2024-09-25: Updated to version 1.67

Signed-off-by: Gwenhael Le Moine <gwenhael.le.moine@gmail.com>
This commit is contained in:
Gwenhael Le Moine 2024-10-25 09:22:54 +02:00
parent 22744c9772
commit 0a4432a193
No known key found for this signature in database
GPG key ID: FDFE3669426707A7
67 changed files with 32277 additions and 31986 deletions

View file

@ -342,11 +342,13 @@ NCE3 | nc. | RAM 128KB | nc. | Slt2 32KB-4MB | RAM 128KB
- Load Memory Data... - Load Memory Data...
The "Load Memory Data" dialog box allows loading memory dump files to the specified address inside the Saturn address area. The specified address must point to RAM, writing into ROM areas isn't possible. The memory dump file must be in packed data format, meaning each byte in file contain two Saturn data nibbles with the low nibble containing the even and the high nibble the following odd address. The disadvantage of packed files is that you cannot load memory files with an odd number of data nibbles, but the advantage is that you can directly load an assembler output to memory. The "Load Memory Data" dialog box allows loading memory dump files to the specified address inside the Saturn address area. The specified address must point to RAM, writing into ROM areas isn't possible. The memory dump file maybe in packed data format (8-bit), meaning each byte in file contain two Saturn data nibbles with the low nibble containing the even and the high nibble the following odd address or in unpacked data format (4-bit) with 4-bit in each byte.
The Auto mode tries to detect the packed or unpacked data format automatically. This may fail, when the memory dump only contain 00-Bytes, then all upper 4 bit are always zero which is an indicator for an unpacked data format. If you're not sure if the Auto detection will work, use the manual data format selection please.
- Save Memory Data... - Save Memory Data...
The "Save Memory Data" dialog box allows saving the data of the specified Saturn address area into a memory dump file. The memory dump file contain the data in packed data format, meaning each byte in file contain two Saturn data nibbles with the low nibble containing the even and the high nibble the following odd address. The "Save Memory Data" dialog box allows saving the data of the specified Saturn address area into a memory dump file. The memory dump file may contain the data in packed data format (8-bit), meaning each byte in file contain two Saturn data nibbles with the low nibble containing the even and the high nibble the following odd address or in unpacked data format (4-bit) with 4-bit in each byte.
- RPL Object Viewer... - RPL Object Viewer...
@ -393,4 +395,4 @@ The Miscellaneous window show you the internal state of the interrupt flag, the
You can change the values by pressing the left mouse button over the old content. You can change the values by pressing the left mouse button over the old content.
08/12/19 (c) by Christoph Gießelink 04/19/24 (c) by Christoph Gießelink

BIN
Emu48.exe

Binary file not shown.

View file

@ -526,10 +526,10 @@ h3 { color:red; font-size:1.1em; }
&quot;String&quot; object in stack level 1 to the clipboard. On all &quot;String&quot; object in stack level 1 to the clipboard. On all
other objects, the command will be ignored. This prevents sending other objects, the command will be ignored. This prevents sending
binary objects to the clipboard.</p> binary objects to the clipboard.</p>
<p>The decimal point (radix mark) of &quot;Real Numbers&quot; in the <p>The decimal point of &quot;Real Numbers&quot; in the clipboard is
clipboard is equal to the calculator setting. This is important when equal to the calculator setting. This is important when you try to
you try to paste the numbers into a program using the locale settings paste the numbers into a program using the locale settings of the host
of the host operating system.</p> operating system.</p>
<h2><a name=ss9.5>9.5 Paste Stack</a></h2> <h2><a name=ss9.5>9.5 Paste Stack</a></h2>
<p>This menu item is enabled for the HP48SX, HP48GX and the HP49G <p>This menu item is enabled for the HP48SX, HP48GX and the HP49G
emulation.</p> emulation.</p>
@ -539,14 +539,18 @@ h3 { color:red; font-size:1.1em; }
object. Is the content a complex number object, the number will be object. Is the content a complex number object, the number will be
saved as &quot;Complex Number&quot; object, otherwise cases as saved as &quot;Complex Number&quot; object, otherwise cases as
&quot;String&quot; object.</p> &quot;String&quot; object.</p>
<p>To import &quot;Real or Complex Numbers&quot; from the clipboard, the <p>To import &quot;Real Numbers&quot; from the clipboard, the decimal
decimal point (radix mark) of the clipboard and calculator <u>must</u> point character of the clipboard and calculator <u>must not match</u> any
match. A real or complex number is only detected in the case of valid more. There's an auto detection for decoding the thousands separator and
real number characters in the clipboard. Especially heading and tailing decimal point character. The thousands separator is removed at decoding.
white spaces aren't valid number characters also.</p> A real number is detected in the case of valid real number characters in
<p>Complex numbers must be in the form <i>(a,b)</i> when using the point the clipboard.</p>
radix mark or in the form <i>(a;b)</i> when using the comma radix mark. <p>&quot;Complex Numbers&quot; must be in the form <i>(a,b)</i> when
The Cartesian or algebraic form <i>a+bi</i> is not supported.</p> using the decimal point or in the form <i>(a;b)</i> when using the decimal
comma. Using a thousands separator is not allowed in complex number
strings because in decimal point mode, the comma is used as separator
between real and imaginary part of the number. The Cartesian or algebraic
form <i>a+bi</i> is not supported.</p>
<h2><a name=ss9.6>9.6 Reset Calculator</a></h2> <h2><a name=ss9.6>9.6 Reset Calculator</a></h2>
<p>This emulates the Reset pin of the internal CPU.</p> <p>This emulates the Reset pin of the internal CPU.</p>
<h2><a name=ss9.7>9.7 Backup</a></h2> <h2><a name=ss9.7>9.7 Backup</a></h2>
@ -636,7 +640,7 @@ h3 { color:red; font-size:1.1em; }
</table> </table>
<h1><a name=s14>14. License</a></h1> <h1><a name=s14>14. License</a></h1>
<p>Emu48 - A HP38G/39G/40G/48SX/48GX/49G Emulator<br> <p>Emu48 - A HP38G/39G/40G/48SX/48GX/49G Emulator<br>
Copyright (C) 2022 Christoph Gie&szlig;elink</p> Copyright (C) 2024 Christoph Gie&szlig;elink</p>
<p>This program is free software; you can redistribute it and/or modify it <p>This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your option) Software Foundation; either version 2 of the License, or (at your option)

View file

@ -1,4 +1,4 @@
Known bugs and restrictions of Emu48 V1.66 Known bugs and restrictions of Emu48 V1.67
------------------------------------------ ------------------------------------------
- the following I/O bits aren't emulated (incomplete) - the following I/O bits aren't emulated (incomplete)
@ -47,4 +47,4 @@ Known bugs and restrictions of Emu48 V1.66
- quitting the emulator while programming the flash isn't allowed, - quitting the emulator while programming the flash isn't allowed,
because the content of flash state machine isn't saved so far because the content of flash state machine isn't saved so far
06/20/23 (c) by Christoph Gießelink, c dot giesselink at gmx dot de 09/23/24 (c) by Christoph Gießelink, c dot giesselink at gmx dot de

View file

@ -1,191 +1,191 @@
/* /*
* cardcopy, (c) 2000 Christoph Giesselink (cgiess@swol.de) * cardcopy, (c) 2000 Christoph Giesselink (cgiess@swol.de)
* *
* This program is free software; you can redistribute it and/or modify * This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by * it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or * the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version. * (at your option) any later version.
* *
* This program is distributed in the hope that it will be useful, * This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of * but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details. * GNU General Public License for more details.
* *
* You should have received a copy of the GNU General Public License * You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software * along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, * Foundation, Inc., 59 Temple Place - Suite 330, Boston,
* MA 02111-1307, USA. * MA 02111-1307, USA.
*/ */
#define WIN32_LEAN_AND_MEAN #define WIN32_LEAN_AND_MEAN
#define WIN32_EXTRA_LEAN #define WIN32_EXTRA_LEAN
#include <windows.h> #include <windows.h>
#include <stdio.h> #include <stdio.h>
#include <assert.h> #include <assert.h>
#include "types.h" #include "types.h"
#define VERSION "2.1" #define VERSION "2.1"
#define FT_ERR 0 // illegal format #define FT_ERR 0 // illegal format
#define FT_NEW 1 // empty file #define FT_NEW 1 // empty file
#define FT_SXGX 2 // Emu48 HP48SX/GX state file #define FT_SXGX 2 // Emu48 HP48SX/GX state file
#define _KB(n) ((n)*1024*2) // KB in state file #define _KB(n) ((n)*1024*2) // KB in state file
#define HP48SIG "Emu48 Document\xFE" // HP48 state file signature #define HP48SIG "Emu48 Document\xFE" // HP48 state file signature
UINT CheckType(char *lpszFileName) UINT CheckType(char *lpszFileName)
{ {
BYTE pbyFileSignature[16]; BYTE pbyFileSignature[16];
HANDLE hFile; HANDLE hFile;
DWORD FileSizeHigh,FileSizeLow; DWORD FileSizeHigh,FileSizeLow;
UINT nType = FT_ERR; UINT nType = FT_ERR;
hFile = CreateFile(lpszFileName,GENERIC_READ,0,NULL,OPEN_EXISTING,0,NULL); hFile = CreateFile(lpszFileName,GENERIC_READ,0,NULL,OPEN_EXISTING,0,NULL);
if (hFile == INVALID_HANDLE_VALUE) if (hFile == INVALID_HANDLE_VALUE)
return FT_NEW; return FT_NEW;
// check filesize // check filesize
FileSizeLow = GetFileSize(hFile,&FileSizeHigh); FileSizeLow = GetFileSize(hFile,&FileSizeHigh);
if (FileSizeHigh == 0 && (FileSizeLow == _KB(32) || FileSizeLow == _KB(128))) if (FileSizeHigh == 0 && (FileSizeLow == _KB(32) || FileSizeLow == _KB(128)))
nType = FileSizeLow; // return card size nType = FileSizeLow; // return card size
// Read and Compare signature // Read and Compare signature
ReadFile(hFile,pbyFileSignature,sizeof(pbyFileSignature),&FileSizeLow,NULL); ReadFile(hFile,pbyFileSignature,sizeof(pbyFileSignature),&FileSizeLow,NULL);
if (FileSizeLow == sizeof(pbyFileSignature) && strcmp(pbyFileSignature,HP48SIG) == 0) if (FileSizeLow == sizeof(pbyFileSignature) && strcmp(pbyFileSignature,HP48SIG) == 0)
nType = FT_SXGX; nType = FT_SXGX;
CloseHandle(hFile); CloseHandle(hFile);
return nType; return nType;
} }
BOOL SeekData(HANDLE hFile,UINT *nPortSize) BOOL SeekData(HANDLE hFile,UINT *nPortSize)
{ {
BYTE byBuffer[16]; BYTE byBuffer[16];
CHIPSET *pChipset; CHIPSET *pChipset;
UINT i; UINT i;
DWORD lBytes; DWORD lBytes;
SetFilePointer(hFile,0,NULL,FILE_BEGIN); SetFilePointer(hFile,0,NULL,FILE_BEGIN);
// read and check signature // read and check signature
ReadFile(hFile,byBuffer,sizeof(byBuffer),&lBytes,NULL); ReadFile(hFile,byBuffer,sizeof(byBuffer),&lBytes,NULL);
if (lBytes != sizeof(HP48SIG) || strcmp(byBuffer,HP48SIG) != 0) return TRUE; if (lBytes != sizeof(HP48SIG) || strcmp(byBuffer,HP48SIG) != 0) return TRUE;
// read KML file length // read KML file length
ReadFile(hFile,&i,sizeof(i),&lBytes,NULL); ReadFile(hFile,&i,sizeof(i),&lBytes,NULL);
if (lBytes != sizeof(i)) return TRUE; if (lBytes != sizeof(i)) return TRUE;
// skip KML file name // skip KML file name
SetFilePointer(hFile,i,NULL,FILE_CURRENT); SetFilePointer(hFile,i,NULL,FILE_CURRENT);
// read CHIPSET structure length // read CHIPSET structure length
ReadFile(hFile,&i,sizeof(i),&lBytes,NULL); ReadFile(hFile,&i,sizeof(i),&lBytes,NULL);
if (lBytes != sizeof(i)) return TRUE; if (lBytes != sizeof(i)) return TRUE;
// read CHIPSET structure // read CHIPSET structure
if ((pChipset = LocalAlloc(LMEM_FIXED,i)) == NULL) if ((pChipset = LocalAlloc(LMEM_FIXED,i)) == NULL)
return TRUE; return TRUE;
ReadFile(hFile,pChipset,i,&lBytes,NULL); ReadFile(hFile,pChipset,i,&lBytes,NULL);
if (lBytes != i) { LocalFree(pChipset); return TRUE; } if (lBytes != i) { LocalFree(pChipset); return TRUE; }
// skip port0 // skip port0
SetFilePointer(hFile,_KB(pChipset->Port0Size),NULL,FILE_CURRENT); SetFilePointer(hFile,_KB(pChipset->Port0Size),NULL,FILE_CURRENT);
*nPortSize = _KB(pChipset->Port1Size); // expected filesize *nPortSize = _KB(pChipset->Port1Size); // expected filesize
LocalFree(pChipset); LocalFree(pChipset);
return FALSE; return FALSE;
} }
BOOL CopyData(HANDLE hFileSource,HANDLE hFileDest,UINT nSize) BOOL CopyData(HANDLE hFileSource,HANDLE hFileDest,UINT nSize)
{ {
BYTE byBuffer[16]; BYTE byBuffer[16];
INT i; INT i;
DWORD lBytes; DWORD lBytes;
assert(nSize % sizeof(byBuffer) == 0); assert(nSize % sizeof(byBuffer) == 0);
for (i = nSize / sizeof(byBuffer); i > 0; --i) for (i = nSize / sizeof(byBuffer); i > 0; --i)
{ {
ReadFile(hFileSource,byBuffer,sizeof(byBuffer),&lBytes,NULL); ReadFile(hFileSource,byBuffer,sizeof(byBuffer),&lBytes,NULL);
if (lBytes != sizeof(byBuffer)) return TRUE; if (lBytes != sizeof(byBuffer)) return TRUE;
WriteFile(hFileDest,byBuffer,sizeof(byBuffer),&lBytes,NULL); WriteFile(hFileDest,byBuffer,sizeof(byBuffer),&lBytes,NULL);
if (lBytes != sizeof(byBuffer)) return TRUE; if (lBytes != sizeof(byBuffer)) return TRUE;
} }
return FALSE; return FALSE;
} }
UINT main(int argc, char *argv[]) UINT main(int argc, char *argv[])
{ {
HANDLE hFileSource,hFileDest; HANDLE hFileSource,hFileDest;
UINT nSourceType,nDestType; UINT nSourceType,nDestType;
UINT nError = 0; UINT nError = 0;
printf("HP48 Port1 Import/Export Tool for Emu48 V" VERSION "\n"); printf("HP48 Port1 Import/Export Tool for Emu48 V" VERSION "\n");
if (argc != 3) if (argc != 3)
{ {
printf("\nUsage:\n\t%s <SourceFile> <DestinationFile>\n\n", argv[0]); printf("\nUsage:\n\t%s <SourceFile> <DestinationFile>\n\n", argv[0]);
return 1; return 1;
} }
// check source file type // check source file type
nSourceType = CheckType(argv[1]); nSourceType = CheckType(argv[1]);
if (nSourceType == FT_ERR || nSourceType == FT_NEW) if (nSourceType == FT_ERR || nSourceType == FT_NEW)
{ {
printf("Error: Illegal source file type\n"); printf("Error: Illegal source file type\n");
return 2; return 2;
} }
// check destination file type // check destination file type
nDestType = CheckType(argv[2]); nDestType = CheckType(argv[2]);
if (nDestType == FT_ERR) if (nDestType == FT_ERR)
{ {
printf("Error: Illegal destination file type\n"); printf("Error: Illegal destination file type\n");
return 3; return 3;
} }
// open source file // open source file
hFileSource = CreateFile(argv[1],GENERIC_READ,0,NULL,OPEN_EXISTING,0,NULL); hFileSource = CreateFile(argv[1],GENERIC_READ,0,NULL,OPEN_EXISTING,0,NULL);
if (hFileSource != INVALID_HANDLE_VALUE) if (hFileSource != INVALID_HANDLE_VALUE)
{ {
hFileDest = CreateFile(argv[2],GENERIC_READ|GENERIC_WRITE,0,NULL,OPEN_ALWAYS,0,NULL); hFileDest = CreateFile(argv[2],GENERIC_READ|GENERIC_WRITE,0,NULL,OPEN_ALWAYS,0,NULL);
if (hFileDest != INVALID_HANDLE_VALUE) if (hFileDest != INVALID_HANDLE_VALUE)
{ {
BOOL bFormatErr = FALSE; BOOL bFormatErr = FALSE;
if (nSourceType == FT_SXGX) bFormatErr |= SeekData(hFileSource,&nSourceType); if (nSourceType == FT_SXGX) bFormatErr |= SeekData(hFileSource,&nSourceType);
if (nDestType == FT_SXGX) bFormatErr |= SeekData(hFileDest,&nDestType); if (nDestType == FT_SXGX) bFormatErr |= SeekData(hFileDest,&nDestType);
if (!bFormatErr && (nSourceType == nDestType || nDestType == FT_NEW)) if (!bFormatErr && (nSourceType == nDestType || nDestType == FT_NEW))
{ {
assert(nSourceType > FT_SXGX); assert(nSourceType > FT_SXGX);
CopyData(hFileSource,hFileDest,nSourceType); CopyData(hFileSource,hFileDest,nSourceType);
puts("Copy successful."); puts("Copy successful.");
} }
else else
{ {
printf("Error: Non matching file size or format\n"); printf("Error: Non matching file size or format\n");
nError = 4; nError = 4;
} }
CloseHandle(hFileDest); CloseHandle(hFileDest);
} }
else else
{ {
printf("Error: Can't open destination file %s\n",argv[2]); printf("Error: Can't open destination file %s\n",argv[2]);
nError = 5; nError = 5;
} }
CloseHandle(hFileSource); CloseHandle(hFileSource);
} }
else else
{ {
printf("Error: Can't open source file %s\n",argv[1]); printf("Error: Can't open source file %s\n",argv[1]);
nError = 6; nError = 6;
} }
return nError; return nError;
} }

View file

@ -1,103 +1,103 @@
/* /*
* types.h * types.h
* *
* This file is part of Emu48 * This file is part of Emu48
* *
* Copyright (C) 1995 Sebastien Carlier * Copyright (C) 1995 Sebastien Carlier
* *
*/ */
// HST bits // HST bits
#define XM 1 #define XM 1
#define SB 2 #define SB 2
#define SR 4 #define SR 4
#define MP 8 #define MP 8
#define SWORD SHORT // signed 16 Bit variable #define SWORD SHORT // signed 16 Bit variable
#define QWORD ULONGLONG // unsigned 64 Bit variable #define QWORD ULONGLONG // unsigned 64 Bit variable
#define CHIPSET Chipset_t #define CHIPSET Chipset_t
typedef struct typedef struct
{ {
SWORD nPosX; // position of window SWORD nPosX; // position of window
SWORD nPosY; SWORD nPosY;
BYTE type; // calculator type BYTE type; // calculator type
DWORD Port0Size; // real size of module in KB DWORD Port0Size; // real size of module in KB
DWORD Port1Size; // real size of module in KB DWORD Port1Size; // real size of module in KB
DWORD Port2Size; // real size of module in KB (HP49G only) DWORD Port2Size; // real size of module in KB (HP49G only)
LPBYTE Port0; LPBYTE Port0;
LPBYTE Port1; LPBYTE Port1;
LPBYTE Port2; LPBYTE Port2;
DWORD pc; DWORD pc;
DWORD d0; DWORD d0;
DWORD d1; DWORD d1;
DWORD rstkp; DWORD rstkp;
DWORD rstk[8]; DWORD rstk[8];
BYTE A[16]; BYTE A[16];
BYTE B[16]; BYTE B[16];
BYTE C[16]; BYTE C[16];
BYTE D[16]; BYTE D[16];
BYTE R0[16]; BYTE R0[16];
BYTE R1[16]; BYTE R1[16];
BYTE R2[16]; BYTE R2[16];
BYTE R3[16]; BYTE R3[16];
BYTE R4[16]; BYTE R4[16];
BYTE ST[4]; BYTE ST[4];
BYTE HST; BYTE HST;
BYTE P; BYTE P;
WORD out; WORD out;
WORD in; WORD in;
BOOL SoftInt; BOOL SoftInt;
BOOL Shutdn; BOOL Shutdn;
BOOL mode_dec; BOOL mode_dec;
BOOL inte; // interrupt status flag (FALSE = int in service) BOOL inte; // interrupt status flag (FALSE = int in service)
BOOL intk; // 1 ms keyboard scan flag (TRUE = enable) BOOL intk; // 1 ms keyboard scan flag (TRUE = enable)
BOOL intd; // keyboard interrupt pending (TRUE = int pending) BOOL intd; // keyboard interrupt pending (TRUE = int pending)
BOOL carry; BOOL carry;
WORD crc; WORD crc;
WORD wPort2Crc; // fingerprint of port2 WORD wPort2Crc; // fingerprint of port2
WORD wRomCrc; // fingerprint of ROM WORD wRomCrc; // fingerprint of ROM
#if defined _USRDLL // DLL version #if defined _USRDLL // DLL version
QWORD cycles; // oscillator cycles QWORD cycles; // oscillator cycles
#else // EXE version #else // EXE version
DWORD cycles; // oscillator cycles DWORD cycles; // oscillator cycles
DWORD cycles_reserved; // reserved for MSB of oscillator cycles DWORD cycles_reserved; // reserved for MSB of oscillator cycles
#endif #endif
DWORD dwKdnCycles; // cpu cycles at start of 1ms key handler DWORD dwKdnCycles; // cpu cycles at start of 1ms key handler
UINT Bank_FF; // save state of HP48GX port2 or state of HP49G ROM FF UINT Bank_FF; // save state of HP48GX port2 or state of HP49G ROM FF
UINT FlashRomState; // WSM state of flash memory (unused) UINT FlashRomState; // WSM state of flash memory (unused)
BYTE cards_status; BYTE cards_status;
BYTE IORam[64]; // I/O hardware register BYTE IORam[64]; // I/O hardware register
UINT IOBase; // address of I/O modules page UINT IOBase; // address of I/O modules page
BOOL IOCfig; // I/O module configuration flag BOOL IOCfig; // I/O module configuration flag
BYTE P0Base, BSBase, P1Base, P2Base; // address of modules first 2KB page BYTE P0Base, BSBase, P1Base, P2Base; // address of modules first 2KB page
BYTE P0Size, BSSize, P1Size, P2Size; // mapped size of module in 2KB BYTE P0Size, BSSize, P1Size, P2Size; // mapped size of module in 2KB
BYTE P0End, BSEnd, P1End, P2End; // address of modules last 2KB page BYTE P0End, BSEnd, P1End, P2End; // address of modules last 2KB page
BOOL P0Cfig, BSCfig, P1Cfig, P2Cfig; // module address configuration flag BOOL P0Cfig, BSCfig, P1Cfig, P2Cfig; // module address configuration flag
BOOL P0Cfg2, BSCfg2, P1Cfg2, P2Cfg2; // module size configuration flag BOOL P0Cfg2, BSCfg2, P1Cfg2, P2Cfg2; // module size configuration flag
BYTE t1; BYTE t1;
DWORD t2; DWORD t2;
BOOL bShutdnWake; // flag for wake up from SHUTDN mode BOOL bShutdnWake; // flag for wake up from SHUTDN mode
BYTE Keyboard_Row[9]; BYTE Keyboard_Row[9];
WORD IR15X; WORD IR15X;
UINT Keyboard_State; // not used UINT Keyboard_State; // not used
signed short loffset; signed short loffset;
signed int width; signed int width;
UINT boffset; UINT boffset;
UINT lcounter; UINT lcounter;
UINT sync; // not used UINT sync; // not used
BYTE contrast; BYTE contrast;
BOOL dispon; BOOL dispon;
DWORD start1; DWORD start1;
DWORD start12; DWORD start12;
DWORD end1; DWORD end1;
DWORD start2, end2; DWORD start2, end2;
} Chipset_t; } Chipset_t;

