uRdState < ARRAYSIZEOF(fnRdState));
v = fnRdState[WSMset.uRdState](d>>1);
if ((d & 1) == 0) // even address
{
*a++ = v & 0xf; ++d; --s;
}
if (s && (d & 1)) // odd address
{
*a++ = v >> 4; ++d; --s;
}
}
return;
}
VOID FlashWrite(BYTE *a, DWORD d, UINT s)
{
BYTE v;
DWORD p;
while (s) // each nibble
{
p = d >> 1; // byte address
if (s > 1 && (d & 1) == 0) // more than one byte on even address
{
v = *a++; // LSB
v |= *a++ << 4; // MSB
d += 2; s -= 2;
}
else
{
// get byte from output muliplexer
_ASSERT(WSMset.uRdState < ARRAYSIZEOF(fnRdState));
v = fnRdState[WSMset.uRdState](p);
if (d & 1) // odd address
v = (v & 0x0F) | (*a << 4); // replace MSB
else // even address
v = (v & 0xF0) | *a; // replace LSB
++a; ++d; --s;
}
_ASSERT(WSMset.uWrState < ARRAYSIZEOF(fnWrState));
fnWrState[WSMset.uWrState](v,p); // WSM
}
return;
}