View file

@ -1,401 +1,401 @@
#define WIN32_LEAN_AND_MEAN #define WIN32_LEAN_AND_MEAN
#define WIN32_EXTRA_LEAN #define WIN32_EXTRA_LEAN
#include <windows.h> #include <windows.h>
#include <stdlib.h> #include <stdlib.h>
#include <stdio.h> #include <stdio.h>
#include <malloc.h> #include <malloc.h>
#include <assert.h> #include <assert.h>
#define HP38G 0 #define HP38G 0
#define HP48S 1 #define HP48S 1
#define HP48G 2 #define HP48G 2
LPBYTE pRom; LPBYTE pRom;
WORD wCRC; WORD wCRC;
WORD wType; WORD wType;
static WORD crc_table[16] = static WORD crc_table[16] =
{ {
0x0000, 0x1081, 0x2102, 0x3183, 0x4204, 0x5285, 0x6306, 0x7387, 0x0000, 0x1081, 0x2102, 0x3183, 0x4204, 0x5285, 0x6306, 0x7387,
0x8408, 0x9489, 0xA50A, 0xB58B, 0xC60C, 0xD68D, 0xE70E, 0xF78F 0x8408, 0x9489, 0xA50A, 0xB58B, 0xC60C, 0xD68D, 0xE70E, 0xF78F
}; };
static __inline VOID CRC(BYTE nib) static __inline VOID CRC(BYTE nib)
{ {
wCRC = (WORD)((wCRC>>4)^crc_table[(wCRC^nib)&0xf]); wCRC = (WORD)((wCRC>>4)^crc_table[(wCRC^nib)&0xf]);
} }
BOOL CheckCRC() BOOL CheckCRC()
{ {
DWORD dwD0, dwD1; DWORD dwD0, dwD1;
WORD wRomCRC; WORD wRomCRC;
UINT i; UINT i;
DWORD dwBase = 0x00000; DWORD dwBase = 0x00000;
UINT nPass = 0; UINT nPass = 0;
UINT nPasses = (wType != HP48S)?2:1; UINT nPasses = (wType != HP48S)?2:1;
again: again:
wRomCRC = pRom[dwBase+0x7FFFC] wRomCRC = pRom[dwBase+0x7FFFC]
|(pRom[dwBase+0x7FFFD]<<4) |(pRom[dwBase+0x7FFFD]<<4)
|(pRom[dwBase+0x7FFFE]<<8) |(pRom[dwBase+0x7FFFE]<<8)
|(pRom[dwBase+0x7FFFF]<<12); |(pRom[dwBase+0x7FFFF]<<12);
wCRC = 0x0000; wCRC = 0x0000;
dwD0 = dwBase + 0x00000; dwD0 = dwBase + 0x00000;
dwD1 = dwBase + 0x40000; dwD1 = dwBase + 0x40000;
do do
{ {
for (i=0; i<16; i++) CRC(pRom[dwD0+i]); for (i=0; i<16; i++) CRC(pRom[dwD0+i]);
for (i=0; i<16; i++) CRC(pRom[dwD1+i]); for (i=0; i<16; i++) CRC(pRom[dwD1+i]);
dwD0 += 16; dwD0 += 16;
dwD1 += 16; dwD1 += 16;
} while (dwD0&0x3FFFF); } while (dwD0&0x3FFFF);
if (wCRC==0xFFFF) if (wCRC==0xFFFF)
{ {
printf("CRC%i: %04X Ok\n", nPass, wRomCRC); printf("CRC%i: %04X Ok\n", nPass, wRomCRC);
} }
else else
{ {
printf("CRC%i: %04X Failed (%04X)\n", nPass, wRomCRC, wCRC); printf("CRC%i: %04X Failed (%04X)\n", nPass, wRomCRC, wCRC);
return FALSE; return FALSE;
} }
if (++nPass == nPasses) return TRUE; if (++nPass == nPasses) return TRUE;
dwBase += 0x80000; dwBase += 0x80000;
goto again; goto again;
} }
static BYTE Asc2Nib(char c) static BYTE Asc2Nib(char c)
{ {
if (c<'0') return 0; if (c<'0') return 0;
if (c<='9') return c-'0'; if (c<='9') return c-'0';
if (c<'A') return 0; if (c<'A') return 0;
if (c<='F') return c-'A'+10; if (c<='F') return c-'A'+10;
if (c<'a') return 0; if (c<'a') return 0;
if (c<='f') return c-'a'+10; if (c<='f') return c-'a'+10;
return 0; return 0;
} }
static DWORD Asc2Nib5(LPBYTE lpBuf) static DWORD Asc2Nib5(LPBYTE lpBuf)
{ {
return ( return (
((DWORD)Asc2Nib(lpBuf[0])<<16) ((DWORD)Asc2Nib(lpBuf[0])<<16)
|((DWORD)Asc2Nib(lpBuf[1])<<12) |((DWORD)Asc2Nib(lpBuf[1])<<12)
|((DWORD)Asc2Nib(lpBuf[2])<<8) |((DWORD)Asc2Nib(lpBuf[2])<<8)
|((DWORD)Asc2Nib(lpBuf[3])<<4) |((DWORD)Asc2Nib(lpBuf[3])<<4)
|((DWORD)Asc2Nib(lpBuf[4]))); |((DWORD)Asc2Nib(lpBuf[4])));
} }
static BOOL IsHP(DWORD dwAddress) static BOOL IsHP(DWORD dwAddress)
{ {
char cH = (pRom[dwAddress + 1] << 4) | pRom[dwAddress]; char cH = (pRom[dwAddress + 1] << 4) | pRom[dwAddress];
char cP = (pRom[dwAddress + 3] << 4) | pRom[dwAddress + 2]; char cP = (pRom[dwAddress + 3] << 4) | pRom[dwAddress + 2];
return cH == 'H' && cP == 'P'; return cH == 'H' && cP == 'P';
} }
UINT main(int argc, char *argv[]) UINT main(int argc, char *argv[])
{ {
HANDLE hFile; HANDLE hFile;
HANDLE hMap; HANDLE hMap;
HANDLE hOut; HANDLE hOut;
LPBYTE pIn; LPBYTE pIn;
DWORD dwSizeLo; DWORD dwSizeLo;
BYTE szVersion[16]; BYTE szVersion[16];
UINT i,uLen; UINT i,uLen;
DWORD dwAddress; DWORD dwAddress;
DWORD dwAddrOffset = 0x00000; DWORD dwAddrOffset = 0x00000;
BOOL bFormatDetected = FALSE; BOOL bFormatDetected = FALSE;
BOOL bUnpack = FALSE; BOOL bUnpack = FALSE;
BOOL bSwap = FALSE; BOOL bSwap = FALSE;
BOOL bText = FALSE; BOOL bText = FALSE;
BOOL bDA19 = FALSE; BOOL bDA19 = FALSE;
BOOL bPack = FALSE; BOOL bPack = FALSE;
int iArg = 1; // first argument int iArg = 1; // first argument
if (argc < 2 || argc > 4) if (argc < 2 || argc > 4)
{ {
printf("Usage:\n\t%s [-p] <old-rom-dump> [<new-rom-dump>]\n", argv[0]); printf("Usage:\n\t%s [-p] <old-rom-dump> [<new-rom-dump>]\n", argv[0]);
return 1; return 1;
} }
while (*argv[iArg] == '-') // an option while (*argv[iArg] == '-') // an option
{ {
if (strcmp(argv[iArg],"-p") == 0) // option "-p", pack result ROM image if (strcmp(argv[iArg],"-p") == 0) // option "-p", pack result ROM image
{ {
bPack = TRUE; // pack target ROM image bPack = TRUE; // pack target ROM image
--argc; // option is not an argument --argc; // option is not an argument
} }
++iArg; // first file argument ++iArg; // first file argument
} }
pRom = (LPBYTE) malloc(512*1024*2); pRom = (LPBYTE) malloc(512*1024*2);
if (pRom == NULL) if (pRom == NULL)
{ {
printf("Memory Allocation Failed !"); printf("Memory Allocation Failed !");
return 1; return 1;
} }
hFile = CreateFile(argv[iArg],GENERIC_READ,0,NULL,OPEN_EXISTING,FILE_ATTRIBUTE_NORMAL,NULL); hFile = CreateFile(argv[iArg],GENERIC_READ,0,NULL,OPEN_EXISTING,FILE_ATTRIBUTE_NORMAL,NULL);
if (hFile == INVALID_HANDLE_VALUE) if (hFile == INVALID_HANDLE_VALUE)
{ {
free(pRom); free(pRom);
printf("Cannot open file %s.\n", argv[iArg]); printf("Cannot open file %s.\n", argv[iArg]);
return 1; return 1;
} }
dwSizeLo = GetFileSize(hFile, NULL); dwSizeLo = GetFileSize(hFile, NULL);
hMap = CreateFileMapping(hFile, NULL, PAGE_READONLY, 0, 0, NULL); hMap = CreateFileMapping(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
if (hMap == NULL) if (hMap == NULL)
{ {
free(pRom); free(pRom);
CloseHandle(hFile); CloseHandle(hFile);
puts("CreateFileMapping failed."); puts("CreateFileMapping failed.");
return 1; return 1;
} }
pIn = (LPBYTE) MapViewOfFile(hMap, FILE_MAP_READ, 0, 0, 0); pIn = (LPBYTE) MapViewOfFile(hMap, FILE_MAP_READ, 0, 0, 0);
if (pIn == NULL) if (pIn == NULL)
{ {
free(pRom); free(pRom);
CloseHandle(hMap); CloseHandle(hMap);
CloseHandle(hFile); CloseHandle(hFile);
puts("MapViewOfFile failed.\n"); puts("MapViewOfFile failed.\n");
return 1; return 1;
} }
for (i = 0; i < 2 && !bFormatDetected; ++i) for (i = 0; i < 2 && !bFormatDetected; ++i)
{ {
switch (pIn[0+dwAddrOffset]) switch (pIn[0+dwAddrOffset])
{ {
case '0': case '0':
if (pIn[1+dwAddrOffset]!='0') break; if (pIn[1+dwAddrOffset]!='0') break;
if (pIn[2+dwAddrOffset]!='0') break; if (pIn[2+dwAddrOffset]!='0') break;
if (pIn[3+dwAddrOffset]!='0') break; if (pIn[3+dwAddrOffset]!='0') break;
if (pIn[4+dwAddrOffset]!='0') break; if (pIn[4+dwAddrOffset]!='0') break;
if (pIn[5+dwAddrOffset]!=':') break; if (pIn[5+dwAddrOffset]!=':') break;
bText = TRUE; bText = TRUE;
bFormatDetected = TRUE; bFormatDetected = TRUE;
break; break;
case 0x23: case 0x23:
bUnpack = TRUE; bUnpack = TRUE;
bSwap = TRUE; bSwap = TRUE;
bFormatDetected = TRUE; bFormatDetected = TRUE;
break; break;
case 0x32: case 0x32:
bUnpack = TRUE; bUnpack = TRUE;
bFormatDetected = TRUE; bFormatDetected = TRUE;
break; break;
case 0x03: case 0x03:
bSwap = TRUE; bSwap = TRUE;
case 0x02: case 0x02:
if (pIn[1+dwAddrOffset] == (bSwap ? 0x02 : 0x03)) if (pIn[1+dwAddrOffset] == (bSwap ? 0x02 : 0x03))
{ {
bFormatDetected = TRUE; bFormatDetected = TRUE;
break; break;
} }
bSwap = FALSE; bSwap = FALSE;
default: default:
dwAddrOffset = dwSizeLo / 2; dwAddrOffset = dwSizeLo / 2;
bDA19 = TRUE; bDA19 = TRUE;
break; break;
} }
} }
if (!bFormatDetected) if (!bFormatDetected)
{ {
free(pRom); free(pRom);
UnmapViewOfFile(pIn); UnmapViewOfFile(pIn);
CloseHandle(hMap); CloseHandle(hMap);
CloseHandle(hFile); CloseHandle(hFile);
printf("Stopped, unknown format.\n"); printf("Stopped, unknown format.\n");
return 1; return 1;
} }
if (bUnpack) printf("Unpacking nibbles.\n"); if (bUnpack) printf("Unpacking nibbles.\n");
if (bSwap) printf("Swapping nibbles.\n"); if (bSwap) printf("Swapping nibbles.\n");
if (bText) printf("Reading text file.\n"); if (bText) printf("Reading text file.\n");
if (bDA19) printf("Swapping banks.\n"); if (bDA19) printf("Swapping banks.\n");
if (bText) if (bText)
{ {
DWORD i = 0; DWORD i = 0;
while (i<dwSizeLo) while (i<dwSizeLo)
{ {
DWORD d = Asc2Nib5(pIn+i); DWORD d = Asc2Nib5(pIn+i);
i+=6; i+=6;
pRom[d+0x0] = Asc2Nib(pIn[i+0x0]); pRom[d+0x0] = Asc2Nib(pIn[i+0x0]);
pRom[d+0x1] = Asc2Nib(pIn[i+0x1]); pRom[d+0x1] = Asc2Nib(pIn[i+0x1]);
pRom[d+0x2] = Asc2Nib(pIn[i+0x2]); pRom[d+0x2] = Asc2Nib(pIn[i+0x2]);
pRom[d+0x3] = Asc2Nib(pIn[i+0x3]); pRom[d+0x3] = Asc2Nib(pIn[i+0x3]);
pRom[d+0x4] = Asc2Nib(pIn[i+0x4]); pRom[d+0x4] = Asc2Nib(pIn[i+0x4]);
pRom[d+0x5] = Asc2Nib(pIn[i+0x5]); pRom[d+0x5] = Asc2Nib(pIn[i+0x5]);
pRom[d+0x6] = Asc2Nib(pIn[i+0x6]); pRom[d+0x6] = Asc2Nib(pIn[i+0x6]);
pRom[d+0x7] = Asc2Nib(pIn[i+0x7]); pRom[d+0x7] = Asc2Nib(pIn[i+0x7]);
pRom[d+0x8] = Asc2Nib(pIn[i+0x8]); pRom[d+0x8] = Asc2Nib(pIn[i+0x8]);
pRom[d+0x9] = Asc2Nib(pIn[i+0x9]); pRom[d+0x9] = Asc2Nib(pIn[i+0x9]);
pRom[d+0xA] = Asc2Nib(pIn[i+0xA]); pRom[d+0xA] = Asc2Nib(pIn[i+0xA]);
pRom[d+0xB] = Asc2Nib(pIn[i+0xB]); pRom[d+0xB] = Asc2Nib(pIn[i+0xB]);
pRom[d+0xC] = Asc2Nib(pIn[i+0xC]); pRom[d+0xC] = Asc2Nib(pIn[i+0xC]);
pRom[d+0xD] = Asc2Nib(pIn[i+0xD]); pRom[d+0xD] = Asc2Nib(pIn[i+0xD]);
pRom[d+0xE] = Asc2Nib(pIn[i+0xE]); pRom[d+0xE] = Asc2Nib(pIn[i+0xE]);
pRom[d+0xF] = Asc2Nib(pIn[i+0xF]); pRom[d+0xF] = Asc2Nib(pIn[i+0xF]);
i+=16; i+=16;
while ((i<dwSizeLo)&&((pIn[i]==0x0D)||(pIn[i]==0x0A))) i++; while ((i<dwSizeLo)&&((pIn[i]==0x0D)||(pIn[i]==0x0A))) i++;
} }
} }
else else
{ {
if (bUnpack) if (bUnpack)
{ {
if (bSwap) if (bSwap)
{ {
DWORD i; DWORD i;
for (i=0; i<dwSizeLo; i++) for (i=0; i<dwSizeLo; i++)
{ {
BYTE byC = pIn[(i+dwAddrOffset)&(dwSizeLo-1)]; BYTE byC = pIn[(i+dwAddrOffset)&(dwSizeLo-1)];
pRom[(i<<1) ] = byC>>4; pRom[(i<<1) ] = byC>>4;
pRom[(i<<1)+1] = byC&0xF; pRom[(i<<1)+1] = byC&0xF;
} }
} }
else else
{ {
DWORD i; DWORD i;
for (i=0; i<dwSizeLo; i++) for (i=0; i<dwSizeLo; i++)
{ {
BYTE byC = pIn[(i+dwAddrOffset)&(dwSizeLo-1)]; BYTE byC = pIn[(i+dwAddrOffset)&(dwSizeLo-1)];
pRom[(i<<1) ] = byC&0xF; pRom[(i<<1) ] = byC&0xF;
pRom[(i<<1)+1] = byC>>4; pRom[(i<<1)+1] = byC>>4;
} }
} }
} }
else else
{ {
if (bSwap) if (bSwap)
{ {
DWORD i; DWORD i;
for (i=0; i<dwSizeLo; i+=2) for (i=0; i<dwSizeLo; i+=2)
{ {
BYTE a, b; BYTE a, b;
a = pIn[(i+dwAddrOffset)&(dwSizeLo-1)]; a = pIn[(i+dwAddrOffset)&(dwSizeLo-1)];
b = pIn[(i+1+dwAddrOffset)&(dwSizeLo-1)]; b = pIn[(i+1+dwAddrOffset)&(dwSizeLo-1)];
pRom[i] = b; pRom[i] = b;
pRom[i+1] = a; pRom[i+1] = a;
} }
} }
else else
{ {
if(bDA19) if(bDA19)
{ {
assert(dwAddrOffset == dwSizeLo/2); assert(dwAddrOffset == dwSizeLo/2);
CopyMemory(&pRom[0] , &pIn[dwAddrOffset], dwAddrOffset); CopyMemory(&pRom[0] , &pIn[dwAddrOffset], dwAddrOffset);
CopyMemory(&pRom[dwAddrOffset], &pIn[0] , dwAddrOffset); CopyMemory(&pRom[dwAddrOffset], &pIn[0] , dwAddrOffset);
} }
else else
{ {
CopyMemory(pRom, pIn, dwSizeLo); CopyMemory(pRom, pIn, dwSizeLo);
} }
} }
} }
} }
UnmapViewOfFile(pIn); UnmapViewOfFile(pIn);
CloseHandle(hMap); CloseHandle(hMap);
CloseHandle(hFile); CloseHandle(hFile);
if (bText||bUnpack||bSwap||bDA19) if (bText||bUnpack||bSwap||bDA19)
{ {
printf("File converted.\n\n"); printf("File converted.\n\n");
} }
do do
{ {
// HP38G // HP38G
wType = HP38G; wType = HP38G;
dwAddress = 0x7FFAF; dwAddress = 0x7FFAF;
uLen = 10; uLen = 10;
if (IsHP(dwAddress)) break; if (IsHP(dwAddress)) break;
// HP48SX // HP48SX
wType = HP48S; wType = HP48S;
dwAddress = 0x7FFF0; dwAddress = 0x7FFF0;
uLen = 6; uLen = 6;
if (IsHP(dwAddress)) break; if (IsHP(dwAddress)) break;
// HP48GX // HP48GX
wType = HP48G; wType = HP48G;
dwAddress = 0x7FFBF; dwAddress = 0x7FFBF;
uLen = 6; uLen = 6;
if (IsHP(dwAddress)) break; if (IsHP(dwAddress)) break;
// unknown // unknown
uLen = 0; uLen = 0;
} }
while (0); while (0);
printf("ROM Model Detected : HP%c8%c\n",(wType == HP38G)?'3':'4',(wType != HP48S)?'G':'S'); printf("ROM Model Detected : HP%c8%c\n",(wType == HP38G)?'3':'4',(wType != HP48S)?'G':'S');
for (i=0; i<uLen; ++i) for (i=0; i<uLen; ++i)
{ {
szVersion[i] = pRom[dwAddress + (i<<1) + 1] << 4; szVersion[i] = pRom[dwAddress + (i<<1) + 1] << 4;
szVersion[i] |= pRom[dwAddress + (i<<1)]; szVersion[i] |= pRom[dwAddress + (i<<1)];
} }
szVersion[i] = 0; szVersion[i] = 0;
printf("ROM Version : %s\n", szVersion); printf("ROM Version : %s\n", szVersion);
ZeroMemory(pRom+0x100, 0x40); // clear IO register area ZeroMemory(pRom+0x100, 0x40); // clear IO register area
if (CheckCRC()) if (CheckCRC())
{ {
printf("ROM CRC Test Passed.\n"); printf("ROM CRC Test Passed.\n");
} }
else else
{ {
printf("ROM CRC Test FAILED !\n"); printf("ROM CRC Test FAILED !\n");
} }
if (argc == 3) // write target file if (argc == 3) // write target file
{ {
DWORD dwWritten; DWORD dwWritten;
// size of target file // size of target file
DWORD dwRomSize = (wType != HP48S)?(512*1024*2):(256*1024*2); DWORD dwRomSize = (wType != HP48S)?(512*1024*2):(256*1024*2);
hOut = CreateFile(argv[iArg+1],GENERIC_WRITE,0,NULL,CREATE_ALWAYS,FILE_ATTRIBUTE_NORMAL,NULL); hOut = CreateFile(argv[iArg+1],GENERIC_WRITE,0,NULL,CREATE_ALWAYS,FILE_ATTRIBUTE_NORMAL,NULL);
if (hFile == INVALID_HANDLE_VALUE) if (hFile == INVALID_HANDLE_VALUE)
{ {
free(pRom); free(pRom);
printf("Cannot open file %s.\n", argv[iArg+1]); printf("Cannot open file %s.\n", argv[iArg+1]);
return 1; return 1;
} }
if (bPack) // pack target ROM image if (bPack) // pack target ROM image
{ {
LPBYTE pbySrc,pbyDest; LPBYTE pbySrc,pbyDest;
DWORD i; DWORD i;
dwRomSize /= 2; // packed image has half of size dwRomSize /= 2; // packed image has half of size
// pack data // pack data
pbySrc = pbyDest = pRom; pbySrc = pbyDest = pRom;
for (i = 0; i < dwRomSize; i++) for (i = 0; i < dwRomSize; i++)
{ {
*pbyDest = *pbySrc++; *pbyDest = *pbySrc++;
*pbyDest |= *pbySrc++ << 4; *pbyDest |= *pbySrc++ << 4;
pbyDest++; pbyDest++;
} }
} }
WriteFile(hOut,pRom,dwRomSize,&dwWritten,NULL); WriteFile(hOut,pRom,dwRomSize,&dwWritten,NULL);
CloseHandle(hOut); CloseHandle(hOut);
} }
free(pRom); free(pRom);
return 0; return 0;
} }

View file

@ -1,3 +1,89 @@
Service Pack 67 for Emu48 Version 1.0
DEBUGGER.C
- changed position of debugger window with a default position marker
- changed function Debugger(), in case WM_INITDIALOG set windows
position only if given windows position don't contain the default
position marker
- changed function OnToolDebug(), on dialog creation set main window
as parent window
- changed function LoadMemData() and SaveMemData(), changed function
prototype by adding a bit mode flag to load or save data in 8-bit
or 4-bit mode
- changed function DebugMemLoad() and DebugMemSave(), added decoding
of radio buttons and adjusted to new prototypes of function
LoadMemData() and SaveMemData()
EMU48.C
- bugfix in function WinMain(), changed UNICODE command line
argument decoding to prevent memory leak and added WSAStartup() /
WSACleanup() network stack sequence calling once
EMU48.H
- extern declaration of global variable
EMU48.RC
- changed IDD_DEBUG_MEMSAVE and IDD_DEBUG_MEMLOAD, added radio
buttons to select bit width of memory files
- changed version and copyright
FETCH.C
- changed all tables, added braces around each table element for
Clang compatibility
LODEPNG.C
- changed implementation file to LodePNG version 20230410 with
unmarked typecast patches for x64 compatibility, Copyright (c)
2005-2023 Lode Vandevenne
LODEPNG.H
- changed header file to LodePNG version 20230410
MOPS.C
- changed function ReadT2Acc(), changed CPU slow down
implementation, on SMP systems a CriticalSection is treated as a
mutex object which is much slower, so short consecutive
CriticalSections of the same object should be avoided
- changed function ReadIO(), changed CPU slow down implementation
for the TBF bit in the TCS (0x112) register, on SMP systems a
CriticalSection is treated as a mutex object which is much slower,
so short consecutive CriticalSections of the same object should be
avoided
RESOURCE.H
- added definitions
SERIAL.C
- changed function CommOpen(), removed assertion for UART on
SETTINGS.C
- changed function ReadSettings() and WriteSettings(), added item
"LocaleDecimalPoint" in section [Emulator] in the INI-File
STACK.C
- added variable bLocaleDecimalPoint for choosing the decimal point
given by the calculator or the Windows Locale setting
- added function CheckThousandGroup(), check if character is the
thousand separator
- added function GetClpbrdDecimalPoint(), get decimal point from
clipboard
- changed function SetBcd(), accept number string with thousand
separator now
- changed function GetRadix(), added possibility of using the
Windows Locale instead of calculator setting
- changed function OnStackPaste(), get get decimal point for real
and complex numbers from clipboard instead from calculator
TIMER.C
- changed function SetHP48Time(), use one loop for clock and auto
off writing, use function UpCRC() for CRC calculation and removed
intermediate buffer for writing the CRC
UDP.C
- changed function SendByteUdp(), moved WSAStartup() / WSACleanup()
sequence to function WinMain()
Service Pack 66 for Emu48 Version 1.0 Service Pack 66 for Emu48 Version 1.0
DISRPL.C DISRPL.C

View file

@ -1,27 +1,27 @@
/* /*
* color.h * color.h
* *
* This file is part of Emu48 * This file is part of Emu48
* *
* Copyright (C) 1999 Christoph Gießelink * Copyright (C) 1999 Christoph Gießelink
* *
*/ */
#define COLOR_BLACK 0x00000000 #define COLOR_BLACK 0x00000000
#define COLOR_MAROON 0x00000080 #define COLOR_MAROON 0x00000080
#define COLOR_GREEN 0x00008000 #define COLOR_GREEN 0x00008000
#define COLOR_OLIVE 0x00008080 #define COLOR_OLIVE 0x00008080
#define COLOR_NAVY 0x00800000 #define COLOR_NAVY 0x00800000
#define COLOR_PURPLE 0x00800080 #define COLOR_PURPLE 0x00800080
#define COLOR_TEAL 0x00808000 #define COLOR_TEAL 0x00808000
#define COLOR_GRAY 0x00808080 #define COLOR_GRAY 0x00808080
#define COLOR_SILVER 0x00C0C0C0 #define COLOR_SILVER 0x00C0C0C0
#define COLOR_RED 0x000000FF #define COLOR_RED 0x000000FF
#define COLOR_LIME 0x0000FF00 #define COLOR_LIME 0x0000FF00
#define COLOR_YELLOW 0x0000FFFF #define COLOR_YELLOW 0x0000FFFF
#define COLOR_BLUE 0x00FF0000 #define COLOR_BLUE 0x00FF0000
#define COLOR_FUCHSIA 0x00FF00FF #define COLOR_FUCHSIA 0x00FF00FF
#define COLOR_AQUA 0x00FFFF00 #define COLOR_AQUA 0x00FFFF00
#define COLOR_LTGRAY 0x00C0C0C0 #define COLOR_LTGRAY 0x00C0C0C0
#define COLOR_DKGRAY 0x00808080 #define COLOR_DKGRAY 0x00808080
#define COLOR_WHITE 0x00FFFFFF #define COLOR_WHITE 0x00FFFFFF

View file

@ -1,89 +1,89 @@
/* /*
* Cursor.c * Cursor.c
* *
* This file is part of Emu48 * This file is part of Emu48
* *
* Copyright (C) 2004 Christoph Gießelink * Copyright (C) 2004 Christoph Gießelink
* *
*/ */
#include "pch.h" #include "pch.h"
#include "emu48.h" #include "Emu48.h"
// hand cursor AND mask // hand cursor AND mask
static CONST BYTE ANDmaskCursor[] = static CONST BYTE ANDmaskCursor[] =
{ {
0xFF, 0xFF, 0xFF, 0xFF, // 1111 1111 1111 1111 1111 1111 1111 1111 0xFF, 0xFF, 0xFF, 0xFF, // 1111 1111 1111 1111 1111 1111 1111 1111
0xFF, 0xFF, 0xFF, 0xFF, // 1111 1111 1111 1111 1111 1111 1111 1111 0xFF, 0xFF, 0xFF, 0xFF, // 1111 1111 1111 1111 1111 1111 1111 1111
0xFF, 0xFF, 0xFF, 0xFF, // 1111 1111 1111 1111 1111 1111 1111 1111 0xFF, 0xFF, 0xFF, 0xFF, // 1111 1111 1111 1111 1111 1111 1111 1111
0xFF, 0xFF, 0xFF, 0xFF, // 1111 1111 1111 1111 1111 1111 1111 1111 0xFF, 0xFF, 0xFF, 0xFF, // 1111 1111 1111 1111 1111 1111 1111 1111
0xFF, 0xFF, 0xFF, 0xFF, // 1111 1111 1111 1111 1111 1111 1111 1111 0xFF, 0xFF, 0xFF, 0xFF, // 1111 1111 1111 1111 1111 1111 1111 1111
0xFF, 0xF3, 0xFF, 0xFF, // 1111 1111 1111 0011 1111 1111 1111 1111 0xFF, 0xF3, 0xFF, 0xFF, // 1111 1111 1111 0011 1111 1111 1111 1111
0xFF, 0xE1, 0xFF, 0xFF, // 1111 1111 1110 0001 1111 1111 1111 1111 0xFF, 0xE1, 0xFF, 0xFF, // 1111 1111 1110 0001 1111 1111 1111 1111
0xFF, 0xE1, 0xFF, 0xFF, // 1111 1111 1110 0001 1111 1111 1111 1111 0xFF, 0xE1, 0xFF, 0xFF, // 1111 1111 1110 0001 1111 1111 1111 1111
0xFF, 0xE1, 0xFF, 0xFF, // 1111 1111 1110 0001 1111 1111 1111 1111 0xFF, 0xE1, 0xFF, 0xFF, // 1111 1111 1110 0001 1111 1111 1111 1111
0xFF, 0xE1, 0xFF, 0xFF, // 1111 1111 1110 0001 1111 1111 1111 1111 0xFF, 0xE1, 0xFF, 0xFF, // 1111 1111 1110 0001 1111 1111 1111 1111
0xFF, 0xE0, 0x7F, 0xFF, // 1111 1111 1110 0000 0111 1111 1111 1111 0xFF, 0xE0, 0x7F, 0xFF, // 1111 1111 1110 0000 0111 1111 1111 1111
0xFF, 0xE0, 0x0F, 0xFF, // 1111 1111 1110 0000 0000 1111 1111 1111 0xFF, 0xE0, 0x0F, 0xFF, // 1111 1111 1110 0000 0000 1111 1111 1111
0xFF, 0xE0, 0x03, 0xFF, // 1111 1111 1110 0000 0000 0011 1111 1111 0xFF, 0xE0, 0x03, 0xFF, // 1111 1111 1110 0000 0000 0011 1111 1111
0xFF, 0xE0, 0x01, 0xFF, // 1111 1111 1110 0000 0000 0001 1111 1111 0xFF, 0xE0, 0x01, 0xFF, // 1111 1111 1110 0000 0000 0001 1111 1111
0xFE, 0x20, 0x00, 0xFF, // 1111 1110 0010 0000 0000 0000 1111 1111 0xFE, 0x20, 0x00, 0xFF, // 1111 1110 0010 0000 0000 0000 1111 1111
0xFE, 0x00, 0x00, 0xFF, // 1111 1110 0000 0000 0000 0000 1111 1111 0xFE, 0x00, 0x00, 0xFF, // 1111 1110 0000 0000 0000 0000 1111 1111
0xFE, 0x00, 0x00, 0xFF, // 1111 1110 0000 0000 0000 0000 1111 1111 0xFE, 0x00, 0x00, 0xFF, // 1111 1110 0000 0000 0000 0000 1111 1111
0xFF, 0x00, 0x00, 0xFF, // 1111 1111 0000 0000 0000 0000 1111 1111 0xFF, 0x00, 0x00, 0xFF, // 1111 1111 0000 0000 0000 0000 1111 1111
0xFF, 0x80, 0x00, 0xFF, // 1111 1111 1000 0000 0000 0000 1111 1111 0xFF, 0x80, 0x00, 0xFF, // 1111 1111 1000 0000 0000 0000 1111 1111
0xFF, 0x80, 0x00, 0xFF, // 1111 1111 1000 0000 0000 0000 1111 1111 0xFF, 0x80, 0x00, 0xFF, // 1111 1111 1000 0000 0000 0000 1111 1111
0xFF, 0xC0, 0x00, 0xFF, // 1111 1111 1100 0000 0000 0000 1111 1111 0xFF, 0xC0, 0x00, 0xFF, // 1111 1111 1100 0000 0000 0000 1111 1111
0xFF, 0xC0, 0x01, 0xFF, // 1111 1111 1100 0000 0000 0001 1111 1111 0xFF, 0xC0, 0x01, 0xFF, // 1111 1111 1100 0000 0000 0001 1111 1111
0xFF, 0xE0, 0x01, 0xFF, // 1111 1111 1110 0000 0000 0001 1111 1111 0xFF, 0xE0, 0x01, 0xFF, // 1111 1111 1110 0000 0000 0001 1111 1111
0xFF, 0xE0, 0x01, 0xFF, // 1111 1111 1110 0000 0000 0001 1111 1111 0xFF, 0xE0, 0x01, 0xFF, // 1111 1111 1110 0000 0000 0001 1111 1111
0xFF, 0xF0, 0x03, 0xFF, // 1111 1111 1111 0000 0000 0011 1111 1111 0xFF, 0xF0, 0x03, 0xFF, // 1111 1111 1111 0000 0000 0011 1111 1111
0xFF, 0xF0, 0x03, 0xFF, // 1111 1111 1111 0000 0000 0011 1111 1111 0xFF, 0xF0, 0x03, 0xFF, // 1111 1111 1111 0000 0000 0011 1111 1111
0xFF, 0xF0, 0x03, 0xFF, // 1111 1111 1111 0000 0000 0011 1111 1111 0xFF, 0xF0, 0x03, 0xFF, // 1111 1111 1111 0000 0000 0011 1111 1111
0xFF, 0xFF, 0xFF, 0xFF, // 1111 1111 1111 1111 1111 1111 1111 1111 0xFF, 0xFF, 0xFF, 0xFF, // 1111 1111 1111 1111 1111 1111 1111 1111
0xFF, 0xFF, 0xFF, 0xFF, // 1111 1111 1111 1111 1111 1111 1111 1111 0xFF, 0xFF, 0xFF, 0xFF, // 1111 1111 1111 1111 1111 1111 1111 1111
0xFF, 0xFF, 0xFF, 0xFF, // 1111 1111 1111 1111 1111 1111 1111 1111 0xFF, 0xFF, 0xFF, 0xFF, // 1111 1111 1111 1111 1111 1111 1111 1111
0xFF, 0xFF, 0xFF, 0xFF, // 1111 1111 1111 1111 1111 1111 1111 1111 0xFF, 0xFF, 0xFF, 0xFF, // 1111 1111 1111 1111 1111 1111 1111 1111
0xFF, 0xFF, 0xFF, 0xFF // 1111 1111 1111 1111 1111 1111 1111 1111 0xFF, 0xFF, 0xFF, 0xFF // 1111 1111 1111 1111 1111 1111 1111 1111
}; };
// hand cursor XOR mask // hand cursor XOR mask
static CONST BYTE XORmaskCursor[] = static CONST BYTE XORmaskCursor[] =
{ {
0x00, 0x00, 0x00, 0x00, // 0000 0000 0000 0000 0000 0000 0000 0000 0x00, 0x00, 0x00, 0x00, // 0000 0000 0000 0000 0000 0000 0000 0000
0x00, 0x00, 0x00, 0x00, // 0000 0000 0000 0000 0000 0000 0000 0000 0x00, 0x00, 0x00, 0x00, // 0000 0000 0000 0000 0000 0000 0000 0000
0x00, 0x00, 0x00, 0x00, // 0000 0000 0000 0000 0000 0000 0000 0000 0x00, 0x00, 0x00, 0x00, // 0000 0000 0000 0000 0000 0000 0000 0000
0x00, 0x00, 0x00, 0x00, // 0000 0000 0000 0000 0000 0000 0000 0000 0x00, 0x00, 0x00, 0x00, // 0000 0000 0000 0000 0000 0000 0000 0000
0x00, 0x00, 0x00, 0x00, // 0000 0000 0000 0000 0000 0000 0000 0000 0x00, 0x00, 0x00, 0x00, // 0000 0000 0000 0000 0000 0000 0000 0000
0x00, 0x00, 0x00, 0x00, // 0000 0000 0000 0000 0000 0000 0000 0000 0x00, 0x00, 0x00, 0x00, // 0000 0000 0000 0000 0000 0000 0000 0000
0x00, 0x0C, 0x00, 0x00, // 0000 0000 0000 1100 0000 0000 0000 0000 0x00, 0x0C, 0x00, 0x00, // 0000 0000 0000 1100 0000 0000 0000 0000
0x00, 0x0C, 0x00, 0x00, // 0000 0000 0000 1100 0000 0000 0000 0000 0x00, 0x0C, 0x00, 0x00, // 0000 0000 0000 1100 0000 0000 0000 0000
0x00, 0x0C, 0x00, 0x00, // 0000 0000 0000 1100 0000 0000 0000 0000 0x00, 0x0C, 0x00, 0x00, // 0000 0000 0000 1100 0000 0000 0000 0000
0x00, 0x0C, 0x00, 0x00, // 0000 0000 0000 1100 0000 0000 0000 0000 0x00, 0x0C, 0x00, 0x00, // 0000 0000 0000 1100 0000 0000 0000 0000
0x00, 0x0C, 0x00, 0x00, // 0000 0000 0000 1100 0000 0000 0000 0000 0x00, 0x0C, 0x00, 0x00, // 0000 0000 0000 1100 0000 0000 0000 0000
0x00, 0x0D, 0x80, 0x00, // 0000 0000 0000 1101 1000 0000 0000 0000 0x00, 0x0D, 0x80, 0x00, // 0000 0000 0000 1101 1000 0000 0000 0000
0x00, 0x0D, 0xB0, 0x00, // 0000 0000 0000 1101 1011 0000 0000 0000 0x00, 0x0D, 0xB0, 0x00, // 0000 0000 0000 1101 1011 0000 0000 0000
0x00, 0x0D, 0xB4, 0x00, // 0000 0000 0000 1101 1011 0100 0000 0000 0x00, 0x0D, 0xB4, 0x00, // 0000 0000 0000 1101 1011 0100 0000 0000
0x00, 0x0D, 0xB6, 0x00, // 0000 0000 0000 1101 1011 0110 0000 0000 0x00, 0x0D, 0xB6, 0x00, // 0000 0000 0000 1101 1011 0110 0000 0000
0x00, 0xCF, 0xF6, 0x00, // 0000 0000 1100 1111 1111 0110 0000 0000 0x00, 0xCF, 0xF6, 0x00, // 0000 0000 1100 1111 1111 0110 0000 0000
0x00, 0xEF, 0xFE, 0x00, // 0000 0000 1110 1111 1111 1110 0000 0000 0x00, 0xEF, 0xFE, 0x00, // 0000 0000 1110 1111 1111 1110 0000 0000
0x00, 0x6F, 0xFE, 0x00, // 0000 0000 0110 1111 1111 1110 0000 0000 0x00, 0x6F, 0xFE, 0x00, // 0000 0000 0110 1111 1111 1110 0000 0000
0x00, 0x2F, 0xFE, 0x00, // 0000 0000 0010 1111 1111 1110 0000 0000 0x00, 0x2F, 0xFE, 0x00, // 0000 0000 0010 1111 1111 1110 0000 0000
0x00, 0x3F, 0xFE, 0x00, // 0000 0000 0011 1111 1111 1110 0000 0000 0x00, 0x3F, 0xFE, 0x00, // 0000 0000 0011 1111 1111 1110 0000 0000
0x00, 0x1F, 0xFE, 0x00, // 0000 0000 0001 1111 1111 1110 0000 0000 0x00, 0x1F, 0xFE, 0x00, // 0000 0000 0001 1111 1111 1110 0000 0000
0x00, 0x1F, 0xFC, 0x00, // 0000 0000 0001 1111 1111 1100 0000 0000 0x00, 0x1F, 0xFC, 0x00, // 0000 0000 0001 1111 1111 1100 0000 0000
0x00, 0x0F, 0xFC, 0x00, // 0000 0000 0000 1111 1111 1100 0000 0000 0x00, 0x0F, 0xFC, 0x00, // 0000 0000 0000 1111 1111 1100 0000 0000
0x00, 0x0F, 0xFC, 0x00, // 0000 0000 0000 1111 1111 1100 0000 0000 0x00, 0x0F, 0xFC, 0x00, // 0000 0000 0000 1111 1111 1100 0000 0000
0x00, 0x07, 0xF8, 0x00, // 0000 0000 0000 0111 1111 1000 0000 0000 0x00, 0x07, 0xF8, 0x00, // 0000 0000 0000 0111 1111 1000 0000 0000
0x00, 0x07, 0xF8, 0x00, // 0000 0000 0000 0111 1111 1000 0000 0000 0x00, 0x07, 0xF8, 0x00, // 0000 0000 0000 0111 1111 1000 0000 0000
0x00, 0x00, 0x00, 0x00, // 0000 0000 0000 0000 0000 0000 0000 0000 0x00, 0x00, 0x00, 0x00, // 0000 0000 0000 0000 0000 0000 0000 0000
0x00, 0x00, 0x00, 0x00, // 0000 0000 0000 0000 0000 0000 0000 0000 0x00, 0x00, 0x00, 0x00, // 0000 0000 0000 0000 0000 0000 0000 0000
0x00, 0x00, 0x00, 0x00, // 0000 0000 0000 0000 0000 0000 0000 0000 0x00, 0x00, 0x00, 0x00, // 0000 0000 0000 0000 0000 0000 0000 0000
0x00, 0x00, 0x00, 0x00, // 0000 0000 0000 0000 0000 0000 0000 0000 0x00, 0x00, 0x00, 0x00, // 0000 0000 0000 0000 0000 0000 0000 0000
0x00, 0x00, 0x00, 0x00, // 0000 0000 0000 0000 0000 0000 0000 0000 0x00, 0x00, 0x00, 0x00, // 0000 0000 0000 0000 0000 0000 0000 0000
0x00, 0x00, 0x00, 0x00 // 0000 0000 0000 0000 0000 0000 0000 0000 0x00, 0x00, 0x00, 0x00 // 0000 0000 0000 0000 0000 0000 0000 0000
}; };
HCURSOR CreateHandCursor(VOID) HCURSOR CreateHandCursor(VOID)
{ {
return CreateCursor(hApp,12,5,32,32,ANDmaskCursor,XORmaskCursor); return CreateCursor(hApp,12,5,32,32,ANDmaskCursor,XORmaskCursor);
} }

View file

@ -1,182 +1,182 @@
/* /*
* DdeServ.c * DdeServ.c
* *
* This file is part of Emu48 * This file is part of Emu48
* *
* Copyright (C) 1998 Christoph Gießelink * Copyright (C) 1998 Christoph Gießelink
* *
*/ */
#include "pch.h" #include "pch.h"
#include "emu48.h" #include "Emu48.h"
#include "io.h" #include "io.h"
HDDEDATA CALLBACK DdeCallback(UINT iType,UINT iFmt,HCONV hConv, HDDEDATA CALLBACK DdeCallback(UINT iType,UINT iFmt,HCONV hConv,
HSZ hsz1,HSZ hsz2,HDDEDATA hData, HSZ hsz1,HSZ hsz2,HDDEDATA hData,
DWORD dwData1,DWORD dwData2) DWORD dwData1,DWORD dwData2)
{ {
TCHAR *psz,szBuffer[32]; TCHAR *psz,szBuffer[32];
HDDEDATA hReturn; HDDEDATA hReturn;
LPBYTE lpData,lpHeader; LPBYTE lpData,lpHeader;
DWORD dwAddress,dwSize,dwLoop,dwIndex; DWORD dwAddress,dwSize,dwLoop,dwIndex;
UINT nStkLvl; UINT nStkLvl;
BOOL bSuccess; BOOL bSuccess;
// disable stack loading items on HP38G, HP39/40G // disable stack loading items on HP38G, HP39/40G
BOOL bStackEnable = cCurrentRomType!='6' && cCurrentRomType!='A' && cCurrentRomType!='E'; BOOL bStackEnable = cCurrentRomType!='6' && cCurrentRomType!='A' && cCurrentRomType!='E';
switch (iType) switch (iType)
{ {
case XTYP_CONNECT: case XTYP_CONNECT:
// get service name // get service name
DdeQueryString(idDdeInst,hsz2,szBuffer,ARRAYSIZEOF(szBuffer),0); DdeQueryString(idDdeInst,hsz2,szBuffer,ARRAYSIZEOF(szBuffer),0);
if (0 != lstrcmp(szBuffer,szAppName)) if (0 != lstrcmp(szBuffer,szAppName))
return (HDDEDATA) FALSE; return (HDDEDATA) FALSE;
// get topic name // get topic name
DdeQueryString(idDdeInst,hsz1,szBuffer,ARRAYSIZEOF(szBuffer),0); DdeQueryString(idDdeInst,hsz1,szBuffer,ARRAYSIZEOF(szBuffer),0);
return (HDDEDATA) (INT_PTR) (0 == lstrcmp(szBuffer,szTopic)); return (HDDEDATA) (INT_PTR) (0 == lstrcmp(szBuffer,szTopic));
case XTYP_POKE: case XTYP_POKE:
// quit on models without stack or illegal data format or not in running state // quit on models without stack or illegal data format or not in running state
if (!bStackEnable || iFmt != uCF_HpObj || nState != SM_RUN) if (!bStackEnable || iFmt != uCF_HpObj || nState != SM_RUN)
return (HDDEDATA) DDE_FNOTPROCESSED; return (HDDEDATA) DDE_FNOTPROCESSED;
// get item name // get item name
DdeQueryString(idDdeInst,hsz2,szBuffer,ARRAYSIZEOF(szBuffer),0); DdeQueryString(idDdeInst,hsz2,szBuffer,ARRAYSIZEOF(szBuffer),0);
nStkLvl = _tcstoul(szBuffer,&psz,10); nStkLvl = _tcstoul(szBuffer,&psz,10);
if (*psz != 0 || nStkLvl < 1) // invalid number format if (*psz != 0 || nStkLvl < 1) // invalid number format
return (HDDEDATA) DDE_FNOTPROCESSED; return (HDDEDATA) DDE_FNOTPROCESSED;
SuspendDebugger(); // suspend debugger SuspendDebugger(); // suspend debugger
bDbgAutoStateCtrl = FALSE; // disable automatic debugger state control bDbgAutoStateCtrl = FALSE; // disable automatic debugger state control
if (!(Chipset.IORam[BITOFFSET]&DON)) // HP off if (!(Chipset.IORam[BITOFFSET]&DON)) // HP off
{ {
// turn on HP // turn on HP
KeyboardEvent(TRUE,0,0x8000); KeyboardEvent(TRUE,0,0x8000);
Sleep(dwWakeupDelay); Sleep(dwWakeupDelay);
KeyboardEvent(FALSE,0,0x8000); KeyboardEvent(FALSE,0,0x8000);
} }
if (WaitForSleepState()) // wait for cpu SHUTDN then sleep state if (WaitForSleepState()) // wait for cpu SHUTDN then sleep state
{ {
hReturn = DDE_FNOTPROCESSED; hReturn = DDE_FNOTPROCESSED;
goto cancel; goto cancel;
} }
while (nState!=nNextState) Sleep(0); while (nState!=nNextState) Sleep(0);
_ASSERT(nState==SM_SLEEP); _ASSERT(nState==SM_SLEEP);
bSuccess = FALSE; bSuccess = FALSE;
// get data and size // get data and size
lpData = DdeAccessData(hData,&dwSize); lpData = DdeAccessData(hData,&dwSize);
// has object length header // has object length header
if (lpData && dwSize >= sizeof(DWORD)) if (lpData && dwSize >= sizeof(DWORD))
{ {
dwIndex = *(LPDWORD) lpData; // object length dwIndex = *(LPDWORD) lpData; // object length
if (dwIndex <= dwSize - sizeof(DWORD)) if (dwIndex <= dwSize - sizeof(DWORD))
{ {
// reserve unpacked object length memory // reserve unpacked object length memory
LPBYTE pbyMem = (LPBYTE) malloc(dwIndex * 2); LPBYTE pbyMem = (LPBYTE) malloc(dwIndex * 2);
if (pbyMem != NULL) if (pbyMem != NULL)
{ {
// copy data and write to stack // copy data and write to stack
CopyMemory(pbyMem+dwIndex,lpData+sizeof(DWORD),dwIndex); CopyMemory(pbyMem+dwIndex,lpData+sizeof(DWORD),dwIndex);
bSuccess = (WriteStack(nStkLvl,pbyMem,dwIndex) == S_ERR_NO); bSuccess = (WriteStack(nStkLvl,pbyMem,dwIndex) == S_ERR_NO);
free(pbyMem); // free memory free(pbyMem); // free memory
} }
} }
} }
DdeUnaccessData(hData); DdeUnaccessData(hData);
SwitchToState(SM_RUN); // run state SwitchToState(SM_RUN); // run state
while (nState!=nNextState) Sleep(0); while (nState!=nNextState) Sleep(0);
_ASSERT(nState==SM_RUN); _ASSERT(nState==SM_RUN);
if (bSuccess == FALSE) if (bSuccess == FALSE)
{ {
hReturn = DDE_FNOTPROCESSED; hReturn = DDE_FNOTPROCESSED;
goto cancel; goto cancel;
} }
KeyboardEvent(TRUE,0,0x8000); KeyboardEvent(TRUE,0,0x8000);
Sleep(dwWakeupDelay); Sleep(dwWakeupDelay);
KeyboardEvent(FALSE,0,0x8000); KeyboardEvent(FALSE,0,0x8000);
// wait for sleep mode // wait for sleep mode
while (Chipset.Shutdn == FALSE) Sleep(0); while (Chipset.Shutdn == FALSE) Sleep(0);
hReturn = (HDDEDATA) DDE_FACK; hReturn = (HDDEDATA) DDE_FACK;
cancel: cancel:
bDbgAutoStateCtrl = TRUE; // enable automatic debugger state control bDbgAutoStateCtrl = TRUE; // enable automatic debugger state control
ResumeDebugger(); ResumeDebugger();
return hReturn; return hReturn;
case XTYP_REQUEST: case XTYP_REQUEST:
// quit on models without stack or illegal data format or not in running state // quit on models without stack or illegal data format or not in running state
if (!bStackEnable || iFmt != uCF_HpObj || nState != SM_RUN) if (!bStackEnable || iFmt != uCF_HpObj || nState != SM_RUN)
return NULL; return NULL;
// get item name // get item name
DdeQueryString(idDdeInst,hsz2,szBuffer,ARRAYSIZEOF(szBuffer),0); DdeQueryString(idDdeInst,hsz2,szBuffer,ARRAYSIZEOF(szBuffer),0);
nStkLvl = _tcstoul(szBuffer,&psz,10); nStkLvl = _tcstoul(szBuffer,&psz,10);
if (*psz != 0 || nStkLvl < 1) // invalid number format if (*psz != 0 || nStkLvl < 1) // invalid number format
return NULL; return NULL;
if (WaitForSleepState()) // wait for cpu SHUTDN then sleep state if (WaitForSleepState()) // wait for cpu SHUTDN then sleep state
return NULL; return NULL;
while (nState!=nNextState) Sleep(0); while (nState!=nNextState) Sleep(0);
_ASSERT(nState==SM_SLEEP); _ASSERT(nState==SM_SLEEP);
dwAddress = RPL_Pick(nStkLvl); // pick address of stack level "item" object dwAddress = RPL_Pick(nStkLvl); // pick address of stack level "item" object
if (dwAddress == 0) if (dwAddress == 0)
{ {
SwitchToState(SM_RUN); // run state SwitchToState(SM_RUN); // run state
return NULL; return NULL;
} }
dwLoop = dwSize = (RPL_SkipOb(dwAddress) - dwAddress + 1) / 2; dwLoop = dwSize = (RPL_SkipOb(dwAddress) - dwAddress + 1) / 2;
lpHeader = (Chipset.type != 'X') ? (LPBYTE) BINARYHEADER48 : (LPBYTE) BINARYHEADER49; lpHeader = (Chipset.type != 'X') ? (LPBYTE) BINARYHEADER48 : (LPBYTE) BINARYHEADER49;
// length of binary header // length of binary header
dwIndex = (DWORD) strlen((LPCSTR) lpHeader); dwIndex = (DWORD) strlen((LPCSTR) lpHeader);
// size of objectsize + header + object // size of objectsize + header + object
dwSize += dwIndex + sizeof(DWORD); dwSize += dwIndex + sizeof(DWORD);
// reserve memory // reserve memory
if ((lpData = (LPBYTE) malloc(dwSize)) == NULL) if ((lpData = (LPBYTE) malloc(dwSize)) == NULL)
{ {
SwitchToState(SM_RUN); // run state SwitchToState(SM_RUN); // run state
return NULL; return NULL;
} }
// save data length // save data length
*(DWORD *)lpData = dwLoop + dwIndex; *(DWORD *)lpData = dwLoop + dwIndex;
// copy header // copy header
memcpy(lpData + sizeof(DWORD),lpHeader,dwIndex); memcpy(lpData + sizeof(DWORD),lpHeader,dwIndex);
// copy data // copy data
for (dwIndex += sizeof(DWORD);dwLoop--;++dwIndex,dwAddress += 2) for (dwIndex += sizeof(DWORD);dwLoop--;++dwIndex,dwAddress += 2)
lpData[dwIndex] = Read2(dwAddress); lpData[dwIndex] = Read2(dwAddress);
// write data // write data
hReturn = DdeCreateDataHandle(idDdeInst,lpData,dwSize,0,hsz2,iFmt,0); hReturn = DdeCreateDataHandle(idDdeInst,lpData,dwSize,0,hsz2,iFmt,0);
free(lpData); free(lpData);
SwitchToState(SM_RUN); // run state SwitchToState(SM_RUN); // run state
while (nState!=nNextState) Sleep(0); while (nState!=nNextState) Sleep(0);
_ASSERT(nState==SM_RUN); _ASSERT(nState==SM_RUN);
return hReturn; return hReturn;
} }
return NULL; return NULL;
UNREFERENCED_PARAMETER(hConv); UNREFERENCED_PARAMETER(hConv);
UNREFERENCED_PARAMETER(dwData1); UNREFERENCED_PARAMETER(dwData1);
UNREFERENCED_PARAMETER(dwData2); UNREFERENCED_PARAMETER(dwData2);
} }

File diff suppressed because it is too large Load diff

View file

@ -1,39 +1,39 @@
/* /*
* debugger.h * debugger.h
* *
* This file is part of Emu48 * This file is part of Emu48
* *
* Copyright (C) 1999 Christoph Gießelink * Copyright (C) 1999 Christoph Gießelink
* *
*/ */
// breakpoint type definitions // breakpoint type definitions
#define BP_EXEC 0x01 // code breakpoint #define BP_EXEC 0x01 // code breakpoint
#define BP_READ 0x02 // read memory breakpoint #define BP_READ 0x02 // read memory breakpoint
#define BP_WRITE 0x04 // write memory breakpoint #define BP_WRITE 0x04 // write memory breakpoint
#define BP_RPL 0x08 // RPL breakpoint #define BP_RPL 0x08 // RPL breakpoint
#define BP_ACCESS (BP_READ|BP_WRITE) // read/write memory breakpoint #define BP_ACCESS (BP_READ|BP_WRITE) // read/write memory breakpoint
// breakpoint notify definitions // breakpoint notify definitions
#define BN_ASM 0 // ASM breakpoint #define BN_ASM 0 // ASM breakpoint
#define BN_RPL 1 // RPL breakpoint #define BN_RPL 1 // RPL breakpoint
#define BN_ASM_BT 2 // ASM and RPL breakpoint #define BN_ASM_BT 2 // ASM and RPL breakpoint
// debugger state definitions // debugger state definitions
#define DBG_SUSPEND -1 #define DBG_SUSPEND -1
#define DBG_OFF 0 #define DBG_OFF 0
#define DBG_RUN 1 #define DBG_RUN 1
#define DBG_STEPINTO 2 #define DBG_STEPINTO 2
#define DBG_STEPOVER 3 #define DBG_STEPOVER 3
#define DBG_STEPOUT 4 #define DBG_STEPOUT 4
// debugger.c // debugger.c
extern VOID UpdateDbgCycleCounter(VOID); extern VOID UpdateDbgCycleCounter(VOID);
extern BOOL CheckBreakpoint(DWORD dwAddr, DWORD wRange, UINT nType); extern BOOL CheckBreakpoint(DWORD dwAddr, DWORD wRange, UINT nType);
extern VOID NotifyDebugger(INT nType); extern VOID NotifyDebugger(INT nType);
extern VOID DisableDebugger(VOID); extern VOID DisableDebugger(VOID);
extern LRESULT OnToolDebug(VOID); extern LRESULT OnToolDebug(VOID);
extern VOID LoadBreakpointList(HANDLE hFile); extern VOID LoadBreakpointList(HANDLE hFile);
extern VOID SaveBreakpointList(HANDLE hFile); extern VOID SaveBreakpointList(HANDLE hFile);
extern VOID CreateBackupBreakpointList(VOID); extern VOID CreateBackupBreakpointList(VOID);
extern VOID RestoreBackupBreakpointList(VOID); extern VOID RestoreBackupBreakpointList(VOID);

File diff suppressed because it is too large Load diff

View file

@ -1,221 +1,221 @@
/* /*
* dismem.c * dismem.c
* *
* This file is part of Emu48 * This file is part of Emu48
* *
* Copyright (C) 2012 Christoph Gießelink * Copyright (C) 2012 Christoph Gießelink
* *
*/ */
#include "pch.h" #include "pch.h"
#include "emu48.h" #include "Emu48.h"
typedef struct // type of model memory mapping typedef struct // type of model memory mapping
{ {
BYTE byType; // calculator type BYTE byType; // calculator type
CONST LPBYTE *ppbyNCE1; // NCE1 data CONST LPBYTE *ppbyNCE1; // NCE1 data
CONST DWORD *pdwNCE1Size; // NCE1 size CONST DWORD *pdwNCE1Size; // NCE1 size
CONST LPBYTE *ppbyNCE2; // NCE2 data CONST LPBYTE *ppbyNCE2; // NCE2 data
CONST DWORD *pdwNCE2Size; // NCE2 size CONST DWORD *pdwNCE2Size; // NCE2 size
CONST LPBYTE *ppbyCE1; // CE1 data CONST LPBYTE *ppbyCE1; // CE1 data
CONST DWORD *pdwCE1Size; // CE1 size CONST DWORD *pdwCE1Size; // CE1 size
CONST LPBYTE *ppbyCE2; // CE2 data CONST LPBYTE *ppbyCE2; // CE2 data
CONST DWORD *pdwCE2Size; // CE2 size CONST DWORD *pdwCE2Size; // CE2 size
CONST LPBYTE *ppbyNCE3; // NCE3 data CONST LPBYTE *ppbyNCE3; // NCE3 data
CONST DWORD *pdwNCE3Size; // NCE3 size CONST DWORD *pdwNCE3Size; // NCE3 size
} MODEL_MAP_T; } MODEL_MAP_T;
static CONST LPBYTE pbyNoMEM = NULL; // no memory module static CONST LPBYTE pbyNoMEM = NULL; // no memory module
static CONST MODEL_MAP_T MemMap[] = static CONST MODEL_MAP_T MemMap[] =
{ {
{ {
0, // default 0, // default
&pbyNoMEM, NULL, // nc. &pbyNoMEM, NULL, // nc.
&pbyNoMEM, NULL, // nc. &pbyNoMEM, NULL, // nc.
&pbyNoMEM, NULL, // nc. &pbyNoMEM, NULL, // nc.
&pbyNoMEM, NULL, // nc. &pbyNoMEM, NULL, // nc.
&pbyNoMEM, NULL // nc. &pbyNoMEM, NULL // nc.
}, },
{ {
'6', // HP38G (64K) '6', // HP38G (64K)
&pbyRom, &dwRomSize, // ROM &pbyRom, &dwRomSize, // ROM
&Port0, &Chipset.Port0Size, // RAM &Port0, &Chipset.Port0Size, // RAM
&pbyNoMEM, NULL, // nc. &pbyNoMEM, NULL, // nc.
&pbyNoMEM, NULL, // nc. &pbyNoMEM, NULL, // nc.
&pbyNoMEM, NULL // nc. &pbyNoMEM, NULL // nc.
}, },
{ {
'A', // HP38G 'A', // HP38G
&pbyRom, &dwRomSize, // ROM &pbyRom, &dwRomSize, // ROM
&Port0, &Chipset.Port0Size, // RAM &Port0, &Chipset.Port0Size, // RAM
&pbyNoMEM, NULL, // nc. &pbyNoMEM, NULL, // nc.
&pbyNoMEM, NULL, // nc. &pbyNoMEM, NULL, // nc.
&pbyNoMEM, NULL // nc. &pbyNoMEM, NULL // nc.
}, },
{ {
'E', // HP39/40G 'E', // HP39/40G
&pbyRom, &dwRomSize, // ROM &pbyRom, &dwRomSize, // ROM
&Port0, &Chipset.Port0Size, // RAM part 1 &Port0, &Chipset.Port0Size, // RAM part 1
&pbyNoMEM, NULL, // BS &pbyNoMEM, NULL, // BS
&pbyNoMEM, NULL, // nc. &pbyNoMEM, NULL, // nc.
&Port2, &Chipset.Port2Size // RAM part 2 &Port2, &Chipset.Port2Size // RAM part 2
}, },
{ {
'G', // HP48GX 'G', // HP48GX
&pbyRom, &dwRomSize, // ROM &pbyRom, &dwRomSize, // ROM
&Port0, &Chipset.Port0Size, // RAM &Port0, &Chipset.Port0Size, // RAM
&pbyNoMEM, NULL, // BS &pbyNoMEM, NULL, // BS
&Port1, &Chipset.Port1Size, // Card slot 1 &Port1, &Chipset.Port1Size, // Card slot 1
&pbyPort2, &dwPort2Size // Card slot 2 &pbyPort2, &dwPort2Size // Card slot 2
}, },
{ {
'S', // HP48SX 'S', // HP48SX
&pbyRom, &dwRomSize, // ROM &pbyRom, &dwRomSize, // ROM
&Port0, &Chipset.Port0Size, // RAM &Port0, &Chipset.Port0Size, // RAM
&Port1, &Chipset.Port1Size, // Card slot 1 &Port1, &Chipset.Port1Size, // Card slot 1
&pbyPort2, &dwPort2Size, // Card slot 2 &pbyPort2, &dwPort2Size, // Card slot 2
&pbyNoMEM, NULL // nc. &pbyNoMEM, NULL // nc.
}, },
{ {
'X', // HP49G 'X', // HP49G
&pbyRom, &dwRomSize, // Flash &pbyRom, &dwRomSize, // Flash
&Port0, &Chipset.Port0Size, // RAM &Port0, &Chipset.Port0Size, // RAM
&pbyNoMEM, NULL, // BS &pbyNoMEM, NULL, // BS
&Port1, &Chipset.Port1Size, // Port 1 part 1 &Port1, &Chipset.Port1Size, // Port 1 part 1
&Port2, &Chipset.Port2Size // Port 1 part 2 &Port2, &Chipset.Port2Size // Port 1 part 2
} }
}; };
static MODEL_MAP_T CONST *pMapping = MemMap; // model specific memory mapping static MODEL_MAP_T CONST *pMapping = MemMap; // model specific memory mapping
static enum MEM_MAPPING eMapType = MEM_MMU; // MMU memory mapping static enum MEM_MAPPING eMapType = MEM_MMU; // MMU memory mapping
static LPBYTE pbyMapData = NULL; static LPBYTE pbyMapData = NULL;
static DWORD dwMapDataSize = 0; static DWORD dwMapDataSize = 0;
static DWORD dwMapDataMask = 0; static DWORD dwMapDataMask = 0;
BOOL SetMemRomType(BYTE cCurrentRomType) BOOL SetMemRomType(BYTE cCurrentRomType)
{ {
UINT i; UINT i;
pMapping = MemMap; // init default mapping pMapping = MemMap; // init default mapping
// scan for all table entries // scan for all table entries
for (i = 0; i < ARRAYSIZEOF(MemMap); ++i) for (i = 0; i < ARRAYSIZEOF(MemMap); ++i)
{ {
if (MemMap[i].byType == cCurrentRomType) if (MemMap[i].byType == cCurrentRomType)
{ {
pMapping = &MemMap[i]; // found entry pMapping = &MemMap[i]; // found entry
return TRUE; return TRUE;
} }
} }
return FALSE; return FALSE;
} }
BOOL SetMemMapType(enum MEM_MAPPING eType) BOOL SetMemMapType(enum MEM_MAPPING eType)
{ {
BOOL bSucc = TRUE; BOOL bSucc = TRUE;
eMapType = eType; eMapType = eType;
switch (eMapType) switch (eMapType)
{ {
case MEM_MMU: case MEM_MMU:
pbyMapData = NULL; // data pbyMapData = NULL; // data
dwMapDataSize = 512 * 1024 * 2; // data size dwMapDataSize = 512 * 1024 * 2; // data size
dwMapDataMask = dwMapDataSize - 1; // size mask dwMapDataMask = dwMapDataSize - 1; // size mask
break; break;
case MEM_NCE1: case MEM_NCE1:
pbyMapData = *pMapping->ppbyNCE1; pbyMapData = *pMapping->ppbyNCE1;
dwMapDataSize = *pMapping->pdwNCE1Size; // ROM size is always in nibbles dwMapDataSize = *pMapping->pdwNCE1Size; // ROM size is always in nibbles
dwMapDataMask = dwMapDataSize - 1; // size mask dwMapDataMask = dwMapDataSize - 1; // size mask
break; break;
case MEM_NCE2: case MEM_NCE2:
pbyMapData = *pMapping->ppbyNCE2; pbyMapData = *pMapping->ppbyNCE2;
dwMapDataSize = *pMapping->pdwNCE2Size * 1024 * 2; dwMapDataSize = *pMapping->pdwNCE2Size * 1024 * 2;
dwMapDataMask = dwMapDataSize - 1; // size mask dwMapDataMask = dwMapDataSize - 1; // size mask
break; break;
case MEM_CE1: case MEM_CE1:
pbyMapData = *pMapping->ppbyCE1; pbyMapData = *pMapping->ppbyCE1;
dwMapDataSize = *pMapping->pdwCE1Size * 1024 * 2; dwMapDataSize = *pMapping->pdwCE1Size * 1024 * 2;
dwMapDataMask = dwMapDataSize - 1; // size mask dwMapDataMask = dwMapDataSize - 1; // size mask
break; break;
case MEM_CE2: case MEM_CE2:
pbyMapData = *pMapping->ppbyCE2; pbyMapData = *pMapping->ppbyCE2;
dwMapDataSize = *pMapping->pdwCE2Size * 1024 * 2; dwMapDataSize = *pMapping->pdwCE2Size * 1024 * 2;
dwMapDataMask = dwMapDataSize - 1; // size mask dwMapDataMask = dwMapDataSize - 1; // size mask
break; break;
case MEM_NCE3: case MEM_NCE3:
pbyMapData = *pMapping->ppbyNCE3; pbyMapData = *pMapping->ppbyNCE3;
dwMapDataSize = *pMapping->pdwNCE3Size * 1024 * 2; dwMapDataSize = *pMapping->pdwNCE3Size * 1024 * 2;
dwMapDataMask = dwMapDataSize - 1; // size mask dwMapDataMask = dwMapDataSize - 1; // size mask
break; break;
default: _ASSERT(FALSE); default: _ASSERT(FALSE);
pbyMapData = NULL; pbyMapData = NULL;
dwMapDataSize = 0; dwMapDataSize = 0;
dwMapDataMask = 0; dwMapDataMask = 0;
bSucc = FALSE; bSucc = FALSE;
} }
return bSucc; return bSucc;
} }
enum MEM_MAPPING GetMemMapType(VOID) enum MEM_MAPPING GetMemMapType(VOID)
{ {
return eMapType; return eMapType;
} }
BOOL GetMemAvail(enum MEM_MAPPING eType) BOOL GetMemAvail(enum MEM_MAPPING eType)
{ {
switch (eType) switch (eType)
{ {
case MEM_MMU: return TRUE; case MEM_MMU: return TRUE;
case MEM_NCE1: return *pMapping->ppbyNCE1 != NULL; case MEM_NCE1: return *pMapping->ppbyNCE1 != NULL;
case MEM_NCE2: return *pMapping->ppbyNCE2 != NULL; case MEM_NCE2: return *pMapping->ppbyNCE2 != NULL;
case MEM_CE1: return *pMapping->ppbyCE1 != NULL; case MEM_CE1: return *pMapping->ppbyCE1 != NULL;
case MEM_CE2: return *pMapping->ppbyCE2 != NULL; case MEM_CE2: return *pMapping->ppbyCE2 != NULL;
case MEM_NCE3: return *pMapping->ppbyNCE3 != NULL; case MEM_NCE3: return *pMapping->ppbyNCE3 != NULL;
default: _ASSERT(FALSE); default: _ASSERT(FALSE);
} }
return FALSE; return FALSE;
} }
DWORD GetMemDataSize(VOID) DWORD GetMemDataSize(VOID)
{ {
return dwMapDataSize; return dwMapDataSize;
} }
DWORD GetMemDataMask(VOID) DWORD GetMemDataMask(VOID)
{ {
return dwMapDataMask; return dwMapDataMask;
} }
BYTE GetMemNib(DWORD *p) BYTE GetMemNib(DWORD *p)
{ {
BYTE byVal; BYTE byVal;
if (pbyMapData == NULL) if (pbyMapData == NULL)
{ {
Npeek(&byVal, *p, 1); Npeek(&byVal, *p, 1);
} }
else else
{ {
byVal = pbyMapData[*p]; byVal = pbyMapData[*p];
} }
*p = (*p + 1) & dwMapDataMask; *p = (*p + 1) & dwMapDataMask;
return byVal; return byVal;
} }
VOID GetMemPeek(BYTE *a, DWORD d, UINT s) VOID GetMemPeek(BYTE *a, DWORD d, UINT s)
{ {
if (pbyMapData == NULL) if (pbyMapData == NULL)
{ {
Npeek(a, d, s); Npeek(a, d, s);
} }
else else
{ {
for (; s > 0; --s, ++d) for (; s > 0; --s, ++d)
{ {
*a++ = pbyMapData[d & dwMapDataMask]; *a++ = pbyMapData[d & dwMapDataMask];
} }
} }
return; return;
} }

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -1,25 +1,25 @@
/* /*
* disrpl.h * disrpl.h
* *
* This file is part of Emu48 * This file is part of Emu48
* *
* Copyright (C) 2008 Christoph Gießelink * Copyright (C) 2008 Christoph Gießelink
* *
*/ */
// RPL platform type // RPL platform type
#define RPL_P1 (1<<0) // Clamshell without RRP #define RPL_P1 (1<<0) // Clamshell without RRP
#define RPL_P2 (RPL_P1 | (1<<1)) // Pioneer / Clamshell #define RPL_P2 (RPL_P1 | (1<<1)) // Pioneer / Clamshell
#define RPL_P3 (RPL_P2 | (1<<2)) // Charlemagne #define RPL_P3 (RPL_P2 | (1<<2)) // Charlemagne
#define RPL_P4 (RPL_P3 | (1<<3)) // Alcuin #define RPL_P4 (RPL_P3 | (1<<3)) // Alcuin
#define RPL_P5 (RPL_P4 | (1<<4)) // V'ger #define RPL_P5 (RPL_P4 | (1<<4)) // V'ger
extern DWORD dwRplPlatform; // RPL platform extern DWORD dwRplPlatform; // RPL platform
extern BOOL bRplViewName; // show entry point name extern BOOL bRplViewName; // show entry point name
extern BOOL bRplViewAddr; // show adress extern BOOL bRplViewAddr; // show adress
extern BOOL bRplViewBin; // show binary data extern BOOL bRplViewBin; // show binary data
extern BOOL bRplViewAsm; // show ASM code instead of hex data extern BOOL bRplViewAsm; // show ASM code instead of hex data
extern BYTE (*RplReadNibble)(DWORD *p); // read nibble function pointer extern BYTE (*RplReadNibble)(DWORD *p); // read nibble function pointer
extern DWORD RplSkipObject(DWORD dwAddr); extern DWORD RplSkipObject(DWORD dwAddr);
extern LPTSTR RplDecodeObject(DWORD dwAddr, DWORD *pdwNxtAddr); extern LPTSTR RplDecodeObject(DWORD dwAddr, DWORD *pdwNxtAddr);
extern LPTSTR RplCreateObjView(DWORD dwStartAddr, DWORD dwEndAddr, BOOL bSingleObj); extern LPTSTR RplCreateObjView(DWORD dwStartAddr, DWORD dwEndAddr, BOOL bSingleObj);

File diff suppressed because it is too large Load diff

View file

@ -1,454 +1,455 @@
/* /*
* emu48.h * Emu48.h
* *
* This file is part of Emu48 * This file is part of Emu48
* *
* Copyright (C) 1995 Sebastien Carlier * Copyright (C) 1995 Sebastien Carlier
* *
*/ */
#include "types.h" #include "types.h"
#define _KB(a) ((a)*2*1024) #define _KB(a) ((a)*2*1024)
#define HARDWARE "Yorke" // emulator hardware #define HARDWARE "Yorke" // emulator hardware
#define MODELS "6AEGSX" // valid calculator models #define MODELS "6AEGSX" // valid calculator models
#define ARRAYSIZEOF(a) (sizeof(a) / sizeof(a[0])) #define ARRAYSIZEOF(a) (sizeof(a) / sizeof(a[0]))
// cards status // cards status
#define PORT1_PRESENT ((cCurrentRomType=='S')?P1C:P2C) #define PORT1_PRESENT ((cCurrentRomType=='S')?P1C:P2C)
#define PORT1_WRITE ((cCurrentRomType=='S')?P1W:P2W) #define PORT1_WRITE ((cCurrentRomType=='S')?P1W:P2W)
#define PORT2_PRESENT ((cCurrentRomType=='S')?P2C:P1C) #define PORT2_PRESENT ((cCurrentRomType=='S')?P2C:P1C)
#define PORT2_WRITE ((cCurrentRomType=='S')?P2W:P1W) #define PORT2_WRITE ((cCurrentRomType=='S')?P2W:P1W)
#define BINARYHEADER48 "HPHP48-W" #define BINARYHEADER48 "HPHP48-W"
#define BINARYHEADER49 "HPHP49-W" #define BINARYHEADER49 "HPHP49-W"
#define BIN_FILTER "Port Data File (*.BIN)\0*.BIN\0All Files (*.*)\0*.*\0" #define BIN_FILTER "Port Data File (*.BIN)\0*.BIN\0All Files (*.*)\0*.*\0"
#define HP_FILTER "HP Binary Object (*.HP;*.LIB)\0*.HP;*.LIB\0All Files (*.*)\0*.*\0" #define HP_FILTER "HP Binary Object (*.HP;*.LIB)\0*.HP;*.LIB\0All Files (*.*)\0*.*\0"
#define CF_HPOBJ "CF_HPOBJ" // clipboard format for DDE #define CF_HPOBJ "CF_HPOBJ" // clipboard format for DDE
// CPU cycles in 16384 Hz time frame // CPU cycles in 16384 Hz time frame
#define T2CYCLES ((cCurrentRomType=='S')?dwSXCycles:dwGXCycles) #define T2CYCLES ((cCurrentRomType=='S')?dwSXCycles:dwGXCycles)
#define SM_RUN 0 // states of cpu emulation thread #define SM_RUN 0 // states of cpu emulation thread
#define SM_INVALID 1 #define SM_INVALID 1
#define SM_RETURN 2 #define SM_RETURN 2
#define SM_SLEEP 3 #define SM_SLEEP 3
#define S_ERR_NO 0 // stack errorcodes #define S_ERR_NO 0 // stack errorcodes
#define S_ERR_OBJECT 1 #define S_ERR_OBJECT 1
#define S_ERR_BINARY 2 #define S_ERR_BINARY 2
#define S_ERR_ASCII 3 #define S_ERR_ASCII 3
#define BAD_OB (0xFFFFFFFF) // bad object #define BAD_OB (0xFFFFFFFF) // bad object
#define NO_SERIAL "disabled" // port not open #define NO_SERIAL "disabled" // port not open
#define HP_MNEMONICS FALSE // disassembler mnenomics mode #define HP_MNEMONICS FALSE // disassembler mnenomics mode
#define CLASS_MNEMONICS TRUE #define CLASS_MNEMONICS TRUE
#define MACRO_OFF 0 // macro recorder off #define MACRO_OFF 0 // macro recorder off
#define MACRO_NEW 1 #define MACRO_NEW 1
#define MACRO_PLAY 2 #define MACRO_PLAY 2
#define DISP_POINTER 0x01 // defines for display area #define DISP_POINTER 0x01 // defines for display area
#define DISP_MAIN 0x02 #define DISP_MAIN 0x02
#define DISP_MENUE 0x04 #define DISP_MENUE 0x04
#define ROMPAGESIZE (1<<12) // ROM dirty page size in nibbles #define ROMPAGESIZE (1<<12) // ROM dirty page size in nibbles
// window styles // window styles
#define STYLE_TITLE (WS_CAPTION|WS_SYSMENU|WS_MINIMIZEBOX|WS_OVERLAPPED) #define STYLE_TITLE (WS_CAPTION|WS_SYSMENU|WS_MINIMIZEBOX|WS_OVERLAPPED)
#define STYLE_NOTITLE (WS_POPUP|WS_SYSMENU|WS_MINIMIZEBOX|WS_CLIPSIBLINGS) #define STYLE_NOTITLE (WS_POPUP|WS_SYSMENU|WS_MINIMIZEBOX|WS_CLIPSIBLINGS)
// WM_COPYDATA identifier // WM_COPYDATA identifier
#define CDID_FILENAME 1 // send file name #define CDID_FILENAME 1 // send file name
// macro to check for valid calculator model // macro to check for valid calculator model
#define isModelValid(m) (m != 0 && strchr(MODELS,m) != NULL) #define isModelValid(m) (m != 0 && strchr(MODELS,m) != NULL)
// values for mapping area // values for mapping area
enum MMUMAP { M_IO, M_ROM, M_RAM, M_P1, M_P2, M_BS }; enum MMUMAP { M_IO, M_ROM, M_RAM, M_P1, M_P2, M_BS };
// values for disassembler memory mapping modes // values for disassembler memory mapping modes
enum MEM_MAPPING { MEM_MMU, MEM_NCE1, MEM_NCE2, MEM_CE1, MEM_CE2, MEM_NCE3 }; enum MEM_MAPPING { MEM_MMU, MEM_NCE1, MEM_NCE2, MEM_CE1, MEM_CE2, MEM_NCE3 };
// Kermit CRC calculation // Kermit CRC calculation
static __inline WORD UpCRC(WORD wCRC, BYTE nib) { return (wCRC >> 4) ^ (((wCRC ^ nib) & 0xf) * 0x1081); } static __inline WORD UpCRC(WORD wCRC, BYTE nib) { return (wCRC >> 4) ^ (((wCRC ^ nib) & 0xf) * 0x1081); }
// Emu48.c // Emu48.c
extern HPALETTE hPalette; extern HPALETTE hPalette;
extern HPALETTE hOldPalette; extern HPALETTE hOldPalette;
extern HANDLE hEventShutdn; extern HANDLE hEventShutdn;
extern LPTSTR szAppName; extern LPTSTR szAppName;
extern LPTSTR szTopic; extern LPTSTR szTopic;
extern LPTSTR szTitle; extern LPTSTR szTitle;
extern CRITICAL_SECTION csGDILock; extern CRITICAL_SECTION csGDILock;
extern CRITICAL_SECTION csLcdLock; extern CRITICAL_SECTION csLcdLock;
extern CRITICAL_SECTION csKeyLock; extern CRITICAL_SECTION csKeyLock;
extern CRITICAL_SECTION csIOLock; extern CRITICAL_SECTION csIOLock;
extern CRITICAL_SECTION csT1Lock; extern CRITICAL_SECTION csT1Lock;
extern CRITICAL_SECTION csT2Lock; extern CRITICAL_SECTION csT2Lock;
extern CRITICAL_SECTION csTxdLock; extern CRITICAL_SECTION csTxdLock;
extern CRITICAL_SECTION csRecvLock; extern CRITICAL_SECTION csRecvLock;
extern CRITICAL_SECTION csSlowLock; extern CRITICAL_SECTION csSlowLock;
extern CRITICAL_SECTION csDbgLock; extern CRITICAL_SECTION csDbgLock;
extern INT nArgc; extern INT nArgc;
extern LPCTSTR *ppArgv; extern LPCTSTR *ppArgv;
extern LARGE_INTEGER lFreq; extern LARGE_INTEGER lFreq;
extern LARGE_INTEGER lAppStart; extern LARGE_INTEGER lAppStart;
extern DWORD idDdeInst; extern DWORD idDdeInst;
extern UINT uCF_HpObj; extern UINT uCF_HpObj;
extern HINSTANCE hApp; extern HINSTANCE hApp;
extern HWND hWnd; extern HWND hWnd;
extern HWND hDlgDebug; extern HWND hDlgDebug;
extern HWND hDlgFind; extern HWND hDlgFind;
extern HWND hDlgProfile; extern HWND hDlgProfile;
extern HWND hDlgRplObjView; extern HWND hDlgRplObjView;
extern HDC hWindowDC; extern HDC hWindowDC;
extern DWORD dwTColor; extern DWORD dwTColor;
extern DWORD dwTColorTol; extern DWORD dwTColorTol;
extern HRGN hRgn; extern HRGN hRgn;
extern HCURSOR hCursorArrow; extern HCURSOR hCursorArrow;
extern HCURSOR hCursorHand; extern HCURSOR hCursorHand;
extern UINT uWaveDevId; extern UINT uWaveDevId;
extern DWORD dwWakeupDelay; extern DWORD dwWakeupDelay;
extern BOOL bAutoSave; extern BOOL bAutoSave;
extern BOOL bAutoSaveOnExit; extern BOOL bAutoSaveOnExit;
extern BOOL bSaveDefConfirm; extern BOOL bSaveDefConfirm;
extern BOOL bStartupBackup; extern BOOL bStartupBackup;
extern BOOL bAlwaysDisplayLog; extern BOOL bAlwaysDisplayLog;
extern BOOL bLoadObjectWarning; extern BOOL bLoadObjectWarning;
extern BOOL bShowTitle; extern BOOL bShowTitle;
extern BOOL bShowMenu; extern BOOL bShowMenu;
extern BOOL bAlwaysOnTop; extern BOOL bAlwaysOnTop;
extern BOOL bActFollowsMouse; extern BOOL bActFollowsMouse;
extern BOOL bClientWinMove; extern BOOL bClientWinMove;
extern BOOL bSingleInstance; extern BOOL bSingleInstance;
extern HANDLE hThread; extern HANDLE hThread;
extern VOID SetWindowTitle(LPCTSTR szString); extern VOID SetWindowTitle(LPCTSTR szString);
extern VOID ForceForegroundWindow(HWND hWnd); extern VOID ForceForegroundWindow(HWND hWnd);
extern VOID CopyItemsToClipboard(HWND hWnd); extern VOID CopyItemsToClipboard(HWND hWnd);
// mru.c // mru.c
extern BOOL MruInit(UINT nNum); extern BOOL MruInit(UINT nNum);
extern VOID MruCleanup(VOID); extern VOID MruCleanup(VOID);
extern VOID MruAdd(LPCTSTR lpszEntry); extern VOID MruAdd(LPCTSTR lpszEntry);
extern VOID MruRemove(UINT nIndex); extern VOID MruRemove(UINT nIndex);
extern VOID MruMoveTop(UINT nIndex); extern VOID MruMoveTop(UINT nIndex);
extern UINT MruEntries(VOID); extern UINT MruEntries(VOID);
extern UINT MruID(LPCTSTR lpszEntry); extern UINT MruID(LPCTSTR lpszEntry);
extern VOID MruFilename(UINT nIndex, LPTSTR szFilename, UINT nBuffersize); extern VOID MruFilename(UINT nIndex, LPTSTR szFilename, UINT nBuffersize);
extern VOID MruUpdateMenu(HMENU hMenu); extern VOID MruUpdateMenu(HMENU hMenu);
extern VOID MruWriteList(VOID); extern VOID MruWriteList(VOID);
extern VOID MruReadList(VOID); extern VOID MruReadList(VOID);
// Settings.c // Settings.c
extern VOID ReadSettings(VOID); extern VOID ReadSettings(VOID);
extern VOID WriteSettings(VOID); extern VOID WriteSettings(VOID);
extern VOID ReadLastDocument(LPTSTR szFileName, DWORD nSize); extern VOID ReadLastDocument(LPTSTR szFileName, DWORD nSize);
extern VOID WriteLastDocument(LPCTSTR szFilename); extern VOID WriteLastDocument(LPCTSTR szFilename);
extern VOID ReadSettingsString(LPCTSTR lpszSection, LPCTSTR lpszEntry, LPCTSTR lpDefault, LPTSTR lpData, DWORD dwSize); extern VOID ReadSettingsString(LPCTSTR lpszSection, LPCTSTR lpszEntry, LPCTSTR lpDefault, LPTSTR lpData, DWORD dwSize);
extern VOID WriteSettingsString(LPCTSTR lpszSection, LPCTSTR lpszEntry, LPTSTR lpData); extern VOID WriteSettingsString(LPCTSTR lpszSection, LPCTSTR lpszEntry, LPTSTR lpData);
extern INT ReadSettingsInt(LPCTSTR lpszSection, LPCTSTR lpszEntry, INT nDefault); extern INT ReadSettingsInt(LPCTSTR lpszSection, LPCTSTR lpszEntry, INT nDefault);
extern VOID WriteSettingsInt(LPCTSTR lpszSection, LPCTSTR lpszEntry, INT nValue); extern VOID WriteSettingsInt(LPCTSTR lpszSection, LPCTSTR lpszEntry, INT nValue);
extern VOID DelSettingsKey(LPCTSTR lpszSection, LPCTSTR lpszEntry); extern VOID DelSettingsKey(LPCTSTR lpszSection, LPCTSTR lpszEntry);
// Display.c // Display.c
extern BOOL bGrayscale; extern BOOL bGrayscale;
extern UINT nBackgroundX; extern UINT nBackgroundX;
extern UINT nBackgroundY; extern UINT nBackgroundY;
extern UINT nBackgroundW; extern UINT nBackgroundW;
extern UINT nBackgroundH; extern UINT nBackgroundH;
extern UINT nLcdX; extern UINT nLcdX;
extern UINT nLcdY; extern UINT nLcdY;
extern UINT nLcdZoom; extern UINT nLcdZoom;
extern UINT nGdiXZoom; extern UINT nGdiXZoom;
extern UINT nGdiYZoom; extern UINT nGdiYZoom;
extern HDC hLcdDC; extern HDC hLcdDC;
extern HDC hMainDC; extern HDC hMainDC;
extern HDC hAnnunDC; extern HDC hAnnunDC;
extern BYTE (*GetLineCounter)(VOID); extern BYTE (*GetLineCounter)(VOID);
extern VOID (*StartDisplay)(BYTE byInitial); extern VOID (*StartDisplay)(BYTE byInitial);
extern VOID (*StopDisplay)(VOID); extern VOID (*StopDisplay)(VOID);
extern VOID UpdateContrast(BYTE byContrast); extern VOID UpdateContrast(BYTE byContrast);
extern VOID SetLcdColor(UINT nId, UINT nRed, UINT nGreen, UINT nBlue); extern VOID SetLcdColor(UINT nId, UINT nRed, UINT nGreen, UINT nBlue);
extern VOID SetLcdMode(BOOL bMode); extern VOID SetLcdMode(BOOL bMode);
extern VOID CreateLcdBitmap(VOID); extern VOID CreateLcdBitmap(VOID);
extern VOID DestroyLcdBitmap(VOID); extern VOID DestroyLcdBitmap(VOID);
extern BOOL CreateMainBitmap(LPCTSTR szFilename); extern BOOL CreateMainBitmap(LPCTSTR szFilename);
extern VOID DestroyMainBitmap(VOID); extern VOID DestroyMainBitmap(VOID);
extern BOOL CreateAnnunBitmap(LPCTSTR szFilename); extern BOOL CreateAnnunBitmap(LPCTSTR szFilename);
extern VOID DestroyAnnunBitmap(VOID); extern VOID DestroyAnnunBitmap(VOID);
extern VOID UpdateDisplayPointers(VOID); extern VOID UpdateDisplayPointers(VOID);
extern VOID UpdateMainDisplay(VOID); extern VOID UpdateMainDisplay(VOID);
extern VOID UpdateMenuDisplay(VOID); extern VOID UpdateMenuDisplay(VOID);
extern VOID WriteToMainDisplay(LPBYTE a, DWORD d, UINT s); extern VOID WriteToMainDisplay(LPBYTE a, DWORD d, UINT s);
extern VOID WriteToMenuDisplay(LPBYTE a, DWORD d, UINT s); extern VOID WriteToMenuDisplay(LPBYTE a, DWORD d, UINT s);
extern VOID UpdateAnnunciators(DWORD dwUpdateMask); extern VOID UpdateAnnunciators(DWORD dwUpdateMask);
extern VOID ResizeWindow(VOID); extern VOID ResizeWindow(VOID);
// Engine.c // Engine.c
extern BOOL bInterrupt; extern BOOL bInterrupt;
extern UINT nState; extern UINT nState;
extern UINT nNextState; extern UINT nNextState;
extern BOOL bEnableSlow; extern BOOL bEnableSlow;
extern BOOL bRealSpeed; extern BOOL bRealSpeed;
extern BOOL bKeySlow; extern BOOL bKeySlow;
extern BOOL bSoundSlow; extern BOOL bSoundSlow;
extern UINT nOpcSlow; extern UINT nOpcSlow;
extern CHIPSET Chipset; extern CHIPSET Chipset;
extern TCHAR szSerialWire[16]; extern TCHAR szSerialWire[16];
extern TCHAR szSerialIr[16]; extern TCHAR szSerialIr[16];
extern DWORD dwSXCycles; extern DWORD dwSXCycles;
extern DWORD dwGXCycles; extern DWORD dwGXCycles;
extern HANDLE hEventDebug; extern HANDLE hEventDebug;
extern BOOL bDbgAutoStateCtrl; extern BOOL bDbgAutoStateCtrl;
extern INT nDbgState; extern INT nDbgState;
extern BOOL bDbgNOP3; extern BOOL bDbgNOP3;
extern BOOL bDbgCode; extern BOOL bDbgCode;
extern BOOL bDbgRPL; extern BOOL bDbgRPL;
extern BOOL bDbgSkipInt; extern BOOL bDbgSkipInt;
extern DWORD dwDbgStopPC; extern DWORD dwDbgStopPC;
extern DWORD dwDbgRplPC; extern DWORD dwDbgRplPC;
extern DWORD dwDbgRstkp; extern DWORD dwDbgRstkp;
extern DWORD dwDbgRstk; extern DWORD dwDbgRstk;
extern DWORD *pdwInstrArray; extern DWORD *pdwInstrArray;
extern WORD wInstrSize; extern WORD wInstrSize;
extern WORD wInstrWp; extern WORD wInstrWp;
extern WORD wInstrRp; extern WORD wInstrRp;
extern VOID (*fnOutTrace)(VOID); extern VOID (*fnOutTrace)(VOID);
extern VOID SuspendDebugger(VOID); extern VOID SuspendDebugger(VOID);
extern VOID ResumeDebugger(VOID); extern VOID ResumeDebugger(VOID);
extern VOID CheckSerial(VOID); extern VOID CheckSerial(VOID);
extern VOID InitAdjustSpeed(VOID); extern VOID InitAdjustSpeed(VOID);
extern VOID AdjKeySpeed(VOID); extern VOID AdjKeySpeed(VOID);
extern VOID SetSpeed(BOOL bAdjust); extern VOID SetSpeed(BOOL bAdjust);
extern VOID UpdateKdnBit(VOID); extern VOID UpdateKdnBit(VOID);
extern BOOL WaitForSleepState(VOID); extern BOOL WaitForSleepState(VOID);
extern UINT SwitchToState(UINT nNewState); extern UINT SwitchToState(UINT nNewState);
extern UINT WorkerThread(LPVOID pParam); extern UINT WorkerThread(LPVOID pParam);
// Fetch.c // Fetch.c
extern VOID EvalOpcode(LPBYTE I); extern VOID EvalOpcode(LPBYTE I);
// Files.c // Files.c
extern TCHAR szEmuDirectory[MAX_PATH]; extern TCHAR szEmuDirectory[MAX_PATH];
extern TCHAR szCurrentDirectory[MAX_PATH]; extern TCHAR szCurrentDirectory[MAX_PATH];
extern TCHAR szCurrentKml[MAX_PATH]; extern TCHAR szCurrentKml[MAX_PATH];
extern TCHAR szBackupKml[MAX_PATH]; extern TCHAR szBackupKml[MAX_PATH];
extern TCHAR szCurrentFilename[MAX_PATH]; extern TCHAR szCurrentFilename[MAX_PATH];
extern TCHAR szBackupFilename[MAX_PATH]; extern TCHAR szBackupFilename[MAX_PATH];
extern TCHAR szBufferFilename[MAX_PATH]; extern TCHAR szBufferFilename[MAX_PATH];
extern TCHAR szPort2Filename[MAX_PATH]; extern TCHAR szPort2Filename[MAX_PATH];
extern BOOL bDocumentAvail; extern BOOL bDocumentAvail;
extern BYTE cCurrentRomType; extern BYTE cCurrentRomType;
extern UINT nCurrentClass; extern UINT nCurrentClass;
extern LPBYTE Port0; extern LPBYTE Port0;
extern LPBYTE Port1; extern LPBYTE Port1;
extern LPBYTE Port2; extern LPBYTE Port2;
extern LPBYTE pbyRom; extern LPBYTE pbyRom;
extern BOOL bRomWriteable; extern BOOL bRomWriteable;
extern DWORD dwRomSize; extern DWORD dwRomSize;
extern LPBYTE pbyRomDirtyPage; extern LPBYTE pbyRomDirtyPage;
extern DWORD dwRomDirtyPageSize; extern DWORD dwRomDirtyPageSize;
extern WORD wRomCrc; extern WORD wRomCrc;
extern BOOL bRomCrcCorrection; extern BOOL bRomCrcCorrection;
extern LPBYTE pbyPort2; extern LPBYTE pbyPort2;
extern BOOL bPort2Writeable; extern BOOL bPort2Writeable;
extern BOOL bPort2IsShared; extern BOOL bPort2IsShared;
extern DWORD dwPort2Size; extern DWORD dwPort2Size;
extern DWORD dwPort2Mask; extern DWORD dwPort2Mask;
extern WORD wPort2Crc; extern WORD wPort2Crc;
extern BOOL bBackup; extern BOOL bBackup;
extern VOID SetWindowLocation(HWND hWnd,INT nPosX,INT nPosY); extern VOID SetWindowLocation(HWND hWnd,INT nPosX,INT nPosY);
extern DWORD GetCutPathName(LPCTSTR szFileName,LPTSTR szBuffer,DWORD dwBufferLength,INT nCutLength); extern DWORD GetCutPathName(LPCTSTR szFileName,LPTSTR szBuffer,DWORD dwBufferLength,INT nCutLength);
extern VOID SetWindowPathTitle(LPCTSTR szFileName); extern VOID SetWindowPathTitle(LPCTSTR szFileName);
extern BOOL CheckForBeepPatch(VOID); extern BOOL CheckForBeepPatch(VOID);
extern BOOL PatchNibble(DWORD dwAddress, BYTE byPatch); extern BOOL PatchNibble(DWORD dwAddress, BYTE byPatch);
extern VOID UpdatePatches(BOOL bPatch); extern VOID UpdatePatches(BOOL bPatch);
extern BOOL PatchRom(LPCTSTR szFilename); extern BOOL PatchRom(LPCTSTR szFilename);
extern BOOL CrcRom(WORD *pwChk); extern BOOL CrcRom(WORD *pwChk);
extern BOOL MapRom(LPCTSTR szFilename); extern BOOL MapRom(LPCTSTR szFilename);
extern VOID UnmapRom(VOID); extern VOID UnmapRom(VOID);
extern BOOL MapPort2(LPCTSTR szFilename); extern BOOL MapPort2(LPCTSTR szFilename);
extern VOID UnmapPort2(VOID); extern VOID UnmapPort2(VOID);
extern VOID ResetDocument(VOID); extern VOID ResetDocument(VOID);
extern BOOL NewDocument(VOID); extern BOOL NewDocument(VOID);
extern BOOL OpenDocument(LPCTSTR szFilename); extern BOOL OpenDocument(LPCTSTR szFilename);
extern BOOL SaveDocument(VOID); extern BOOL SaveDocument(VOID);
extern BOOL SaveDocumentAs(LPCTSTR szFilename); extern BOOL SaveDocumentAs(LPCTSTR szFilename);
extern BOOL SaveBackup(VOID); extern BOOL SaveBackup(VOID);
extern BOOL RestoreBackup(VOID); extern BOOL RestoreBackup(VOID);
extern BOOL ResetBackup(VOID); extern BOOL ResetBackup(VOID);
extern BOOL GetOpenFilename(VOID); extern BOOL GetOpenFilename(VOID);
extern BOOL GetSaveAsFilename(VOID); extern BOOL GetSaveAsFilename(VOID);
extern BOOL GetLoadObjectFilename(LPCTSTR lpstrFilter,LPCTSTR lpstrDefExt); extern BOOL GetLoadObjectFilename(LPCTSTR lpstrFilter,LPCTSTR lpstrDefExt);
extern BOOL GetSaveObjectFilename(LPCTSTR lpstrFilter,LPCTSTR lpstrDefExt); extern BOOL GetSaveObjectFilename(LPCTSTR lpstrFilter,LPCTSTR lpstrDefExt);
extern WORD WriteStack(UINT nStkLevel,LPBYTE lpBuf,DWORD dwSize); extern WORD WriteStack(UINT nStkLevel,LPBYTE lpBuf,DWORD dwSize);
extern BOOL LoadObject(LPCTSTR szFilename); extern BOOL LoadObject(LPCTSTR szFilename);
extern BOOL SaveObject(LPCTSTR szFilename); extern BOOL SaveObject(LPCTSTR szFilename);
extern BOOL LoadIconFromFile(LPCTSTR szFilename); extern BOOL LoadIconFromFile(LPCTSTR szFilename);
extern VOID LoadIconDefault(VOID); extern VOID LoadIconDefault(VOID);
extern HBITMAP LoadBitmapFile(LPCTSTR szFilename,BOOL bPalette); extern HBITMAP LoadBitmapFile(LPCTSTR szFilename,BOOL bPalette);
extern HRGN CreateRgnFromBitmap(HBITMAP hBmp,COLORREF color,DWORD dwTol); extern HRGN CreateRgnFromBitmap(HBITMAP hBmp,COLORREF color,DWORD dwTol);
// Romcrc.c // Romcrc.c
extern VOID RebuildRomCrc(VOID); extern VOID RebuildRomCrc(VOID);
// Timer.c // Timer.c
extern VOID SetHP48Time(VOID); extern VOID SetHP48Time(VOID);
extern VOID StartTimers(VOID); extern VOID StartTimers(VOID);
extern VOID StopTimers(VOID); extern VOID StopTimers(VOID);
extern DWORD ReadT2(VOID); extern DWORD ReadT2(VOID);
extern VOID SetT2(DWORD dwValue); extern VOID SetT2(DWORD dwValue);
extern BYTE ReadT1(VOID); extern BYTE ReadT1(VOID);
extern VOID SetT1(BYTE byValue); extern VOID SetT1(BYTE byValue);
// Mops.c // Mops.c
extern BOOL bFlashRomArray; extern BOOL bFlashRomArray;
extern BYTE disp; extern BYTE disp;
extern LPBYTE RMap[256]; extern LPBYTE RMap[256];
extern LPBYTE WMap[256]; extern LPBYTE WMap[256];
extern VOID Map(BYTE a, BYTE b); extern VOID Map(BYTE a, BYTE b);
extern VOID RomSwitch(DWORD adr); extern VOID RomSwitch(DWORD adr);
extern VOID Config(VOID); extern VOID Config(VOID);
extern VOID Uncnfg(VOID); extern VOID Uncnfg(VOID);
extern VOID Reset(VOID); extern VOID Reset(VOID);
extern VOID C_Eq_Id(VOID); extern VOID C_Eq_Id(VOID);
extern enum MMUMAP MapData(DWORD d); extern enum MMUMAP MapData(DWORD d);
extern VOID CpuReset(VOID); extern VOID CpuReset(VOID);
extern VOID Npeek(BYTE *a, DWORD d, UINT s); extern VOID Npeek(BYTE *a, DWORD d, UINT s);
extern VOID Nread(BYTE *a, DWORD d, UINT s); extern VOID Nread(BYTE *a, DWORD d, UINT s);
extern VOID Nwrite(BYTE *a, DWORD d, UINT s); extern VOID Nwrite(BYTE *a, DWORD d, UINT s);
extern BYTE Read2(DWORD d); extern BYTE Read2(DWORD d);
extern DWORD Read5(DWORD d); extern DWORD Read5(DWORD d);
extern VOID Write5(DWORD d, DWORD n); extern VOID Write5(DWORD d, DWORD n);
extern VOID Write2(DWORD d, BYTE n); extern VOID Write2(DWORD d, BYTE n);
extern VOID IOBit(DWORD d, BYTE b, BOOL s); extern VOID IOBit(DWORD d, BYTE b, BOOL s);
extern VOID ReadIO(BYTE *a, DWORD b, DWORD s, BOOL bUpdate); extern VOID ReadIO(BYTE *a, DWORD b, DWORD s, BOOL bUpdate);
extern VOID WriteIO(BYTE *a, DWORD b, DWORD s); extern VOID WriteIO(BYTE *a, DWORD b, DWORD s);
// Lowbat.c // Lowbat.c
extern BOOL bLowBatDisable; extern BOOL bLowBatDisable;
extern VOID StartBatMeasure(VOID); extern VOID StartBatMeasure(VOID);
extern VOID StopBatMeasure(VOID); extern VOID StopBatMeasure(VOID);
extern VOID GetBatteryState(BOOL *pbLBI, BOOL *pbVLBI); extern VOID GetBatteryState(BOOL *pbLBI, BOOL *pbVLBI);
// Keyboard.c // Keyboard.c
extern DWORD dwKeyMinDelay; extern DWORD dwKeyMinDelay;
extern VOID ScanKeyboard(BOOL bActive, BOOL bReset); extern VOID ScanKeyboard(BOOL bActive, BOOL bReset);
extern VOID KeyboardEvent(BOOL bPress, UINT out, UINT in); extern VOID KeyboardEvent(BOOL bPress, UINT out, UINT in);
// Keymacro.c // Keymacro.c
extern INT nMacroState; extern INT nMacroState;
extern INT nMacroTimeout; extern INT nMacroTimeout;
extern BOOL bMacroRealSpeed; extern BOOL bMacroRealSpeed;
extern DWORD dwMacroMinDelay; extern DWORD dwMacroMinDelay;
extern VOID KeyMacroRecord(BOOL bPress, UINT out, UINT in); extern VOID KeyMacroRecord(BOOL bPress, UINT out, UINT in);
extern LRESULT OnToolMacroNew(VOID); extern LRESULT OnToolMacroNew(VOID);
extern LRESULT OnToolMacroPlay(VOID); extern LRESULT OnToolMacroPlay(VOID);
extern LRESULT OnToolMacroStop(VOID); extern LRESULT OnToolMacroStop(VOID);
extern LRESULT OnToolMacroSettings(VOID); extern LRESULT OnToolMacroSettings(VOID);
// Redeye.c // Redeye.c
extern VOID IrPrinter(BYTE c); extern VOID IrPrinter(BYTE c);
// Udp.c // Udp.c
extern TCHAR szUdpServer[1024]; extern TCHAR szUdpServer[1024];
extern WORD wUdpPort; extern WORD wUdpPort;
extern VOID ResetUdp(VOID); extern VOID ResetUdp(VOID);
extern BOOL SendByteUdp(BYTE byData); extern BOOL SendByteUdp(BYTE byData);
// Stack.c // Stack.c
extern BOOL bDetectClpObject; extern BOOL bDetectClpObject;
extern LRESULT OnStackCopy(VOID); extern BOOL bLocaleDecimalPoint;
extern LRESULT OnStackPaste(VOID); extern LRESULT OnStackCopy(VOID);
extern LRESULT OnStackPaste(VOID);
// RPL.c
extern BOOL RPL_GetSystemFlag(INT nFlag); // RPL.c
extern DWORD RPL_SkipOb(DWORD d); extern BOOL RPL_GetSystemFlag(INT nFlag);
extern DWORD RPL_ObjectSize(BYTE *o,DWORD s); extern DWORD RPL_SkipOb(DWORD d);
extern DWORD RPL_CreateTemp(DWORD l); extern DWORD RPL_ObjectSize(BYTE *o,DWORD s);
extern UINT RPL_Depth(VOID); extern DWORD RPL_CreateTemp(DWORD l);
extern DWORD RPL_Pick(UINT l); extern UINT RPL_Depth(VOID);
extern VOID RPL_Replace(DWORD n); extern DWORD RPL_Pick(UINT l);
extern VOID RPL_Push(UINT l,DWORD n); extern VOID RPL_Replace(DWORD n);
extern VOID RPL_Push(UINT l,DWORD n);
// SndEnum.c
extern VOID SetSoundDeviceList(HWND hWnd,UINT uDeviceID); // SndEnum.c
extern VOID SetSoundDeviceList(HWND hWnd,UINT uDeviceID);
// Sound.c
extern DWORD dwWaveVol; // Sound.c
extern DWORD dwWaveTime; extern DWORD dwWaveVol;
extern BOOL SoundAvailable(UINT uDeviceID); extern DWORD dwWaveTime;
extern BOOL SoundGetDeviceID(UINT *puDeviceID); extern BOOL SoundAvailable(UINT uDeviceID);
extern BOOL SoundOpen(UINT uDeviceID); extern BOOL SoundGetDeviceID(UINT *puDeviceID);
extern VOID SoundClose(VOID); extern BOOL SoundOpen(UINT uDeviceID);
extern VOID SoundOut(CHIPSET* w, WORD wOut); extern VOID SoundClose(VOID);
extern VOID SoundBeep(DWORD dwFrequency, DWORD dwDuration); extern VOID SoundOut(CHIPSET* w, WORD wOut);
extern VOID SoundBeep(DWORD dwFrequency, DWORD dwDuration);
// DDEserv.c
extern HDDEDATA CALLBACK DdeCallback(UINT, UINT, HCONV, HSZ, HSZ, HDDEDATA, DWORD, DWORD); // DDEserv.c
extern HDDEDATA CALLBACK DdeCallback(UINT, UINT, HCONV, HSZ, HSZ, HDDEDATA, DWORD, DWORD);
// Dismem.c
extern BOOL SetMemRomType(BYTE cCurrentRomType); // Dismem.c
extern BOOL SetMemMapType(enum MEM_MAPPING eType); extern BOOL SetMemRomType(BYTE cCurrentRomType);
extern enum MEM_MAPPING GetMemMapType(VOID); extern BOOL SetMemMapType(enum MEM_MAPPING eType);
extern BOOL GetMemAvail(enum MEM_MAPPING eType); extern enum MEM_MAPPING GetMemMapType(VOID);
extern DWORD GetMemDataSize(VOID); extern BOOL GetMemAvail(enum MEM_MAPPING eType);
extern DWORD GetMemDataMask(VOID); extern DWORD GetMemDataSize(VOID);
extern BYTE GetMemNib(DWORD *p); extern DWORD GetMemDataMask(VOID);
extern VOID GetMemPeek(BYTE *a, DWORD d, UINT s); extern BYTE GetMemNib(DWORD *p);
extern VOID GetMemPeek(BYTE *a, DWORD d, UINT s);
// Disasm.c
extern BOOL disassembler_mode; // Disasm.c
extern BOOL disassembler_symb; extern BOOL disassembler_mode;
extern DWORD disassemble(DWORD addr, LPTSTR out); extern BOOL disassembler_symb;
extern DWORD disassemble(DWORD addr, LPTSTR out);
// Symbfile.c
extern BOOL RplTableEmpty(VOID); // Symbfile.c
extern BOOL RplLoadTable(LPCTSTR lpszFilename); extern BOOL RplTableEmpty(VOID);
extern VOID RplDeleteTable(VOID); extern BOOL RplLoadTable(LPCTSTR lpszFilename);
extern LPCTSTR RplGetName(DWORD dwAddr); extern VOID RplDeleteTable(VOID);
extern BOOL RplGetAddr(LPCTSTR lpszName, DWORD *pdwAddr); extern LPCTSTR RplGetName(DWORD dwAddr);
extern BOOL RplGetAddr(LPCTSTR lpszName, DWORD *pdwAddr);
// Serial.c
extern BOOL CommIsOpen(VOID); // Serial.c
extern BOOL CommOpen(LPTSTR strWirePort,LPTSTR strIrPort); extern BOOL CommIsOpen(VOID);
extern VOID CommClose(VOID); extern BOOL CommOpen(LPTSTR strWirePort,LPTSTR strIrPort);
extern VOID CommSetBaud(VOID); extern VOID CommClose(VOID);
extern BOOL UpdateUSRQ(VOID); extern VOID CommSetBaud(VOID);
extern VOID CommTxBRK(VOID); extern BOOL UpdateUSRQ(VOID);
extern VOID CommTransmit(VOID); extern VOID CommTxBRK(VOID);
extern VOID CommReceive(VOID); extern VOID CommTransmit(VOID);
extern VOID CommReceive(VOID);
// Cursor.c
extern HCURSOR CreateHandCursor(VOID); // Cursor.c
extern HCURSOR CreateHandCursor(VOID);
#if defined _USRDLL // DLL version
// Emu48dll.c #if defined _USRDLL // DLL version
extern VOID (CALLBACK *pEmuDocumentNotify)(LPCTSTR lpszFilename); // Emu48dll.c
extern BOOL DLLCreateWnd(LPCTSTR lpszFilename, LPCTSTR lpszPort2Name); extern VOID (CALLBACK *pEmuDocumentNotify)(LPCTSTR lpszFilename);
extern BOOL DLLDestroyWnd(VOID); extern BOOL DLLCreateWnd(LPCTSTR lpszFilename, LPCTSTR lpszPort2Name);
extern BOOL DLLDestroyWnd(VOID);
// Symbfile.c
#define RplGetName(a) NULL // for linking // Symbfile.c
#endif #define RplGetName(a) NULL // for linking
#endif
// Message Boxes
static __inline int InfoMessage(LPCTSTR szMessage) {return MessageBox(hWnd, szMessage, szTitle, MB_APPLMODAL|MB_OK|MB_ICONINFORMATION|MB_SETFOREGROUND);} // Message Boxes
static __inline int AbortMessage(LPCTSTR szMessage) {return MessageBox(hWnd, szMessage, szTitle, MB_APPLMODAL|MB_OK|MB_ICONSTOP|MB_SETFOREGROUND);} static __inline int InfoMessage(LPCTSTR szMessage) {return MessageBox(hWnd, szMessage, szTitle, MB_APPLMODAL|MB_OK|MB_ICONINFORMATION|MB_SETFOREGROUND);}
static __inline int YesNoMessage(LPCTSTR szMessage) {return MessageBox(hWnd, szMessage, szTitle, MB_APPLMODAL|MB_YESNO|MB_ICONEXCLAMATION|MB_SETFOREGROUND);} static __inline int AbortMessage(LPCTSTR szMessage) {return MessageBox(hWnd, szMessage, szTitle, MB_APPLMODAL|MB_OK|MB_ICONSTOP|MB_SETFOREGROUND);}
static __inline int YesNoCancelMessage(LPCTSTR szMessage,UINT uStyle) {return MessageBox(hWnd, szMessage, szTitle, MB_APPLMODAL|MB_YESNOCANCEL|MB_ICONEXCLAMATION|MB_SETFOREGROUND|uStyle);} static __inline int YesNoMessage(LPCTSTR szMessage) {return MessageBox(hWnd, szMessage, szTitle, MB_APPLMODAL|MB_YESNO|MB_ICONEXCLAMATION|MB_SETFOREGROUND);}
static __inline int YesNoCancelMessage(LPCTSTR szMessage,UINT uStyle) {return MessageBox(hWnd, szMessage, szTitle, MB_APPLMODAL|MB_YESNOCANCEL|MB_ICONEXCLAMATION|MB_SETFOREGROUND|uStyle);}
// Missing Win32 API calls
static __inline LPTSTR DuplicateString(LPCTSTR szString) // Missing Win32 API calls
{ static __inline LPTSTR DuplicateString(LPCTSTR szString)
UINT uLength = lstrlen(szString) + 1; {
LPTSTR szDup = (LPTSTR) malloc(uLength*sizeof(szDup[0])); UINT uLength = lstrlen(szString) + 1;
lstrcpy(szDup,szString); LPTSTR szDup = (LPTSTR) malloc(uLength*sizeof(szDup[0]));
return szDup; lstrcpy(szDup,szString);
} return szDup;
}

View file

@ -303,7 +303,7 @@ FONT 8, "MS Sans Serif"
BEGIN BEGIN
ICON IDI_EMU48,IDC_STATIC,7,6,20,20,SS_REALSIZEIMAGE ICON IDI_EMU48,IDC_STATIC,7,6,20,20,SS_REALSIZEIMAGE
LTEXT "",IDC_VERSION,29,6,151,8,NOT WS_GROUP LTEXT "",IDC_VERSION,29,6,151,8,NOT WS_GROUP
LTEXT "Copyright © 2023 Christoph Gießelink && Sébastien Carlier", LTEXT "Copyright © 2024 Christoph Gießelink && Sébastien Carlier",
IDC_STATIC,29,18,181,8 IDC_STATIC,29,18,181,8
DEFPUSHBUTTON "OK",IDOK,215,12,39,14 DEFPUSHBUTTON "OK",IDOK,215,12,39,14
EDITTEXT IDC_LICENSE,7,33,247,112,ES_MULTILINE | ES_AUTOHSCROLL | EDITTEXT IDC_LICENSE,7,33,247,112,ES_MULTILINE | ES_AUTOHSCROLL |
@ -622,7 +622,11 @@ BEGIN
EDITTEXT IDC_DEBUG_DATA_STARTADDR,101,27,37,14 EDITTEXT IDC_DEBUG_DATA_STARTADDR,101,27,37,14
LTEXT "End Address (hexadecimal):",IDC_STATIC,7,46,88,8 LTEXT "End Address (hexadecimal):",IDC_STATIC,7,46,88,8
EDITTEXT IDC_DEBUG_DATA_ENDADDR,101,44,37,14 EDITTEXT IDC_DEBUG_DATA_ENDADDR,101,44,37,14
PUSHBUTTON "OK",IDOK,207,27,50,14 CONTROL "8-bit",IDC_DEBUG_DATA_SAVE_8BIT,"Button",
BS_AUTORADIOBUTTON | WS_GROUP | WS_TABSTOP,158,30,29,10
CONTROL "4-bit",IDC_DEBUG_DATA_SAVE_4BIT,"Button",
BS_AUTORADIOBUTTON,214,30,29,10
PUSHBUTTON "OK",IDOK,151,44,50,14
PUSHBUTTON "Cancel",IDCANCEL,207,44,50,14 PUSHBUTTON "Cancel",IDCANCEL,207,44,50,14
END END
@ -636,7 +640,13 @@ BEGIN
PUSHBUTTON "Browse",IDC_DEBUG_DATA_BUT,207,7,50,14 PUSHBUTTON "Browse",IDC_DEBUG_DATA_BUT,207,7,50,14
LTEXT "Start Address (hexadecimal):",IDC_STATIC,7,30,90,8 LTEXT "Start Address (hexadecimal):",IDC_STATIC,7,30,90,8
EDITTEXT IDC_DEBUG_DATA_STARTADDR,101,27,37,14 EDITTEXT IDC_DEBUG_DATA_STARTADDR,101,27,37,14
PUSHBUTTON "OK",IDOK,207,27,50,14 CONTROL "Auto",IDC_DEBUG_DATA_LOAD_ABIT,"Button",
BS_AUTORADIOBUTTON | WS_GROUP | WS_TABSTOP,155,29,29,10
CONTROL "8-bit",IDC_DEBUG_DATA_LOAD_8BIT,"Button",
BS_AUTORADIOBUTTON,189,29,29,10
CONTROL "4-bit",IDC_DEBUG_DATA_LOAD_4BIT,"Button",
BS_AUTORADIOBUTTON,223,29,29,10
PUSHBUTTON "OK",IDOK,151,44,50,14
PUSHBUTTON "Cancel",IDCANCEL,207,44,50,14 PUSHBUTTON "Cancel",IDCANCEL,207,44,50,14
END END
@ -723,8 +733,8 @@ END
// //
VS_VERSION_INFO VERSIONINFO VS_VERSION_INFO VERSIONINFO
FILEVERSION 1,6,6,0 FILEVERSION 1,6,7,0
PRODUCTVERSION 1,6,6,0 PRODUCTVERSION 1,6,7,0
FILEFLAGSMASK 0x3fL FILEFLAGSMASK 0x3fL
#ifdef _DEBUG #ifdef _DEBUG
FILEFLAGS 0x1L FILEFLAGS 0x1L
@ -741,12 +751,12 @@ BEGIN
BEGIN BEGIN
VALUE "CompanyName", "Christoph Gießelink & Sebastien Carlier\0" VALUE "CompanyName", "Christoph Gießelink & Sebastien Carlier\0"
VALUE "FileDescription", "HP38/39/40/48/49 Emulator\0" VALUE "FileDescription", "HP38/39/40/48/49 Emulator\0"
VALUE "FileVersion", "1, 6, 6, 0\0" VALUE "FileVersion", "1, 6, 7, 0\0"
VALUE "InternalName", "Emu48\0" VALUE "InternalName", "Emu48\0"
VALUE "LegalCopyright", "Copyright © 2023\0" VALUE "LegalCopyright", "Copyright © 2024\0"
VALUE "OriginalFilename", "Emu48.exe\0" VALUE "OriginalFilename", "Emu48.exe\0"
VALUE "ProductName", "Emu48\0" VALUE "ProductName", "Emu48\0"
VALUE "ProductVersion", "1, 6, 6, 0\0" VALUE "ProductVersion", "1, 6, 7, 0\0"
END END
END END
BLOCK "VarFileInfo" BLOCK "VarFileInfo"

View file

@ -1,7 +1,7 @@
 
Microsoft Visual Studio Solution File, Format Version 12.00 Microsoft Visual Studio Solution File, Format Version 12.00
# Visual Studio Version 16 # Visual Studio Version 17
VisualStudioVersion = 16.0.32510.428 VisualStudioVersion = 17.2.32505.173
MinimumVisualStudioVersion = 10.0.40219.1 MinimumVisualStudioVersion = 10.0.40219.1
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "Emu48", "Emu48.vcxproj", "{D259D821-B668-408E-B5DF-F0C7B42E6726}" Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "Emu48", "Emu48.vcxproj", "{D259D821-B668-408E-B5DF-F0C7B42E6726}"
EndProject EndProject

File diff suppressed because it is too large Load diff

View file

@ -27,24 +27,24 @@
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.Default.props" /> <Import Project="$(VCTargetsPath)\Microsoft.Cpp.Default.props" />
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release Unicode|Win32'" Label="Configuration"> <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release Unicode|Win32'" Label="Configuration">
<ConfigurationType>Application</ConfigurationType> <ConfigurationType>Application</ConfigurationType>
<PlatformToolset>v142</PlatformToolset> <PlatformToolset>v143</PlatformToolset>
<UseOfMfc>false</UseOfMfc> <UseOfMfc>false</UseOfMfc>
<CharacterSet>Unicode</CharacterSet> <CharacterSet>Unicode</CharacterSet>
</PropertyGroup> </PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug Unicode|Win32'" Label="Configuration"> <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug Unicode|Win32'" Label="Configuration">
<ConfigurationType>Application</ConfigurationType> <ConfigurationType>Application</ConfigurationType>
<PlatformToolset>v142</PlatformToolset> <PlatformToolset>v143</PlatformToolset>
<UseOfMfc>false</UseOfMfc> <UseOfMfc>false</UseOfMfc>
<CharacterSet>Unicode</CharacterSet> <CharacterSet>Unicode</CharacterSet>
</PropertyGroup> </PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'" Label="Configuration"> <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'" Label="Configuration">
<ConfigurationType>Application</ConfigurationType> <ConfigurationType>Application</ConfigurationType>
<PlatformToolset>v142</PlatformToolset> <PlatformToolset>v143</PlatformToolset>
<UseOfMfc>false</UseOfMfc> <UseOfMfc>false</UseOfMfc>
</PropertyGroup> </PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|Win32'" Label="Configuration"> <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|Win32'" Label="Configuration">
<ConfigurationType>Application</ConfigurationType> <ConfigurationType>Application</ConfigurationType>
<PlatformToolset>v142</PlatformToolset> <PlatformToolset>v143</PlatformToolset>
<UseOfMfc>false</UseOfMfc> <UseOfMfc>false</UseOfMfc>
</PropertyGroup> </PropertyGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.props" /> <Import Project="$(VCTargetsPath)\Microsoft.Cpp.props" />

778
Sources/Emu48/FETCH.C Normal file
View file

@ -0,0 +1,778 @@
/*
* fetch.c
*
* This file is part of Emu48
*
* Copyright (C) 1999 Christoph Gießelink
*
*/
#include "pch.h"
#include "Opcodes.h"
#define F 0xFF // F = function
typedef const struct
{
LPCVOID pLnk;
const DWORD dwTyp;
} JMPTAB, *PJMPTAB;
// jump tables
static JMPTAB oF_[] =
{
{ (LPCVOID) oF0, F },
{ (LPCVOID) oF1, F },
{ (LPCVOID) oF2, F },
{ (LPCVOID) oF3, F },
{ (LPCVOID) oF4, F },
{ (LPCVOID) oF5, F },
{ (LPCVOID) oF6, F },
{ (LPCVOID) oF7, F },
{ (LPCVOID) oF8, F },
{ (LPCVOID) oF9, F },
{ (LPCVOID) oFA, F },
{ (LPCVOID) oFB, F },
{ (LPCVOID) oFC, F },
{ (LPCVOID) oFD, F },
{ (LPCVOID) oFE, F },
{ (LPCVOID) oFF, F }
};
static JMPTAB oE_[] =
{
{ (LPCVOID) oE0, F },
{ (LPCVOID) oE1, F },
{ (LPCVOID) oE2, F },
{ (LPCVOID) oE3, F },
{ (LPCVOID) oE4, F },
{ (LPCVOID) oE5, F },
{ (LPCVOID) oE6, F },
{ (LPCVOID) oE7, F },
{ (LPCVOID) oE8, F },
{ (LPCVOID) oE9, F },
{ (LPCVOID) oEA, F },
{ (LPCVOID) oEB, F },
{ (LPCVOID) oEC, F },
{ (LPCVOID) oED, F },
{ (LPCVOID) oEE, F },
{ (LPCVOID) oEF, F }
};
static JMPTAB oD_[] =
{
{ (LPCVOID) oD0, F },
{ (LPCVOID) oD1, F },
{ (LPCVOID) oD2, F },
{ (LPCVOID) oD3, F },
{ (LPCVOID) oD4, F },
{ (LPCVOID) oD5, F },
{ (LPCVOID) oD6, F },
{ (LPCVOID) oD7, F },
{ (LPCVOID) oD8, F },
{ (LPCVOID) oD9, F },
{ (LPCVOID) oDA, F },
{ (LPCVOID) oDB, F },
{ (LPCVOID) oDC, F },
{ (LPCVOID) oDD, F },
{ (LPCVOID) oDE, F },
{ (LPCVOID) oDF, F }
};
static JMPTAB oC_[] =
{
{ (LPCVOID) oC0, F },
{ (LPCVOID) oC1, F },
{ (LPCVOID) oC2, F },
{ (LPCVOID) oC3, F },
{ (LPCVOID) oC4, F },
{ (LPCVOID) oC5, F },
{ (LPCVOID) oC6, F },
{ (LPCVOID) oC7, F },
{ (LPCVOID) oC8, F },
{ (LPCVOID) oC9, F },
{ (LPCVOID) oCA, F },
{ (LPCVOID) oCB, F },
{ (LPCVOID) oCC, F },
{ (LPCVOID) oCD, F },
{ (LPCVOID) oCE, F },
{ (LPCVOID) oCF, F }
};
static JMPTAB oBb_[] =
{
{ (LPCVOID) oBb0, F },
{ (LPCVOID) oBb1, F },
{ (LPCVOID) oBb2, F },
{ (LPCVOID) oBb3, F },
{ (LPCVOID) oBb4, F },
{ (LPCVOID) oBb5, F },
{ (LPCVOID) oBb6, F },
{ (LPCVOID) oBb7, F },
{ (LPCVOID) oBb8, F },
{ (LPCVOID) oBb9, F },
{ (LPCVOID) oBbA, F },
{ (LPCVOID) oBbB, F },
{ (LPCVOID) oBbC, F },
{ (LPCVOID) oBbD, F },
{ (LPCVOID) oBbE, F },
{ (LPCVOID) oBbF, F }
};
static JMPTAB oBa_[] =
{
{ (LPCVOID) oBa0, F },
{ (LPCVOID) oBa1, F },
{ (LPCVOID) oBa2, F },
{ (LPCVOID) oBa3, F },
{ (LPCVOID) oBa4, F },
{ (LPCVOID) oBa5, F },
{ (LPCVOID) oBa6, F },
{ (LPCVOID) oBa7, F },
{ (LPCVOID) oBa8, F },
{ (LPCVOID) oBa9, F },
{ (LPCVOID) oBaA, F },
{ (LPCVOID) oBaB, F },
{ (LPCVOID) oBaC, F },
{ (LPCVOID) oBaD, F },
{ (LPCVOID) oBaE, F },
{ (LPCVOID) oBaF, F }
};
static JMPTAB oB_[] =
{
{ (LPCVOID) oBa_, 2 },
{ (LPCVOID) oBa_, 2 },
{ (LPCVOID) oBa_, 2 },
{ (LPCVOID) oBa_, 2 },
{ (LPCVOID) oBa_, 2 },
{ (LPCVOID) oBa_, 2 },
{ (LPCVOID) oBa_, 2 },
{ (LPCVOID) oBa_, 2 },
{ (LPCVOID) oBb_, 2 },
{ (LPCVOID) oBb_, 2 },
{ (LPCVOID) oBb_, 2 },
{ (LPCVOID) oBb_, 2 },
{ (LPCVOID) oBb_, 2 },
{ (LPCVOID) oBb_, 2 },
{ (LPCVOID) oBb_, 2 },
{ (LPCVOID) oBb_, 2 }
};
static JMPTAB oAb_[] =
{
{ (LPCVOID) oAb0, F },
{ (LPCVOID) oAb1, F },
{ (LPCVOID) oAb2, F },
{ (LPCVOID) oAb3, F },
{ (LPCVOID) oAb4, F },
{ (LPCVOID) oAb5, F },
{ (LPCVOID) oAb6, F },
{ (LPCVOID) oAb7, F },
{ (LPCVOID) oAb8, F },
{ (LPCVOID) oAb9, F },
{ (LPCVOID) oAbA, F },
{ (LPCVOID) oAbB, F },
{ (LPCVOID) oAbC, F },
{ (LPCVOID) oAbD, F },
{ (LPCVOID) oAbE, F },
{ (LPCVOID) oAbF, F }
};
static JMPTAB oAa_[] =
{
{ (LPCVOID) oAa0, F },
{ (LPCVOID) oAa1, F },
{ (LPCVOID) oAa2, F },
{ (LPCVOID) oAa3, F },
{ (LPCVOID) oAa4, F },
{ (LPCVOID) oAa5, F },
{ (LPCVOID) oAa6, F },
{ (LPCVOID) oAa7, F },
{ (LPCVOID) oAa8, F },
{ (LPCVOID) oAa9, F },
{ (LPCVOID) oAaA, F },
{ (LPCVOID) oAaB, F },
{ (LPCVOID) oAaC, F },
{ (LPCVOID) oAaD, F },
{ (LPCVOID) oAaE, F },
{ (LPCVOID) oAaF, F }
};
static JMPTAB oA_[] =
{
{ (LPCVOID) oAa_, 2 },
{ (LPCVOID) oAa_, 2 },
{ (LPCVOID) oAa_, 2 },
{ (LPCVOID) oAa_, 2 },
{ (LPCVOID) oAa_, 2 },
{ (LPCVOID) oAa_, 2 },
{ (LPCVOID) oAa_, 2 },
{ (LPCVOID) oAa_, 2 },
{ (LPCVOID) oAb_, 2 },
{ (LPCVOID) oAb_, 2 },
{ (LPCVOID) oAb_, 2 },
{ (LPCVOID) oAb_, 2 },
{ (LPCVOID) oAb_, 2 },
{ (LPCVOID) oAb_, 2 },
{ (LPCVOID) oAb_, 2 },
{ (LPCVOID) oAb_, 2 }
};
static JMPTAB o9b_[] =
{
{ (LPCVOID) o9b0, F },
{ (LPCVOID) o9b1, F },
{ (LPCVOID) o9b2, F },
{ (LPCVOID) o9b3, F },
{ (LPCVOID) o9b4, F },
{ (LPCVOID) o9b5, F },
{ (LPCVOID) o9b6, F },
{ (LPCVOID) o9b7, F },
{ (LPCVOID) o9b8, F },
{ (LPCVOID) o9b9, F },
{ (LPCVOID) o9bA, F },
{ (LPCVOID) o9bB, F },
{ (LPCVOID) o9bC, F },
{ (LPCVOID) o9bD, F },
{ (LPCVOID) o9bE, F },
{ (LPCVOID) o9bF, F }
};
static JMPTAB o9a_[] =
{
{ (LPCVOID) o9a0, F },
{ (LPCVOID) o9a1, F },
{ (LPCVOID) o9a2, F },
{ (LPCVOID) o9a3, F },
{ (LPCVOID) o9a4, F },
{ (LPCVOID) o9a5, F },
{ (LPCVOID) o9a6, F },
{ (LPCVOID) o9a7, F },
{ (LPCVOID) o9a8, F },
{ (LPCVOID) o9a9, F },
{ (LPCVOID) o9aA, F },
{ (LPCVOID) o9aB, F },
{ (LPCVOID) o9aC, F },
{ (LPCVOID) o9aD, F },
{ (LPCVOID) o9aE, F },
{ (LPCVOID) o9aF, F }
};
static JMPTAB o9_[] =
{
{ (LPCVOID) o9a_, 2 },
{ (LPCVOID) o9a_, 2 },
{ (LPCVOID) o9a_, 2 },
{ (LPCVOID) o9a_, 2 },
{ (LPCVOID) o9a_, 2 },
{ (LPCVOID) o9a_, 2 },
{ (LPCVOID) o9a_, 2 },
{ (LPCVOID) o9a_, 2 },
{ (LPCVOID) o9b_, 2 },
{ (LPCVOID) o9b_, 2 },
{ (LPCVOID) o9b_, 2 },
{ (LPCVOID) o9b_, 2 },
{ (LPCVOID) o9b_, 2 },
{ (LPCVOID) o9b_, 2 },
{ (LPCVOID) o9b_, 2 },
{ (LPCVOID) o9b_, 2 }
};
static JMPTAB o8B_[] =
{
{ (LPCVOID) o8B0, F },
{ (LPCVOID) o8B1, F },
{ (LPCVOID) o8B2, F },
{ (LPCVOID) o8B3, F },
{ (LPCVOID) o8B4, F },
{ (LPCVOID) o8B5, F },
{ (LPCVOID) o8B6, F },
{ (LPCVOID) o8B7, F },
{ (LPCVOID) o8B8, F },
{ (LPCVOID) o8B9, F },
{ (LPCVOID) o8BA, F },
{ (LPCVOID) o8BB, F },
{ (LPCVOID) o8BC, F },
{ (LPCVOID) o8BD, F },
{ (LPCVOID) o8BE, F },
{ (LPCVOID) o8BF, F }
};
static JMPTAB o8A_[] =
{
{ (LPCVOID) o8A0, F },
{ (LPCVOID) o8A1, F },
{ (LPCVOID) o8A2, F },
{ (LPCVOID) o8A3, F },
{ (LPCVOID) o8A4, F },
{ (LPCVOID) o8A5, F },
{ (LPCVOID) o8A6, F },
{ (LPCVOID) o8A7, F },
{ (LPCVOID) o8A8, F },
{ (LPCVOID) o8A9, F },
{ (LPCVOID) o8AA, F },
{ (LPCVOID) o8AB, F },
{ (LPCVOID) o8AC, F },
{ (LPCVOID) o8AD, F },
{ (LPCVOID) o8AE, F },
{ (LPCVOID) o8AF, F }
};
static JMPTAB o81B_[] =
{
{ (LPCVOID) o_invalid4, F },
{ (LPCVOID) o_invalid4, F },
{ (LPCVOID) o81B2, F },
{ (LPCVOID) o81B3, F },
{ (LPCVOID) o81B4, F },
{ (LPCVOID) o81B5, F },
{ (LPCVOID) o81B6, F },
{ (LPCVOID) o81B7, F },
{ (LPCVOID) o_invalid4, F },
{ (LPCVOID) o_invalid4, F },
{ (LPCVOID) o_invalid4, F },
{ (LPCVOID) o_invalid4, F },
{ (LPCVOID) o_invalid4, F },
{ (LPCVOID) o_invalid4, F },
{ (LPCVOID) o_invalid4, F },
{ (LPCVOID) o_invalid4, F }
};
static JMPTAB o81Af2_[] =
{
{ (LPCVOID) o81Af20, F },
{ (LPCVOID) o81Af21, F },
{ (LPCVOID) o81Af22, F },
{ (LPCVOID) o81Af23, F },
{ (LPCVOID) o81Af24, F },
{ (LPCVOID) o81Af21, F },
{ (LPCVOID) o81Af22, F },
{ (LPCVOID) o81Af23, F },
{ (LPCVOID) o81Af28, F },
{ (LPCVOID) o81Af29, F },
{ (LPCVOID) o81Af2A, F },
{ (LPCVOID) o81Af2B, F },
{ (LPCVOID) o81Af2C, F },
{ (LPCVOID) o81Af29, F },
{ (LPCVOID) o81Af2A, F },
{ (LPCVOID) o81Af2B, F }
};
static JMPTAB o81Af1_[] =
{
{ (LPCVOID) o81Af10, F },
{ (LPCVOID) o81Af11, F },
{ (LPCVOID) o81Af12, F },
{ (LPCVOID) o81Af13, F },
{ (LPCVOID) o81Af14, F },
{ (LPCVOID) o81Af11, F },
{ (LPCVOID) o81Af12, F },
{ (LPCVOID) o81Af13, F },
{ (LPCVOID) o81Af18, F },
{ (LPCVOID) o81Af19, F },
{ (LPCVOID) o81Af1A, F },
{ (LPCVOID) o81Af1B, F },
{ (LPCVOID) o81Af1C, F },
{ (LPCVOID) o81Af19, F },
{ (LPCVOID) o81Af1A, F },
{ (LPCVOID) o81Af1B, F }
};
static JMPTAB o81Af0_[] =
{
{ (LPCVOID) o81Af00, F },
{ (LPCVOID) o81Af01, F },
{ (LPCVOID) o81Af02, F },
{ (LPCVOID) o81Af03, F },
{ (LPCVOID) o81Af04, F },
{ (LPCVOID) o81Af01, F },
{ (LPCVOID) o81Af02, F },
{ (LPCVOID) o81Af03, F },
{ (LPCVOID) o81Af08, F },
{ (LPCVOID) o81Af09, F },
{ (LPCVOID) o81Af0A, F },
{ (LPCVOID) o81Af0B, F },
{ (LPCVOID) o81Af0C, F },
{ (LPCVOID) o81Af09, F },
{ (LPCVOID) o81Af0A, F },
{ (LPCVOID) o81Af0B, F }
};
static JMPTAB o81A_[] =
{
{ (LPCVOID) o81Af0_, 5 },
{ (LPCVOID) o81Af1_, 5 },
{ (LPCVOID) o81Af2_, 5 },
{ (LPCVOID) o_invalid6, F },
{ (LPCVOID) o_invalid6, F },
{ (LPCVOID) o_invalid6, F },
{ (LPCVOID) o_invalid6, F },
{ (LPCVOID) o_invalid6, F },
{ (LPCVOID) o_invalid6, F },
{ (LPCVOID) o_invalid6, F },
{ (LPCVOID) o_invalid6, F },
{ (LPCVOID) o_invalid6, F },
{ (LPCVOID) o_invalid6, F },
{ (LPCVOID) o_invalid6, F },
{ (LPCVOID) o_invalid6, F },
{ (LPCVOID) o_invalid6, F }
};
static JMPTAB o819_[] =
{
{ (LPCVOID) o819f0, F },
{ (LPCVOID) o819f1, F },
{ (LPCVOID) o819f2, F },
{ (LPCVOID) o819f3, F },
{ (LPCVOID) o_invalid5, F },
{ (LPCVOID) o_invalid5, F },
{ (LPCVOID) o_invalid5, F },
{ (LPCVOID) o_invalid5, F },
{ (LPCVOID) o_invalid5, F },
{ (LPCVOID) o_invalid5, F },
{ (LPCVOID) o_invalid5, F },
{ (LPCVOID) o_invalid5, F },
{ (LPCVOID) o_invalid5, F },
{ (LPCVOID) o_invalid5, F },
{ (LPCVOID) o_invalid5, F },
{ (LPCVOID) o_invalid5, F }
};
static JMPTAB o818_[] =
{
{ (LPCVOID) o818f0x, F },
{ (LPCVOID) o818f1x, F },
{ (LPCVOID) o818f2x, F },
{ (LPCVOID) o818f3x, F },
{ (LPCVOID) o_invalid6, F },
{ (LPCVOID) o_invalid6, F },
{ (LPCVOID) o_invalid6, F },
{ (LPCVOID) o_invalid6, F },
{ (LPCVOID) o818f8x, F },
{ (LPCVOID) o818f9x, F },
{ (LPCVOID) o818fAx, F },
{ (LPCVOID) o818fBx, F },
{ (LPCVOID) o_invalid6, F },
{ (LPCVOID) o_invalid6, F },
{ (LPCVOID) o_invalid6, F },
{ (LPCVOID) o_invalid6, F }
};
static JMPTAB o81_[] =
{
{ (LPCVOID) o810, F },
{ (LPCVOID) o811, F },
{ (LPCVOID) o812, F },
{ (LPCVOID) o813, F },
{ (LPCVOID) o814, F },
{ (LPCVOID) o815, F },
{ (LPCVOID) o816, F },
{ (LPCVOID) o817, F },
{ (LPCVOID) o818_, 4 },
{ (LPCVOID) o819_, 4 },
{ (LPCVOID) o81A_, 4 },
{ (LPCVOID) o81B_, 3 },
{ (LPCVOID) o81C, F },
{ (LPCVOID) o81D, F },
{ (LPCVOID) o81E, F },
{ (LPCVOID) o81F, F }
};
static JMPTAB o8081_[] =
{
{ (LPCVOID) o80810, F },
{ (LPCVOID) o_invalid5, F },
{ (LPCVOID) o_invalid5, F },
{ (LPCVOID) o_invalid5, F },
{ (LPCVOID) o_invalid5, F },
{ (LPCVOID) o_invalid5, F },
{ (LPCVOID) o_invalid5, F },
{ (LPCVOID) o_invalid5, F },
{ (LPCVOID) o_invalid5, F },
{ (LPCVOID) o_invalid5, F },
{ (LPCVOID) o_invalid5, F },
{ (LPCVOID) o_invalid5, F },
{ (LPCVOID) o_invalid5, F },
{ (LPCVOID) o_invalid5, F },
{ (LPCVOID) o_invalid5, F },
{ (LPCVOID) o_invalid5, F }
};
static JMPTAB o808_[] =
{
{ (LPCVOID) o8080, F },
{ (LPCVOID) o8081_, 4 },
{ (LPCVOID) o8082X, F },
{ (LPCVOID) o8083, F },
{ (LPCVOID) o8084n, F },
{ (LPCVOID) o8085n, F },
{ (LPCVOID) o8086n, F },
{ (LPCVOID) o8087n, F },
{ (LPCVOID) o8088n, F },
{ (LPCVOID) o8089n, F },
{ (LPCVOID) o808An, F },
{ (LPCVOID) o808Bn, F },
{ (LPCVOID) o808C, F },
{ (LPCVOID) o808D, F },
{ (LPCVOID) o808E, F },
{ (LPCVOID) o808F, F }
};
static JMPTAB o80_[] =
{
{ (LPCVOID) o800, F },
{ (LPCVOID) o801, F },
{ (LPCVOID) o802, F },
{ (LPCVOID) o803, F },
{ (LPCVOID) o804, F },
{ (LPCVOID) o805, F },
{ (LPCVOID) o806, F },
{ (LPCVOID) o807, F },
{ (LPCVOID) o808_, 3 },
{ (LPCVOID) o809, F },
{ (LPCVOID) o80A, F },
{ (LPCVOID) o80B, F },
{ (LPCVOID) o80Cn, F },
{ (LPCVOID) o80Dn, F },
{ (LPCVOID) o80E, F },
{ (LPCVOID) o80Fn, F }
};
static JMPTAB o8_[] =
{
{ (LPCVOID) o80_, 2 },
{ (LPCVOID) o81_, 2 },
{ (LPCVOID) o82n, F },
{ (LPCVOID) o83n, F },
{ (LPCVOID) o84n, F },
{ (LPCVOID) o85n, F },
{ (LPCVOID) o86n, F },
{ (LPCVOID) o87n, F },
{ (LPCVOID) o88n, F },
{ (LPCVOID) o89n, F },
{ (LPCVOID) o8A_, 2 },
{ (LPCVOID) o8B_, 2 },
{ (LPCVOID) o8Cd4, F },
{ (LPCVOID) o8Dd5, F },
{ (LPCVOID) o8Ed4, F },
{ (LPCVOID) o8Fd5, F }
};
static JMPTAB o15_[] =
{
{ (LPCVOID) o150a, F },
{ (LPCVOID) o151a, F },
{ (LPCVOID) o152a, F },
{ (LPCVOID) o153a, F },
{ (LPCVOID) o154a, F },
{ (LPCVOID) o155a, F },
{ (LPCVOID) o156a, F },
{ (LPCVOID) o157a, F },
{ (LPCVOID) o158x, F },
{ (LPCVOID) o159x, F },
{ (LPCVOID) o15Ax, F },
{ (LPCVOID) o15Bx, F },
{ (LPCVOID) o15Cx, F },
{ (LPCVOID) o15Dx, F },
{ (LPCVOID) o15Ex, F },
{ (LPCVOID) o15Fx, F }
};
static JMPTAB o14_[] =
{
{ (LPCVOID) o140, F },
{ (LPCVOID) o141, F },
{ (LPCVOID) o142, F },
{ (LPCVOID) o143, F },
{ (LPCVOID) o144, F },
{ (LPCVOID) o145, F },
{ (LPCVOID) o146, F },
{ (LPCVOID) o147, F },
{ (LPCVOID) o148, F },
{ (LPCVOID) o149, F },
{ (LPCVOID) o14A, F },
{ (LPCVOID) o14B, F },
{ (LPCVOID) o14C, F },
{ (LPCVOID) o14D, F },
{ (LPCVOID) o14E, F },
{ (LPCVOID) o14F, F }
};
static JMPTAB o13_[] =
{
{ (LPCVOID) o130, F },
{ (LPCVOID) o131, F },
{ (LPCVOID) o132, F },
{ (LPCVOID) o133, F },
{ (LPCVOID) o134, F },
{ (LPCVOID) o135, F },
{ (LPCVOID) o136, F },
{ (LPCVOID) o137, F },
{ (LPCVOID) o138, F },
{ (LPCVOID) o139, F },
{ (LPCVOID) o13A, F },
{ (LPCVOID) o13B, F },
{ (LPCVOID) o13C, F },
{ (LPCVOID) o13D, F },
{ (LPCVOID) o13E, F },
{ (LPCVOID) o13F, F }
};
static JMPTAB o12_[] =
{
{ (LPCVOID) o120, F },
{ (LPCVOID) o121, F },
{ (LPCVOID) o122, F },
{ (LPCVOID) o123, F },
{ (LPCVOID) o124, F },
{ (LPCVOID) o121, F },
{ (LPCVOID) o122, F },
{ (LPCVOID) o123, F },
{ (LPCVOID) o128, F },
{ (LPCVOID) o129, F },
{ (LPCVOID) o12A, F },
{ (LPCVOID) o12B, F },
{ (LPCVOID) o12C, F },
{ (LPCVOID) o129, F },
{ (LPCVOID) o12A, F },
{ (LPCVOID) o12B, F }
};
static JMPTAB o11_[] =
{
{ (LPCVOID) o110, F },
{ (LPCVOID) o111, F },
{ (LPCVOID) o112, F },
{ (LPCVOID) o113, F },
{ (LPCVOID) o114, F },
{ (LPCVOID) o111, F },
{ (LPCVOID) o112, F },
{ (LPCVOID) o113, F },
{ (LPCVOID) o118, F },
{ (LPCVOID) o119, F },
{ (LPCVOID) o11A, F },
{ (LPCVOID) o11B, F },
{ (LPCVOID) o11C, F },
{ (LPCVOID) o119, F },
{ (LPCVOID) o11A, F },
{ (LPCVOID) o11B, F }
};
static JMPTAB o10_[] =
{
{ (LPCVOID) o100, F },
{ (LPCVOID) o101, F },
{ (LPCVOID) o102, F },
{ (LPCVOID) o103, F },
{ (LPCVOID) o104, F },
{ (LPCVOID) o101, F },
{ (LPCVOID) o102, F },
{ (LPCVOID) o103, F },
{ (LPCVOID) o108, F },
{ (LPCVOID) o109, F },
{ (LPCVOID) o10A, F },
{ (LPCVOID) o10B, F },
{ (LPCVOID) o10C, F },
{ (LPCVOID) o109, F },
{ (LPCVOID) o10A, F },
{ (LPCVOID) o10B, F }
};
static JMPTAB o1_[] =
{
{ (LPCVOID) o10_, 2 },
{ (LPCVOID) o11_, 2 },
{ (LPCVOID) o12_, 2 },
{ (LPCVOID) o13_, 2 },
{ (LPCVOID) o14_, 2 },
{ (LPCVOID) o15_, 2 },
{ (LPCVOID) o16x, F },
{ (LPCVOID) o17x, F },
{ (LPCVOID) o18x, F },
{ (LPCVOID) o19d2, F },
{ (LPCVOID) o1Ad4, F },
{ (LPCVOID) o1Bd5, F },
{ (LPCVOID) o1Cx, F },
{ (LPCVOID) o1Dd2, F },
{ (LPCVOID) o1Ed4, F },
{ (LPCVOID) o1Fd5, F }
};
static JMPTAB o0E_[] =
{
{ (LPCVOID) o0Ef0, F },
{ (LPCVOID) o0Ef1, F },
{ (LPCVOID) o0Ef2, F },
{ (LPCVOID) o0Ef3, F },
{ (LPCVOID) o0Ef4, F },
{ (LPCVOID) o0Ef5, F },
{ (LPCVOID) o0Ef6, F },
{ (LPCVOID) o0Ef7, F },
{ (LPCVOID) o0Ef8, F },
{ (LPCVOID) o0Ef9, F },
{ (LPCVOID) o0EfA, F },
{ (LPCVOID) o0EfB, F },
{ (LPCVOID) o0EfC, F },
{ (LPCVOID) o0EfD, F },
{ (LPCVOID) o0EfE, F },
{ (LPCVOID) o0EfF, F }
};
static JMPTAB o0_[] =
{
{ (LPCVOID) o00, F },
{ (LPCVOID) o01, F },
{ (LPCVOID) o02, F },
{ (LPCVOID) o03, F },
{ (LPCVOID) o04, F },
{ (LPCVOID) o05, F },
{ (LPCVOID) o06, F },
{ (LPCVOID) o07, F },
{ (LPCVOID) o08, F },
{ (LPCVOID) o09, F },
{ (LPCVOID) o0A, F },
{ (LPCVOID) o0B, F },
{ (LPCVOID) o0C, F },
{ (LPCVOID) o0D, F },
{ (LPCVOID) o0E_, 3 },
{ (LPCVOID) o0F, F }
};
static JMPTAB o_[] =
{
{ (LPCVOID) o0_, 1 },
{ (LPCVOID) o1_, 1 },
{ (LPCVOID) o2n, F },
{ (LPCVOID) o3X, F },
{ (LPCVOID) o4d2, F },
{ (LPCVOID) o5d2, F },
{ (LPCVOID) o6d3, F },
{ (LPCVOID) o7d3, F },
{ (LPCVOID) o8_, 1 },
{ (LPCVOID) o9_, 1 },
{ (LPCVOID) oA_, 1 },
{ (LPCVOID) oB_, 1 },
{ (LPCVOID) oC_, 1 },
{ (LPCVOID) oD_, 1 },
{ (LPCVOID) oE_, 1 },
{ (LPCVOID) oF_, 1 }
};
// opcode dispatcher
VOID EvalOpcode(LPBYTE I)
{
DWORD dwIndex = 0;
PJMPTAB pJmpTab = o_;
do
{
_ASSERT(I[dwIndex] <= 0xf); // found packed data
pJmpTab = &pJmpTab[I[dwIndex]]; // table entry by opcode
dwIndex = pJmpTab->dwTyp; // next pointer type
pJmpTab = (PJMPTAB) pJmpTab->pLnk; // next pointer to table/function
}
while (dwIndex != F); // reference to table? -> again
((VOID (*)(LPBYTE)) pJmpTab)(I); // call function
return;
}

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -1,40 +1,40 @@
/* /*
* i28f160.h * i28f160.h
* *
* This file is part of Emu48 * This file is part of Emu48
* *
* Copyright (C) 2000 Christoph Gießelink * Copyright (C) 2000 Christoph Gießelink
* *
*/ */
#define WSMVER 0 // version of flash implementation structure #define WSMVER 0 // version of flash implementation structure
#define WSMSET WSMset_t #define WSMSET WSMset_t
typedef struct typedef struct
{ {
BYTE byType[4]; // "WSM" BYTE byType[4]; // "WSM"
UINT uSize; // size of this structure UINT uSize; // size of this structure
BYTE byVersion; // WSM version BYTE byVersion; // WSM version
BOOL bRomArray; // copy of bFlashRomArray BOOL bRomArray; // copy of bFlashRomArray
DWORD dwLockCnfg; // block lock table (32 entries) DWORD dwLockCnfg; // block lock table (32 entries)
UINT uWrState; // state of write function WSM UINT uWrState; // state of write function WSM
UINT uRdState; // state of read function WSM UINT uRdState; // state of read function WSM
BYTE byStatusReg; // status register BYTE byStatusReg; // status register
BYTE byExStatusReg; // extended status register BYTE byExStatusReg; // extended status register
BYTE byWrite1No; // no. of written data in write buffer1 BYTE byWrite1No; // no. of written data in write buffer1
BYTE byWrite1Size; // no. of valid data in write buffer1 BYTE byWrite1Size; // no. of valid data in write buffer1
DWORD dwWrite1Addr; // destination address of buffer1 DWORD dwWrite1Addr; // destination address of buffer1
BYTE pbyWrite1[32]; // write buffer1 BYTE pbyWrite1[32]; // write buffer1
// BYTE byWrite2No; // no. of written data in write buffer2 // BYTE byWrite2No; // no. of written data in write buffer2
// BYTE byWrite2Size; // no. of valid data in write buffer2 // BYTE byWrite2Size; // no. of valid data in write buffer2
// DWORD dwWrite2Addr; // destination address of buffer2 // DWORD dwWrite2Addr; // destination address of buffer2
// BYTE pbyWrite2[32]; // write buffer2 // BYTE pbyWrite2[32]; // write buffer2
} WSMset_t; } WSMset_t;
// i28f160.h // i28f160.h
extern WSMSET WSMset; extern WSMSET WSMset;
extern BOOL bWP; extern BOOL bWP;
extern VOID FlashInit(VOID); extern VOID FlashInit(VOID);
extern VOID FlashRead(BYTE *a, DWORD d, UINT s); extern VOID FlashRead(BYTE *a, DWORD d, UINT s);
extern VOID FlashWrite(BYTE *a, DWORD d, UINT s); extern VOID FlashWrite(BYTE *a, DWORD d, UINT s);

View file

@ -1,154 +1,154 @@
/* /*
* io.h * io.h
* *
* This file is part of Emu48 * This file is part of Emu48
* *
* Copyright (C) 1999 Christoph Gießelink * Copyright (C) 1999 Christoph Gießelink
* *
*/ */
// I/O addresses without mapping offset // I/O addresses without mapping offset
#define BITOFFSET 0x00 // Display bit offset and DON #define BITOFFSET 0x00 // Display bit offset and DON
#define CRC 0x04 // Crc (16 bit, LSB first) #define CRC 0x04 // Crc (16 bit, LSB first)
#define LPD 0x08 // Low Power Detection #define LPD 0x08 // Low Power Detection
#define LPE 0x09 // Low Power detection Enable #define LPE 0x09 // Low Power detection Enable
#define ANNCTRL 0x0b // Annunciator Control (2 nibble) #define ANNCTRL 0x0b // Annunciator Control (2 nibble)
#define BAUD 0x0d // Baudrate (Bit 2-0) #define BAUD 0x0d // Baudrate (Bit 2-0)
#define CARDCTL 0x0e // card control #define CARDCTL 0x0e // card control
#define CARDSTAT 0x0f // card status #define CARDSTAT 0x0f // card status
#define IOC 0x10 // IO CONTROL #define IOC 0x10 // IO CONTROL
#define RCS 0x11 // RCS #define RCS 0x11 // RCS
#define TCS 0x12 // TCS #define TCS 0x12 // TCS
#define CRER 0x13 // CRER #define CRER 0x13 // CRER
#define RBR_LSB 0x14 // RBR low nibble #define RBR_LSB 0x14 // RBR low nibble
#define RBR_MSB 0x15 // RBR high nibble #define RBR_MSB 0x15 // RBR high nibble
#define TBR_LSB 0x16 // TBR low nibble #define TBR_LSB 0x16 // TBR low nibble
#define TBR_MSB 0x17 // TBR high nibble #define TBR_MSB 0x17 // TBR high nibble
#define SRQ1 0x18 // SRQ1 #define SRQ1 0x18 // SRQ1
#define SRQ2 0x19 // SRQ2 #define SRQ2 0x19 // SRQ2
#define IR_CTRL 0x1a // IR CONTROL #define IR_CTRL 0x1a // IR CONTROL
#define LCR 0x1c // Led Control Register #define LCR 0x1c // Led Control Register
#define LBR 0x1d // Led Buffer Register #define LBR 0x1d // Led Buffer Register
#define DISP1CTL 0x20 // Display Start Address #define DISP1CTL 0x20 // Display Start Address
#define LINENIBS 0x25 // Display Line Offset #define LINENIBS 0x25 // Display Line Offset
#define LINECOUNT 0x28 // Display Line Counter #define LINECOUNT 0x28 // Display Line Counter
#define TIMER1_CTRL 0x2e // Timer1 Control #define TIMER1_CTRL 0x2e // Timer1 Control
#define TIMER2_CTRL 0x2f // Timer2 Control #define TIMER2_CTRL 0x2f // Timer2 Control
#define DISP2CTL 0x30 // Display Secondary Start Address #define DISP2CTL 0x30 // Display Secondary Start Address
#define TIMER1 0x37 // Timer1 (4 bit) #define TIMER1 0x37 // Timer1 (4 bit)
#define TIMER2 0x38 // Timer2 (32 bit, LSB first) #define TIMER2 0x38 // Timer2 (32 bit, LSB first)
// 0x00 Display bit offset and DON [DON OFF2 OFF1 OFF0] // 0x00 Display bit offset and DON [DON OFF2 OFF1 OFF0]
#define DON 0x08 // Display On #define DON 0x08 // Display On
#define OFF2 0x04 // Display OFFset Bit2 #define OFF2 0x04 // Display OFFset Bit2
#define OFF1 0x02 // Display OFFset Bit1 #define OFF1 0x02 // Display OFFset Bit1
#define OFF0 0x01 // Display OFFset Bit0 #define OFF0 0x01 // Display OFFset Bit0
// 0x08 Low Power Detection [LB2 LB1 LB0 VLBI] // 0x08 Low Power Detection [LB2 LB1 LB0 VLBI]
#define LB2 0x08 // Low Battery indicator memory port 2 #define LB2 0x08 // Low Battery indicator memory port 2
#define LB1 0x04 // Low Battery indicator memory port 1 #define LB1 0x04 // Low Battery indicator memory port 1
#define LB0 0x02 // Low Battery indicator system battery #define LB0 0x02 // Low Battery indicator system battery
#define VLBI 0x01 // Very Low Battery Indicator #define VLBI 0x01 // Very Low Battery Indicator
// 0x09 Low Power detection Enable [ELBI EVLBI GRAM RST] // 0x09 Low Power detection Enable [ELBI EVLBI GRAM RST]
#define ELBI 0x08 // Enable Low Battery Indicator #define ELBI 0x08 // Enable Low Battery Indicator
#define EVLBI 0x04 // Enable Very Low Battery Indicator #define EVLBI 0x04 // Enable Very Low Battery Indicator
#define GRAM 0x02 // Glitch sensitive RAM #define GRAM 0x02 // Glitch sensitive RAM
#define RST 0x01 // ReSeT #define RST 0x01 // ReSeT
// 0x0b Annunciator Control [AON XTRA LA6 LA5] [LA4 LA3 LA2 LA1] // 0x0b Annunciator Control [AON XTRA LA6 LA5] [LA4 LA3 LA2 LA1]
#define AON 0x80 // Annunciators on #define AON 0x80 // Annunciators on
#define LXTRA 0x40 // does nothing #define LXTRA 0x40 // does nothing
#define LA6 0x20 // LA6 - Transmitting #define LA6 0x20 // LA6 - Transmitting
#define LA5 0x10 // LA5 - Busy #define LA5 0x10 // LA5 - Busy
#define LA4 0x08 // LA4 - Alert #define LA4 0x08 // LA4 - Alert
#define LA3 0x04 // LA3 - Alpha #define LA3 0x04 // LA3 - Alpha
#define LA2 0x02 // LA2 - ALT Shift #define LA2 0x02 // LA2 - ALT Shift
#define LA1 0x01 // LA1 - Shift #define LA1 0x01 // LA1 - Shift
// 0x0d SERIAL Baud Rate [UCK BD2 BD1 BD0] // 0x0d SERIAL Baud Rate [UCK BD2 BD1 BD0]
#define UCK 0x08 // Uart ClocK #define UCK 0x08 // Uart ClocK
#define BD2 0x04 // BauDrate Bit2 #define BD2 0x04 // BauDrate Bit2
#define BD1 0x02 // BauDrate Bit1 #define BD1 0x02 // BauDrate Bit1
#define BD0 0x01 // BauDrate Bit0 #define BD0 0x01 // BauDrate Bit0
// 0x0e Card Control [ECDT RCDT SMP SWINT] // 0x0e Card Control [ECDT RCDT SMP SWINT]
#define ECDT 0x08 // Enable Card Detect #define ECDT 0x08 // Enable Card Detect
#define RCDT 0x04 // Run Card Detect #define RCDT 0x04 // Run Card Detect
#define SMP 0x02 // Set module pulled #define SMP 0x02 // Set module pulled
#define SWINT 0x01 // Software Interrupt #define SWINT 0x01 // Software Interrupt
// 0x0f Card Status [P2W P1W P2C P1C] // 0x0f Card Status [P2W P1W P2C P1C]
#define P2W 0x08 // High when Port2 writeable #define P2W 0x08 // High when Port2 writeable
#define P1W 0x04 // High when Port1 writeable #define P1W 0x04 // High when Port1 writeable
#define P2C 0x02 // High when Card in Port2 inserted #define P2C 0x02 // High when Card in Port2 inserted
#define P1C 0x01 // High when Card in Port1 inserted #define P1C 0x01 // High when Card in Port1 inserted
// 0x10 Serial I/O Control [SON ETBE ERBF ERBZ] // 0x10 Serial I/O Control [SON ETBE ERBF ERBZ]
#define SON 0x08 // Serial on #define SON 0x08 // Serial on
#define ETBE 0x04 // Interrupt on transmit buffer empty #define ETBE 0x04 // Interrupt on transmit buffer empty
#define ERBF 0x02 // Interrupt on receive buffer full #define ERBF 0x02 // Interrupt on receive buffer full
#define ERBZ 0x01 // Interrupt on receiver busy #define ERBZ 0x01 // Interrupt on receiver busy
// 0x11 Serial Receive Control/Status [RX RER RBZ RBF] // 0x11 Serial Receive Control/Status [RX RER RBZ RBF]
#define RX 0x08 // Rx pin state (read-only) #define RX 0x08 // Rx pin state (read-only)
#define RER 0x04 // Receiver error #define RER 0x04 // Receiver error
#define RBZ 0x02 // Receiver busy #define RBZ 0x02 // Receiver busy
#define RBF 0x01 // Receive buffer full #define RBF 0x01 // Receive buffer full
// 0x12 Serial Transmit Control/Status [BRK LPB TBZ TBF] // 0x12 Serial Transmit Control/Status [BRK LPB TBZ TBF]
#define BRK 0x08 // Break #define BRK 0x08 // Break
#define LPB 0x04 // Loopback #define LPB 0x04 // Loopback
#define TBZ 0x02 // Transmitter busy #define TBZ 0x02 // Transmitter busy
#define TBF 0x01 // Transmit buffer full #define TBF 0x01 // Transmit buffer full
// 0x18 Service Request Register 1 [ISRQ TSRQ USRQ VSRQ] // 0x18 Service Request Register 1 [ISRQ TSRQ USRQ VSRQ]
#define ISRQ 0x08 // IR receiver pulls NINT2 #define ISRQ 0x08 // IR receiver pulls NINT2
#define TSRQ 0x04 // Timer pulls NINT2 #define TSRQ 0x04 // Timer pulls NINT2
#define USRQ 0x02 // UART pulls NINT2 #define USRQ 0x02 // UART pulls NINT2
#define VSRQ 0x01 // VLBI pulls NINT2 #define VSRQ 0x01 // VLBI pulls NINT2
// 0x19 Service Request Register 2 [KDN NINT2 NINT LSRQ] // 0x19 Service Request Register 2 [KDN NINT2 NINT LSRQ]
#define KDN 0x08 // Bit set when ON Key or Key Interrupt #define KDN 0x08 // Bit set when ON Key or Key Interrupt
#define NINT2 0x04 // State of NINT2 #define NINT2 0x04 // State of NINT2
#define NINT 0x02 // State of NINT #define NINT 0x02 // State of NINT
#define LSRQ 0x01 // LED driver pulls NINT2 #define LSRQ 0x01 // LED driver pulls NINT2
// 0x1a IR Control Register [IRI EIRU EIRI IRE] // 0x1a IR Control Register [IRI EIRU EIRI IRE]
#define IRI 0x08 // IR input (read-only) #define IRI 0x08 // IR input (read-only)
#define EIRU 0x04 // Enable IR UART mode #define EIRU 0x04 // Enable IR UART mode
#define EIRI 0x02 // Enable IR interrupt #define EIRI 0x02 // Enable IR interrupt
#define IRE 0x01 // IR event #define IRE 0x01 // IR event
// 0x1c Led Control Register [LED ELBE LBZ LBF] // 0x1c Led Control Register [LED ELBE LBZ LBF]
#define LED 0x08 // Turn on LED #define LED 0x08 // Turn on LED
#define ELBE 0x04 // Enable Interrupt on Led Buffer empty #define ELBE 0x04 // Enable Interrupt on Led Buffer empty
#define LBZ 0x02 // Led Port Busy #define LBZ 0x02 // Led Port Busy
#define LBF 0x01 // Led Buffer Full #define LBF 0x01 // Led Buffer Full
// 0x1d Led Buffer Register [0 0 0 LBO] (bits 1-3 read zero) // 0x1d Led Buffer Register [0 0 0 LBO] (bits 1-3 read zero)
#define LBO 0x01 #define LBO 0x01
// 0x28 Display Line Counter LSB [LC3 LC2 LC1 LC0] // 0x28 Display Line Counter LSB [LC3 LC2 LC1 LC0]
#define LC3 0x08 // LC3 - Line Counter Bit3 #define LC3 0x08 // LC3 - Line Counter Bit3
#define LC2 0x04 // LC2 - Line Counter Bit2 #define LC2 0x04 // LC2 - Line Counter Bit2
#define LC1 0x02 // LC1 - Line Counter Bit1 #define LC1 0x02 // LC1 - Line Counter Bit1
#define LC0 0x01 // LC0 - Line Counter Bit0 #define LC0 0x01 // LC0 - Line Counter Bit0
// 0x29 Display Line Counter MSB [DA19 M32 LC5 LC4] // 0x29 Display Line Counter MSB [DA19 M32 LC5 LC4]
#define DA19 0x08 // Drive A[19] #define DA19 0x08 // Drive A[19]
#define M32 0x04 // Multiplex 32 way #define M32 0x04 // Multiplex 32 way
#define LC5 0x02 // LC5 - Line Counter Bit5 #define LC5 0x02 // LC5 - Line Counter Bit5
#define LC4 0x01 // LC4 - Line Counter Bit4 #define LC4 0x01 // LC4 - Line Counter Bit4
// 0x2e Timer1 Control [SRQ WKE INT XTRA] // 0x2e Timer1 Control [SRQ WKE INT XTRA]
#define SRQ 0x08 // Service request #define SRQ 0x08 // Service request
#define WKE 0x04 // Wake up #define WKE 0x04 // Wake up
#define INTR 0x02 // Interrupt #define INTR 0x02 // Interrupt
#define XTRA 0x01 // Extra function #define XTRA 0x01 // Extra function
// 0x2f Timer2 Control [SRQ WKE INT RUN] // 0x2f Timer2 Control [SRQ WKE INT RUN]
#define SRQ 0x08 // Service request #define SRQ 0x08 // Service request
#define WKE 0x04 // Wake up #define WKE 0x04 // Wake up
#define INTR 0x02 // Interrupt #define INTR 0x02 // Interrupt
#define RUN 0x01 // Timer run #define RUN 0x01 // Timer run

View file

@ -1,131 +1,131 @@
/* /*
* keyboard.c * keyboard.c
* *
* This file is part of Emu48 * This file is part of Emu48
* *
* Copyright (C) 1995 Sebastien Carlier * Copyright (C) 1995 Sebastien Carlier
* *
*/ */
#include "pch.h" #include "pch.h"
#include "emu48.h" #include "Emu48.h"
#include "io.h" // I/O definitions #include "io.h" // I/O definitions
DWORD dwKeyMinDelay = 50; // minimum time for key hold DWORD dwKeyMinDelay = 50; // minimum time for key hold
static WORD Keyboard_GetIR(VOID) static WORD Keyboard_GetIR(VOID)
{ {
WORD r = 0; WORD r = 0;
// OR[0:8] are wired on Clarke/Yorke chip // OR[0:8] are wired on Clarke/Yorke chip
if (Chipset.out==0) return 0; if (Chipset.out==0) return 0;
if (Chipset.out&0x001) r|=Chipset.Keyboard_Row[0]; if (Chipset.out&0x001) r|=Chipset.Keyboard_Row[0];
if (Chipset.out&0x002) r|=Chipset.Keyboard_Row[1]; if (Chipset.out&0x002) r|=Chipset.Keyboard_Row[1];
if (Chipset.out&0x004) r|=Chipset.Keyboard_Row[2]; if (Chipset.out&0x004) r|=Chipset.Keyboard_Row[2];
if (Chipset.out&0x008) r|=Chipset.Keyboard_Row[3]; if (Chipset.out&0x008) r|=Chipset.Keyboard_Row[3];
if (Chipset.out&0x010) r|=Chipset.Keyboard_Row[4]; if (Chipset.out&0x010) r|=Chipset.Keyboard_Row[4];
if (Chipset.out&0x020) r|=Chipset.Keyboard_Row[5]; if (Chipset.out&0x020) r|=Chipset.Keyboard_Row[5];
if (Chipset.out&0x040) r|=Chipset.Keyboard_Row[6]; if (Chipset.out&0x040) r|=Chipset.Keyboard_Row[6];
if (Chipset.out&0x080) r|=Chipset.Keyboard_Row[7]; if (Chipset.out&0x080) r|=Chipset.Keyboard_Row[7];
if (Chipset.out&0x100) r|=Chipset.Keyboard_Row[8]; if (Chipset.out&0x100) r|=Chipset.Keyboard_Row[8];
return r; return r;
} }
VOID ScanKeyboard(BOOL bActive, BOOL bReset) VOID ScanKeyboard(BOOL bActive, BOOL bReset)
{ {
// bActive = TRUE -> function called by direct read (A=IN, C=IN, RSI) // bActive = TRUE -> function called by direct read (A=IN, C=IN, RSI)
// FALSE -> function called by 1ms keyboard poll simulation // FALSE -> function called by 1ms keyboard poll simulation
// bReset = TRUE -> Reset Chipset.in interrupt state register // bReset = TRUE -> Reset Chipset.in interrupt state register
// FALSE -> generate interrupt only for new pressed keys // FALSE -> generate interrupt only for new pressed keys
// keyboard read not active? // keyboard read not active?
if (!( bActive || Chipset.Shutdn || Chipset.IR15X if (!( bActive || Chipset.Shutdn || Chipset.IR15X
|| (Chipset.intk && (Chipset.IORam[TIMER2_CTRL]&RUN) != 0))) || (Chipset.intk && (Chipset.IORam[TIMER2_CTRL]&RUN) != 0)))
{ {
EnterCriticalSection(&csKeyLock); EnterCriticalSection(&csKeyLock);
{ {
Chipset.in &= ~0x8000; // remove ON key Chipset.in &= ~0x8000; // remove ON key
} }
LeaveCriticalSection(&csKeyLock); LeaveCriticalSection(&csKeyLock);
return; return;
} }
EnterCriticalSection(&csKeyLock); // synchronize EnterCriticalSection(&csKeyLock); // synchronize
{ {
BOOL bKbdInt; BOOL bKbdInt;
WORD wOldIn = Chipset.in; // save old Chipset.in state WORD wOldIn = Chipset.in; // save old Chipset.in state
UpdateKdnBit(); // update KDN bit UpdateKdnBit(); // update KDN bit
Chipset.dwKdnCycles = (DWORD) (Chipset.cycles & 0xFFFFFFFF); Chipset.dwKdnCycles = (DWORD) (Chipset.cycles & 0xFFFFFFFF);
Chipset.in = Keyboard_GetIR(); // update Chipset.in register Chipset.in = Keyboard_GetIR(); // update Chipset.in register
Chipset.in |= Chipset.IR15X; // add ON key Chipset.in |= Chipset.IR15X; // add ON key
// interrupt for any new pressed keys? // interrupt for any new pressed keys?
bKbdInt = (Chipset.in && (wOldIn & 0x1FF) == 0) || Chipset.IR15X || bReset; bKbdInt = (Chipset.in && (wOldIn & 0x1FF) == 0) || Chipset.IR15X || bReset;
// update keyboard interrupt pending flag when 1ms keyboard scan is disabled // update keyboard interrupt pending flag when 1ms keyboard scan is disabled
Chipset.intd = Chipset.intd || (bKbdInt && !Chipset.intk); Chipset.intd = Chipset.intd || (bKbdInt && !Chipset.intk);
// keyboard interrupt enabled? // keyboard interrupt enabled?
bKbdInt = bKbdInt && Chipset.intk; bKbdInt = bKbdInt && Chipset.intk;
// interrupt at ON key pressed // interrupt at ON key pressed
bKbdInt = bKbdInt || Chipset.IR15X != 0; bKbdInt = bKbdInt || Chipset.IR15X != 0;
// no interrupt if still inside interrupt service routine // no interrupt if still inside interrupt service routine
bKbdInt = bKbdInt && Chipset.inte; bKbdInt = bKbdInt && Chipset.inte;
if (Chipset.in != 0) // any key pressed if (Chipset.in != 0) // any key pressed
{ {
if (bKbdInt) // interrupt enabled if (bKbdInt) // interrupt enabled
{ {
Chipset.SoftInt = TRUE; // interrupt request Chipset.SoftInt = TRUE; // interrupt request
bInterrupt = TRUE; // exit emulation loop bInterrupt = TRUE; // exit emulation loop
} }
if (Chipset.Shutdn) // cpu sleeping if (Chipset.Shutdn) // cpu sleeping
{ {
Chipset.bShutdnWake = TRUE; // wake up from SHUTDN mode Chipset.bShutdnWake = TRUE; // wake up from SHUTDN mode
SetEvent(hEventShutdn); // wake up emulation thread SetEvent(hEventShutdn); // wake up emulation thread
} }
} }
else else
{ {
Chipset.intd = FALSE; // no keyboard interrupt pending Chipset.intd = FALSE; // no keyboard interrupt pending
} }
} }
LeaveCriticalSection(&csKeyLock); LeaveCriticalSection(&csKeyLock);
return; return;
} }
VOID KeyboardEvent(BOOL bPress, UINT out, UINT in) VOID KeyboardEvent(BOOL bPress, UINT out, UINT in)
{ {
if (nState != SM_RUN) // not in running state if (nState != SM_RUN) // not in running state
return; // ignore key return; // ignore key
KeyMacroRecord(bPress,out,in); // save all keyboard events KeyMacroRecord(bPress,out,in); // save all keyboard events
if (in == 0x8000) // ON key ? if (in == 0x8000) // ON key ?
{ {
Chipset.IR15X = bPress?0x8000:0x0000; // refresh special ON key flag Chipset.IR15X = bPress?0x8000:0x0000; // refresh special ON key flag
} }
else else
{ {
// "out" is outside Keyboard_Row // "out" is outside Keyboard_Row
if (out >= ARRAYSIZEOF(Chipset.Keyboard_Row)) return; if (out >= ARRAYSIZEOF(Chipset.Keyboard_Row)) return;
// in &= 0x1FF; // only IR[0:8] are wired on Clarke/Yorke chip // in &= 0x1FF; // only IR[0:8] are wired on Clarke/Yorke chip
_ASSERT(out < ARRAYSIZEOF(Chipset.Keyboard_Row)); _ASSERT(out < ARRAYSIZEOF(Chipset.Keyboard_Row));
if (bPress) // key pressed if (bPress) // key pressed
Chipset.Keyboard_Row[out] |= in; // set key marker in keyboard row Chipset.Keyboard_Row[out] |= in; // set key marker in keyboard row
else else
Chipset.Keyboard_Row[out] &= (~in); // clear key marker in keyboard row Chipset.Keyboard_Row[out] &= (~in); // clear key marker in keyboard row
} }
AdjKeySpeed(); // adjust key repeat speed AdjKeySpeed(); // adjust key repeat speed
ScanKeyboard(FALSE,FALSE); // update Chipset.in register by 1ms keyboard poll ScanKeyboard(FALSE,FALSE); // update Chipset.in register by 1ms keyboard poll
Sleep(dwKeyMinDelay); // hold key state for a definite time Sleep(dwKeyMinDelay); // hold key state for a definite time
return; return;
} }

View file

@ -1,337 +1,337 @@
/* /*
* Keymacro.c * Keymacro.c
* *
* This file is part of Emu48 * This file is part of Emu48
* *
* Copyright (C) 2004 Christoph Gießelink * Copyright (C) 2004 Christoph Gießelink
* *
*/ */
#include "pch.h" #include "pch.h"
#include "resource.h" #include "resource.h"
#include "emu48.h" #include "Emu48.h"
#include "kml.h" #include "kml.h"
#define KEYMACROHEAD "Emu-KeyMacro" // macro signature #define KEYMACROHEAD "Emu-KeyMacro" // macro signature
#define MIN_SPEED 0 #define MIN_SPEED 0
#define MAX_SPEED 500 #define MAX_SPEED 500
typedef struct typedef struct
{ {
DWORD dwTime; // elapsed time DWORD dwTime; // elapsed time
DWORD dwKeyEvent; // key code DWORD dwKeyEvent; // key code
} KeyData; } KeyData;
INT nMacroState = MACRO_OFF; INT nMacroState = MACRO_OFF;
INT nMacroTimeout = MIN_SPEED; INT nMacroTimeout = MIN_SPEED;
BOOL bMacroRealSpeed = TRUE; BOOL bMacroRealSpeed = TRUE;
DWORD dwMacroMinDelay = 0; // minimum macro play key hold time in ms DWORD dwMacroMinDelay = 0; // minimum macro play key hold time in ms
static DWORD dwTimeRef; static DWORD dwTimeRef;
static HANDLE hMacroFile = INVALID_HANDLE_VALUE; static HANDLE hMacroFile = INVALID_HANDLE_VALUE;
static HANDLE hEventPlay = NULL; static HANDLE hEventPlay = NULL;
static HANDLE hThreadEv = NULL; static HANDLE hThreadEv = NULL;
static VOID InitializeOFN(LPOPENFILENAME ofn) static VOID InitializeOFN(LPOPENFILENAME ofn)
{ {
ZeroMemory((LPVOID)ofn, sizeof(OPENFILENAME)); ZeroMemory((LPVOID)ofn, sizeof(OPENFILENAME));
ofn->lStructSize = sizeof(OPENFILENAME); ofn->lStructSize = sizeof(OPENFILENAME);
ofn->hwndOwner = hWnd; ofn->hwndOwner = hWnd;
ofn->Flags = OFN_EXPLORER|OFN_HIDEREADONLY; ofn->Flags = OFN_EXPLORER|OFN_HIDEREADONLY;
return; return;
} }
// //
// thread playing keys // thread playing keys
// //
static DWORD WINAPI EventThread(LPVOID pParam) static DWORD WINAPI EventThread(LPVOID pParam)
{ {
DWORD dwRead = 0; DWORD dwRead = 0;
DWORD dwData = 0,dwTime = 0; DWORD dwData = 0,dwTime = 0;
while (WaitForSingleObject(hEventPlay,dwTime) == WAIT_TIMEOUT) while (WaitForSingleObject(hEventPlay,dwTime) == WAIT_TIMEOUT)
{ {
if (dwRead != 0) // data read if (dwRead != 0) // data read
{ {
UINT nIn = (dwData >> 0) & 0xFFFF; UINT nIn = (dwData >> 0) & 0xFFFF;
UINT nOut = (dwData >> 16) & 0xFF; UINT nOut = (dwData >> 16) & 0xFF;
BOOL bPress = (dwData >> 24) & 0xFF; BOOL bPress = (dwData >> 24) & 0xFF;
PlayKey(nOut,nIn,bPress); PlayKey(nOut,nIn,bPress);
} }
dwTime = nMacroTimeout; // set default speed dwTime = nMacroTimeout; // set default speed
while (TRUE) while (TRUE)
{ {
// read next data element // read next data element
if ( !ReadFile(hMacroFile,&dwData,sizeof(dwData),&dwRead,NULL) if ( !ReadFile(hMacroFile,&dwData,sizeof(dwData),&dwRead,NULL)
|| dwRead != sizeof(dwData)) || dwRead != sizeof(dwData))
{ {
// play record empty -> quit // play record empty -> quit
PostMessage(hWnd,WM_COMMAND,ID_TOOL_MACRO_STOP,0); PostMessage(hWnd,WM_COMMAND,ID_TOOL_MACRO_STOP,0);
return 0; // exit on file end return 0; // exit on file end
} }
if ((dwData & 0x80000000) != 0) // time information if ((dwData & 0x80000000) != 0) // time information
{ {
if (bMacroRealSpeed) // realspeed from data if (bMacroRealSpeed) // realspeed from data
{ {
dwTime = dwData & 0x7FFFFFFF; dwTime = dwData & 0x7FFFFFFF;
} }
continue; continue;
} }
// hold the key state the minimum macro play key hold time // hold the key state the minimum macro play key hold time
if (dwTime < dwMacroMinDelay) dwTime = dwMacroMinDelay; if (dwTime < dwMacroMinDelay) dwTime = dwMacroMinDelay;
dwTime -= dwKeyMinDelay; // remove the actual key hold time dwTime -= dwKeyMinDelay; // remove the actual key hold time
// set negative number to zero // set negative number to zero
if ((dwTime & 0x80000000) != 0) dwTime = 0; if ((dwTime & 0x80000000) != 0) dwTime = 0;
break; // got key information break; // got key information
} }
} }
return 0; // exit on stop return 0; // exit on stop
UNREFERENCED_PARAMETER(pParam); UNREFERENCED_PARAMETER(pParam);
} }
// //
// callback function for recording keys // callback function for recording keys
// //
VOID KeyMacroRecord(BOOL bPress, UINT out, UINT in) VOID KeyMacroRecord(BOOL bPress, UINT out, UINT in)
{ {
if (nMacroState == MACRO_NEW) // save key event if (nMacroState == MACRO_NEW) // save key event
{ {
KeyData Data; KeyData Data;
DWORD dwWritten; DWORD dwWritten;
dwWritten = GetTickCount(); // time reference dwWritten = GetTickCount(); // time reference
Data.dwTime = (dwWritten - dwTimeRef); Data.dwTime = (dwWritten - dwTimeRef);
Data.dwTime |= 0x80000000; // set time marker Data.dwTime |= 0x80000000; // set time marker
dwTimeRef = dwWritten; dwTimeRef = dwWritten;
Data.dwKeyEvent = (bPress & 0xFF); Data.dwKeyEvent = (bPress & 0xFF);
Data.dwKeyEvent = (Data.dwKeyEvent << 8) | (out & 0xFF); Data.dwKeyEvent = (Data.dwKeyEvent << 8) | (out & 0xFF);
Data.dwKeyEvent = (Data.dwKeyEvent << 16) | (in & 0xFFFF); Data.dwKeyEvent = (Data.dwKeyEvent << 16) | (in & 0xFFFF);
// save key event in file // save key event in file
WriteFile(hMacroFile,&Data,sizeof(Data),&dwWritten,NULL); WriteFile(hMacroFile,&Data,sizeof(Data),&dwWritten,NULL);
_ASSERT(dwWritten == sizeof(Data)); _ASSERT(dwWritten == sizeof(Data));
} }
return; return;
} }
// //
// message handler for save new keyboard macro // message handler for save new keyboard macro
// //
LRESULT OnToolMacroNew(VOID) LRESULT OnToolMacroNew(VOID)
{ {
TCHAR szMacroFile[MAX_PATH]; TCHAR szMacroFile[MAX_PATH];
OPENFILENAME ofn; OPENFILENAME ofn;
DWORD dwExtensionLength,dwWritten; DWORD dwExtensionLength,dwWritten;
// get filename for saving // get filename for saving
InitializeOFN(&ofn); InitializeOFN(&ofn);
ofn.lpstrFilter = ofn.lpstrFilter =
_T("Keyboard Macro Files (*.MAC)\0*.MAC\0") _T("Keyboard Macro Files (*.MAC)\0*.MAC\0")
_T("All Files (*.*)\0*.*\0"); _T("All Files (*.*)\0*.*\0");
ofn.lpstrDefExt = _T("MAC"); ofn.lpstrDefExt = _T("MAC");
ofn.nFilterIndex = 1; ofn.nFilterIndex = 1;
ofn.lpstrFile = szMacroFile; ofn.lpstrFile = szMacroFile;
ofn.lpstrFile[0] = 0; ofn.lpstrFile[0] = 0;
ofn.nMaxFile = ARRAYSIZEOF(szMacroFile); ofn.nMaxFile = ARRAYSIZEOF(szMacroFile);
ofn.Flags |= OFN_CREATEPROMPT|OFN_OVERWRITEPROMPT; ofn.Flags |= OFN_CREATEPROMPT|OFN_OVERWRITEPROMPT;
if (GetSaveFileName(&ofn) == FALSE) return 0; if (GetSaveFileName(&ofn) == FALSE) return 0;
// open file for writing // open file for writing
hMacroFile = CreateFile(szMacroFile, hMacroFile = CreateFile(szMacroFile,
GENERIC_READ|GENERIC_WRITE, GENERIC_READ|GENERIC_WRITE,
0, 0,
NULL, NULL,
CREATE_ALWAYS, CREATE_ALWAYS,
FILE_ATTRIBUTE_NORMAL, FILE_ATTRIBUTE_NORMAL,
NULL); NULL);
if (hMacroFile == INVALID_HANDLE_VALUE) return 0; if (hMacroFile == INVALID_HANDLE_VALUE) return 0;
// write header // write header
WriteFile(hMacroFile,KEYMACROHEAD,sizeof(KEYMACROHEAD) - 1,&dwWritten,NULL); WriteFile(hMacroFile,KEYMACROHEAD,sizeof(KEYMACROHEAD) - 1,&dwWritten,NULL);
_ASSERT(dwWritten == (DWORD) strlen(KEYMACROHEAD)); _ASSERT(dwWritten == (DWORD) strlen(KEYMACROHEAD));
// write extension length // write extension length
dwExtensionLength = 0; // no extension dwExtensionLength = 0; // no extension
WriteFile(hMacroFile,&dwExtensionLength,sizeof(dwExtensionLength),&dwWritten,NULL); WriteFile(hMacroFile,&dwExtensionLength,sizeof(dwExtensionLength),&dwWritten,NULL);
_ASSERT(dwWritten == sizeof(dwExtensionLength)); _ASSERT(dwWritten == sizeof(dwExtensionLength));
nMacroState = MACRO_NEW; nMacroState = MACRO_NEW;
MessageBox(hWnd, MessageBox(hWnd,
_T("Press OK to begin to record the Macro."), _T("Press OK to begin to record the Macro."),
_T("Macro Recorder"), _T("Macro Recorder"),
MB_OK|MB_ICONINFORMATION); MB_OK|MB_ICONINFORMATION);
dwTimeRef = GetTickCount(); // time reference dwTimeRef = GetTickCount(); // time reference
return 0; return 0;
} }
// //
// message handler for play keyboard macro // message handler for play keyboard macro
// //
LRESULT OnToolMacroPlay(VOID) LRESULT OnToolMacroPlay(VOID)
{ {
BYTE byHeader[sizeof(KEYMACROHEAD)-1]; BYTE byHeader[sizeof(KEYMACROHEAD)-1];
TCHAR szMacroFile[MAX_PATH]; TCHAR szMacroFile[MAX_PATH];
OPENFILENAME ofn; OPENFILENAME ofn;
DWORD dwExtensionLength,dwRead,dwThreadId; DWORD dwExtensionLength,dwRead,dwThreadId;
InitializeOFN(&ofn); InitializeOFN(&ofn);
ofn.lpstrFilter = ofn.lpstrFilter =
_T("Keyboard Macro Files (*.MAC)\0*.MAC\0") _T("Keyboard Macro Files (*.MAC)\0*.MAC\0")
_T("All Files (*.*)\0*.*\0"); _T("All Files (*.*)\0*.*\0");
ofn.lpstrDefExt = _T("MAC"); ofn.lpstrDefExt = _T("MAC");
ofn.nFilterIndex = 1; ofn.nFilterIndex = 1;
ofn.lpstrFile = szMacroFile; ofn.lpstrFile = szMacroFile;
ofn.lpstrFile[0] = 0; ofn.lpstrFile[0] = 0;
ofn.nMaxFile = ARRAYSIZEOF(szMacroFile); ofn.nMaxFile = ARRAYSIZEOF(szMacroFile);
ofn.Flags |= OFN_FILEMUSTEXIST|OFN_PATHMUSTEXIST; ofn.Flags |= OFN_FILEMUSTEXIST|OFN_PATHMUSTEXIST;
if (GetOpenFileName(&ofn) == FALSE) return 0; if (GetOpenFileName(&ofn) == FALSE) return 0;
// open file for Reading // open file for Reading
hMacroFile = CreateFile(szMacroFile, hMacroFile = CreateFile(szMacroFile,
GENERIC_READ, GENERIC_READ,
FILE_SHARE_READ, FILE_SHARE_READ,
NULL, NULL,
OPEN_EXISTING, OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL, FILE_ATTRIBUTE_NORMAL,
NULL); NULL);
if (hMacroFile == INVALID_HANDLE_VALUE) return 0; if (hMacroFile == INVALID_HANDLE_VALUE) return 0;
// read header // read header
ReadFile(hMacroFile,byHeader,sizeof(byHeader),&dwRead,NULL); ReadFile(hMacroFile,byHeader,sizeof(byHeader),&dwRead,NULL);
if ( dwRead != sizeof(byHeader) if ( dwRead != sizeof(byHeader)
|| memcmp(byHeader,KEYMACROHEAD,dwRead) != 0) || memcmp(byHeader,KEYMACROHEAD,dwRead) != 0)
{ {
MessageBox(hWnd, MessageBox(hWnd,
_T("Wrong keyboard macro file format."), _T("Wrong keyboard macro file format."),
_T("Macro Recorder"), _T("Macro Recorder"),
MB_OK|MB_ICONSTOP); MB_OK|MB_ICONSTOP);
CloseHandle(hMacroFile); CloseHandle(hMacroFile);
return 0; return 0;
} }
// read extension length // read extension length
ReadFile(hMacroFile,&dwExtensionLength,sizeof(dwExtensionLength),&dwRead,NULL); ReadFile(hMacroFile,&dwExtensionLength,sizeof(dwExtensionLength),&dwRead,NULL);
if (dwRead != sizeof(dwExtensionLength)) if (dwRead != sizeof(dwExtensionLength))
{ {
CloseHandle(hMacroFile); CloseHandle(hMacroFile);
return 0; return 0;
} }
// read extension // read extension
while (dwExtensionLength-- > 0) while (dwExtensionLength-- > 0)
{ {
BYTE byData; BYTE byData;
ReadFile(hMacroFile,&byData,sizeof(byData),&dwRead,NULL); ReadFile(hMacroFile,&byData,sizeof(byData),&dwRead,NULL);
if (dwRead != sizeof(byData)) if (dwRead != sizeof(byData))
{ {
CloseHandle(hMacroFile); CloseHandle(hMacroFile);
return 0; return 0;
} }
} }
// event for quit playing // event for quit playing
hEventPlay = CreateEvent(NULL,FALSE,FALSE,NULL); hEventPlay = CreateEvent(NULL,FALSE,FALSE,NULL);
nMacroState = MACRO_PLAY; nMacroState = MACRO_PLAY;
// start playing thread // start playing thread
VERIFY(hThreadEv = CreateThread(NULL,0,&EventThread,NULL,0,&dwThreadId)); VERIFY(hThreadEv = CreateThread(NULL,0,&EventThread,NULL,0,&dwThreadId));
return 0; return 0;
} }
// //
// message handler for stop recording/playing // message handler for stop recording/playing
// //
LRESULT OnToolMacroStop(VOID) LRESULT OnToolMacroStop(VOID)
{ {
if (nMacroState != MACRO_OFF) if (nMacroState != MACRO_OFF)
{ {
if (hEventPlay) // playing keys if (hEventPlay) // playing keys
{ {
// stop playing thread // stop playing thread
SetEvent(hEventPlay); // quit play loop SetEvent(hEventPlay); // quit play loop
WaitForSingleObject(hThreadEv,INFINITE); WaitForSingleObject(hThreadEv,INFINITE);
CloseHandle(hThreadEv); CloseHandle(hThreadEv);
hThreadEv = NULL; hThreadEv = NULL;
CloseHandle(hEventPlay); // close playing keys event CloseHandle(hEventPlay); // close playing keys event
hEventPlay = NULL; hEventPlay = NULL;
} }
// macro file open // macro file open
if (hMacroFile != INVALID_HANDLE_VALUE) CloseHandle(hMacroFile); if (hMacroFile != INVALID_HANDLE_VALUE) CloseHandle(hMacroFile);
nMacroState = MACRO_OFF; nMacroState = MACRO_OFF;
} }
return 0; return 0;
} }
// //
// activate/deactivate slider // activate/deactivate slider
// //
static VOID SliderEnable(HWND hDlg,BOOL bEnable) static VOID SliderEnable(HWND hDlg,BOOL bEnable)
{ {
EnableWindow(GetDlgItem(hDlg,IDC_MACRO_SLOW),bEnable); EnableWindow(GetDlgItem(hDlg,IDC_MACRO_SLOW),bEnable);
EnableWindow(GetDlgItem(hDlg,IDC_MACRO_FAST),bEnable); EnableWindow(GetDlgItem(hDlg,IDC_MACRO_FAST),bEnable);
EnableWindow(GetDlgItem(hDlg,IDC_MACRO_SLIDER),bEnable); EnableWindow(GetDlgItem(hDlg,IDC_MACRO_SLIDER),bEnable);
return; return;
} }
// //
// Macro settings dialog // Macro settings dialog
// //
static INT_PTR CALLBACK MacroProc(HWND hDlg, UINT message, WPARAM wParam, LPARAM lParam) static INT_PTR CALLBACK MacroProc(HWND hDlg, UINT message, WPARAM wParam, LPARAM lParam)
{ {
switch (message) switch (message)
{ {
case WM_INITDIALOG: case WM_INITDIALOG:
// set slider // set slider
SendDlgItemMessage(hDlg,IDC_MACRO_SLIDER,TBM_SETRANGE,FALSE,MAKELONG(0,MAX_SPEED-MIN_SPEED)); SendDlgItemMessage(hDlg,IDC_MACRO_SLIDER,TBM_SETRANGE,FALSE,MAKELONG(0,MAX_SPEED-MIN_SPEED));
SendDlgItemMessage(hDlg,IDC_MACRO_SLIDER,TBM_SETTICFREQ,MAX_SPEED/10,0); SendDlgItemMessage(hDlg,IDC_MACRO_SLIDER,TBM_SETTICFREQ,MAX_SPEED/10,0);
SendDlgItemMessage(hDlg,IDC_MACRO_SLIDER,TBM_SETPOS,TRUE,MAX_SPEED-nMacroTimeout); SendDlgItemMessage(hDlg,IDC_MACRO_SLIDER,TBM_SETPOS,TRUE,MAX_SPEED-nMacroTimeout);
// set button // set button
CheckDlgButton(hDlg,bMacroRealSpeed ? IDC_MACRO_REAL : IDC_MACRO_MANUAL,BST_CHECKED); CheckDlgButton(hDlg,bMacroRealSpeed ? IDC_MACRO_REAL : IDC_MACRO_MANUAL,BST_CHECKED);
SliderEnable(hDlg,!bMacroRealSpeed); SliderEnable(hDlg,!bMacroRealSpeed);
return TRUE; return TRUE;
case WM_COMMAND: case WM_COMMAND:
switch (LOWORD(wParam)) switch (LOWORD(wParam))
{ {
case IDC_MACRO_REAL: case IDC_MACRO_REAL:
SliderEnable(hDlg,FALSE); SliderEnable(hDlg,FALSE);
return TRUE; return TRUE;
case IDC_MACRO_MANUAL: case IDC_MACRO_MANUAL:
SliderEnable(hDlg,TRUE); SliderEnable(hDlg,TRUE);
return TRUE; return TRUE;
case IDOK: case IDOK:
// get macro data // get macro data
nMacroTimeout = MAX_SPEED - (INT) SendDlgItemMessage(hDlg,IDC_MACRO_SLIDER,TBM_GETPOS,0,0); nMacroTimeout = MAX_SPEED - (INT) SendDlgItemMessage(hDlg,IDC_MACRO_SLIDER,TBM_GETPOS,0,0);
bMacroRealSpeed = IsDlgButtonChecked(hDlg,IDC_MACRO_REAL); bMacroRealSpeed = IsDlgButtonChecked(hDlg,IDC_MACRO_REAL);
// no break // no break
case IDCANCEL: case IDCANCEL:
EndDialog(hDlg, LOWORD(wParam)); EndDialog(hDlg, LOWORD(wParam));
} }
break; break;
} }
return FALSE; return FALSE;
UNREFERENCED_PARAMETER(lParam); UNREFERENCED_PARAMETER(lParam);
} }
LRESULT OnToolMacroSettings(VOID) LRESULT OnToolMacroSettings(VOID)
{ {
if (DialogBox(hApp, MAKEINTRESOURCE(IDD_MACROSET), hWnd, (DLGPROC)MacroProc) == -1) if (DialogBox(hApp, MAKEINTRESOURCE(IDD_MACROSET), hWnd, (DLGPROC)MacroProc) == -1)
AbortMessage(_T("Macro Dialog Box Creation Error !")); AbortMessage(_T("Macro Dialog Box Creation Error !"));
return 0; return 0;
} }

File diff suppressed because it is too large Load diff

View file

@ -1,133 +1,133 @@
/* /*
* kml.h * kml.h
* *
* This file is part of Emu48 * This file is part of Emu48
* *
* Copyright (C) 1995 Sebastien Carlier * Copyright (C) 1995 Sebastien Carlier
* *
*/ */
#define LEX_BLOCK 0 #define LEX_BLOCK 0
#define LEX_COMMAND 1 #define LEX_COMMAND 1
#define LEX_PARAM 2 #define LEX_PARAM 2
typedef enum eTokenId typedef enum eTokenId
{ {
TOK_NONE, //0 TOK_NONE, //0
TOK_ANNUNCIATOR, //1 TOK_ANNUNCIATOR, //1
TOK_BACKGROUND, //2 TOK_BACKGROUND, //2
TOK_IFPRESSED, //3 TOK_IFPRESSED, //3
TOK_RESETFLAG, //4 TOK_RESETFLAG, //4
TOK_SCANCODE, //5 TOK_SCANCODE, //5
TOK_HARDWARE, //6 TOK_HARDWARE, //6
TOK_MENUITEM, //7 TOK_MENUITEM, //7
TOK_SYSITEM, //8 TOK_SYSITEM, //8
TOK_INTEGER, //9 TOK_INTEGER, //9
TOK_SETFLAG, //10 TOK_SETFLAG, //10
TOK_RELEASE, //11 TOK_RELEASE, //11
TOK_VIRTUAL, //12 TOK_VIRTUAL, //12
TOK_INCLUDE, //13 TOK_INCLUDE, //13
TOK_NOTFLAG, //14 TOK_NOTFLAG, //14
TOK_STRING, //15 TOK_STRING, //15
TOK_GLOBAL, //16 TOK_GLOBAL, //16
TOK_AUTHOR, //17 TOK_AUTHOR, //17
TOK_BITMAP, //18 TOK_BITMAP, //18
TOK_ZOOMXY, //19 TOK_ZOOMXY, //19
TOK_OFFSET, //20 TOK_OFFSET, //20
TOK_BUTTON, //21 TOK_BUTTON, //21
TOK_IFFLAG, //22 TOK_IFFLAG, //22
TOK_ONDOWN, //23 TOK_ONDOWN, //23
TOK_NOHOLD, //24 TOK_NOHOLD, //24
TOK_LOCALE, //25 TOK_LOCALE, //25
TOK_TOPBAR, //26 TOK_TOPBAR, //26
TOK_MENUBAR, //27 TOK_MENUBAR, //27
TOK_TITLE, //28 TOK_TITLE, //28
TOK_OUTIN, //29 TOK_OUTIN, //29
TOK_PATCH, //30 TOK_PATCH, //30
TOK_PRINT, //31 TOK_PRINT, //31
TOK_DEBUG, //32 TOK_DEBUG, //32
TOK_COLOR, //33 TOK_COLOR, //33
TOK_MODEL, //34 TOK_MODEL, //34
TOK_CLASS, //35 TOK_CLASS, //35
TOK_PRESS, //36 TOK_PRESS, //36
TOK_IFMEM, //37 TOK_IFMEM, //37
TOK_SCALE, //38 TOK_SCALE, //38
TOK_TYPE, //39 TOK_TYPE, //39
TOK_SIZE, //40 TOK_SIZE, //40
TOK_DOWN, //41 TOK_DOWN, //41
TOK_ZOOM, //42 TOK_ZOOM, //42
TOK_ELSE, //43 TOK_ELSE, //43
TOK_ONUP, //44 TOK_ONUP, //44
TOK_ICON, //45 TOK_ICON, //45
TOK_EOL, //46 TOK_EOL, //46
TOK_MAP, //47 TOK_MAP, //47
TOK_ROM, //48 TOK_ROM, //48
TOK_VGA, //49 TOK_VGA, //49
TOK_LCD, //50 TOK_LCD, //50
TOK_END //51 TOK_END //51
} TokenId; } TokenId;
#define TYPE_NONE 00 #define TYPE_NONE 00
#define TYPE_INTEGER 01 #define TYPE_INTEGER 01
#define TYPE_STRING 02 #define TYPE_STRING 02
typedef struct KmlToken typedef struct KmlToken
{ {
TokenId eId; TokenId eId;
DWORD nParams; DWORD nParams;
DWORD nLen; DWORD nLen;
LPCTSTR szName; LPCTSTR szName;
} KmlToken; } KmlToken;
typedef struct KmlLine typedef struct KmlLine
{ {
struct KmlLine* pNext; struct KmlLine* pNext;
TokenId eCommand; TokenId eCommand;
DWORD_PTR nParam[6]; DWORD_PTR nParam[6];
} KmlLine; } KmlLine;
typedef struct KmlBlock typedef struct KmlBlock
{ {
TokenId eType; TokenId eType;
DWORD nId; DWORD nId;
struct KmlLine* pFirstLine; struct KmlLine* pFirstLine;
struct KmlBlock* pNext; struct KmlBlock* pNext;
} KmlBlock; } KmlBlock;
#define BUTTON_NOHOLD 0x0001 #define BUTTON_NOHOLD 0x0001
#define BUTTON_VIRTUAL 0x0002 #define BUTTON_VIRTUAL 0x0002
typedef struct KmlButton typedef struct KmlButton
{ {
UINT nId; UINT nId;
BOOL bDown; BOOL bDown;
UINT nType; UINT nType;
DWORD dwFlags; DWORD dwFlags;
UINT nOx, nOy; UINT nOx, nOy;
UINT nDx, nDy; UINT nDx, nDy;
UINT nCx, nCy; UINT nCx, nCy;
UINT nOut, nIn; UINT nOut, nIn;
KmlLine* pOnDown; KmlLine* pOnDown;
KmlLine* pOnUp; KmlLine* pOnUp;
} KmlButton; } KmlButton;
typedef struct KmlAnnunciator typedef struct KmlAnnunciator
{ {
UINT nOx, nOy; UINT nOx, nOy;
UINT nDx, nDy; UINT nDx, nDy;
UINT nCx, nCy; UINT nCx, nCy;
} KmlAnnunciator; } KmlAnnunciator;
extern KmlBlock* pKml; extern KmlBlock* pKml;
extern BOOL DisplayChooseKml(CHAR cType); extern BOOL DisplayChooseKml(CHAR cType);
extern VOID FreeBlocks(KmlBlock* pBlock); extern VOID FreeBlocks(KmlBlock* pBlock);
extern VOID DrawAnnunciator(UINT nId, BOOL bOn); extern VOID DrawAnnunciator(UINT nId, BOOL bOn);
extern VOID ReloadButtons(BYTE *Keyboard_Row, UINT nSize); extern VOID ReloadButtons(BYTE *Keyboard_Row, UINT nSize);
extern VOID RefreshButtons(RECT *rc); extern VOID RefreshButtons(RECT *rc);
extern BOOL MouseIsButton(DWORD x, DWORD y); extern BOOL MouseIsButton(DWORD x, DWORD y);
extern VOID MouseButtonDownAt(UINT nFlags, DWORD x, DWORD y); extern VOID MouseButtonDownAt(UINT nFlags, DWORD x, DWORD y);
extern VOID MouseButtonUpAt(UINT nFlags, DWORD x, DWORD y); extern VOID MouseButtonUpAt(UINT nFlags, DWORD x, DWORD y);
extern VOID MouseMovesTo(UINT nFlags, DWORD x, DWORD y); extern VOID MouseMovesTo(UINT nFlags, DWORD x, DWORD y);
extern VOID RunKey(BYTE nId, BOOL bPressed); extern VOID RunKey(BYTE nId, BOOL bPressed);
extern VOID PlayKey(UINT nOut, UINT nIn, BOOL bPressed); extern VOID PlayKey(UINT nOut, UINT nIn, BOOL bPressed);
extern BOOL InitKML(LPCTSTR szFilename, BOOL bNoLog); extern BOOL InitKML(LPCTSTR szFilename, BOOL bNoLog);
extern VOID KillKML(VOID); extern VOID KillKML(VOID);

View file

@ -664,7 +664,7 @@ which is possible in case of only 0 or 1 present symbols. */
static unsigned HuffmanTree_makeTable(HuffmanTree* tree) { static unsigned HuffmanTree_makeTable(HuffmanTree* tree) {
static const unsigned headsize = 1u << FIRSTBITS; /*size of the first table*/ static const unsigned headsize = 1u << FIRSTBITS; /*size of the first table*/
static const unsigned mask = (1u << FIRSTBITS) /*headsize*/ - 1u; static const unsigned mask = (1u << FIRSTBITS) /*headsize*/ - 1u;
unsigned i, numpresent, pointer, size; /*total table size*/ size_t i, numpresent, pointer, size; /*total table size*/
unsigned* maxlens = (unsigned*)lodepng_malloc(headsize * sizeof(unsigned)); unsigned* maxlens = (unsigned*)lodepng_malloc(headsize * sizeof(unsigned));
if(!maxlens) return 83; /*alloc fail*/ if(!maxlens) return 83; /*alloc fail*/
@ -683,7 +683,7 @@ static unsigned HuffmanTree_makeTable(HuffmanTree* tree) {
size = headsize; size = headsize;
for(i = 0; i < headsize; ++i) { for(i = 0; i < headsize; ++i) {
unsigned l = maxlens[i]; unsigned l = maxlens[i];
if(l > FIRSTBITS) size += (1u << (l - FIRSTBITS)); if(l > FIRSTBITS) size += (((size_t)1) << (l - FIRSTBITS));
} }
tree->table_len = (unsigned char*)lodepng_malloc(size * sizeof(*tree->table_len)); tree->table_len = (unsigned char*)lodepng_malloc(size * sizeof(*tree->table_len));
tree->table_value = (unsigned short*)lodepng_malloc(size * sizeof(*tree->table_value)); tree->table_value = (unsigned short*)lodepng_malloc(size * sizeof(*tree->table_value));
@ -701,8 +701,8 @@ static unsigned HuffmanTree_makeTable(HuffmanTree* tree) {
unsigned l = maxlens[i]; unsigned l = maxlens[i];
if(l <= FIRSTBITS) continue; if(l <= FIRSTBITS) continue;
tree->table_len[i] = l; tree->table_len[i] = l;
tree->table_value[i] = pointer; tree->table_value[i] = (unsigned short)pointer;
pointer += (1u << (l - FIRSTBITS)); pointer += (((size_t)1) << (l - FIRSTBITS));
} }
lodepng_free(maxlens); lodepng_free(maxlens);
@ -726,7 +726,7 @@ static unsigned HuffmanTree_makeTable(HuffmanTree* tree) {
unsigned index = reverse | (j << l); unsigned index = reverse | (j << l);
if(tree->table_len[index] != 16) return 55; /*invalid tree: long symbol shares prefix with short symbol*/ if(tree->table_len[index] != 16) return 55; /*invalid tree: long symbol shares prefix with short symbol*/
tree->table_len[index] = l; tree->table_len[index] = l;
tree->table_value[index] = i; tree->table_value[index] = (unsigned short)i;
} }
} else { } else {
/*long symbol, shares prefix with other long symbols in first lookup table, needs second lookup*/ /*long symbol, shares prefix with other long symbols in first lookup table, needs second lookup*/
@ -743,7 +743,7 @@ static unsigned HuffmanTree_makeTable(HuffmanTree* tree) {
unsigned reverse2 = reverse >> FIRSTBITS; /* l - FIRSTBITS bits */ unsigned reverse2 = reverse >> FIRSTBITS; /* l - FIRSTBITS bits */
unsigned index2 = start + (reverse2 | (j << (l - FIRSTBITS))); unsigned index2 = start + (reverse2 | (j << (l - FIRSTBITS)));
tree->table_len[index2] = l; tree->table_len[index2] = l;
tree->table_value[index2] = i; tree->table_value[index2] = (unsigned short)i;
} }
} }
} }
@ -2886,7 +2886,7 @@ static unsigned lodepng_chunk_createv(ucvector* out,
} }
unsigned lodepng_chunk_create(unsigned char** out, size_t* outsize, unsigned lodepng_chunk_create(unsigned char** out, size_t* outsize,
unsigned length, const char* type, const unsigned char* data) { size_t length, const char* type, const unsigned char* data) {
ucvector v = ucvector_init(*out, *outsize); ucvector v = ucvector_init(*out, *outsize);
unsigned error = lodepng_chunk_createv(&v, length, type, data); unsigned error = lodepng_chunk_createv(&v, length, type, data);
*out = v.data; *out = v.data;
@ -3363,7 +3363,7 @@ unsigned lodepng_info_copy(LodePNGInfo* dest, const LodePNGInfo* source) {
static void addColorBits(unsigned char* out, size_t index, unsigned bits, unsigned in) { static void addColorBits(unsigned char* out, size_t index, unsigned bits, unsigned in) {
unsigned m = bits == 1 ? 7 : bits == 2 ? 3 : 1; /*8 / bits - 1*/ unsigned m = bits == 1 ? 7 : bits == 2 ? 3 : 1; /*8 / bits - 1*/
/*p = the partial index in the byte, e.g. with 4 palettebits it is 0 for first half or 1 for second half*/ /*p = the partial index in the byte, e.g. with 4 palettebits it is 0 for first half or 1 for second half*/
unsigned p = (unsigned)index & m; unsigned p = (unsigned) index & m;
in &= (1u << bits) - 1u; /*filter out any other bits of the input value*/ in &= (1u << bits) - 1u; /*filter out any other bits of the input value*/
in = in << (bits * (m - p)); in = in << (bits * (m - p));
if(p == 0) out[index * bits / 8u] = in; if(p == 0) out[index * bits / 8u] = in;
@ -5889,7 +5889,7 @@ static size_t ilog2i(size_t i) {
l = ilog2(i); l = ilog2(i);
/* approximate i*log2(i): l is integer logarithm, ((i - (1u << l)) << 1u) /* approximate i*log2(i): l is integer logarithm, ((i - (1u << l)) << 1u)
linearly approximates the missing fractional part multiplied by i */ linearly approximates the missing fractional part multiplied by i */
return i * l + ((i - ((size_t) 1u << l)) << 1u); return i * l + ((i - (((size_t)1) << l)) << 1u);
} }
static unsigned filter(unsigned char* out, const unsigned char* in, unsigned w, unsigned h, static unsigned filter(unsigned char* out, const unsigned char* in, unsigned w, unsigned h,

View file

@ -1001,7 +1001,7 @@ and data separately. The type is a 4-letter string.
The out variable and outsize are updated to reflect the new reallocated buffer. The out variable and outsize are updated to reflect the new reallocated buffer.
Returne error code (0 if it went ok) Returne error code (0 if it went ok)
*/ */
unsigned lodepng_chunk_create(unsigned char** out, size_t* outsize, unsigned length, unsigned lodepng_chunk_create(unsigned char** out, size_t* outsize, size_t length,
const char* type, const unsigned char* data); const char* type, const unsigned char* data);

View file

@ -1,122 +1,122 @@
/* /*
* lowbat.c * lowbat.c
* *
* This file is part of Emu48 * This file is part of Emu48
* *
* Copyright (C) 2006 Christoph Gießelink * Copyright (C) 2006 Christoph Gießelink
* *
*/ */
#include "pch.h" #include "pch.h"
#include "emu48.h" #include "Emu48.h"
#include "io.h" // I/O definitions #include "io.h" // I/O definitions
// #define BAT_SIMULATION // switch low bat simulation // #define BAT_SIMULATION // switch low bat simulation
#define BAT_FREQ (60*1000) // bat update time in ms (real machine = 60us, HP28C = 60s) #define BAT_FREQ (60*1000) // bat update time in ms (real machine = 60us, HP28C = 60s)
BOOL bLowBatDisable = FALSE; BOOL bLowBatDisable = FALSE;
static HANDLE hCThreadBat = NULL; static HANDLE hCThreadBat = NULL;
static HANDLE hEventBat; static HANDLE hEventBat;
static DWORD WINAPI LowBatThread(LPVOID pParam) static DWORD WINAPI LowBatThread(LPVOID pParam)
{ {
BOOL bLBI,bVLBI; BOOL bLBI,bVLBI;
do do
{ {
GetBatteryState(&bLBI,&bVLBI); // get battery state GetBatteryState(&bLBI,&bVLBI); // get battery state
// very low bat detection // very low bat detection
bVLBI = bVLBI && (Chipset.IORam[LPE] & EVLBI) != 0; bVLBI = bVLBI && (Chipset.IORam[LPE] & EVLBI) != 0;
IOBit(LPD,VLBI,bVLBI); // set VLBI IOBit(LPD,VLBI,bVLBI); // set VLBI
IOBit(SRQ1,VSRQ,bVLBI); // and service bit IOBit(SRQ1,VSRQ,bVLBI); // and service bit
if (bVLBI) // VLBI detected if (bVLBI) // VLBI detected
{ {
Chipset.SoftInt = TRUE; Chipset.SoftInt = TRUE;
bInterrupt = TRUE; bInterrupt = TRUE;
if (Chipset.Shutdn) // CPU shut down if (Chipset.Shutdn) // CPU shut down
{ {
Chipset.bShutdnWake = TRUE; // wake up from SHUTDN mode Chipset.bShutdnWake = TRUE; // wake up from SHUTDN mode
SetEvent(hEventShutdn); // wake up emulation thread SetEvent(hEventShutdn); // wake up emulation thread
} }
} }
} }
while (WaitForSingleObject(hEventBat,BAT_FREQ) == WAIT_TIMEOUT); while (WaitForSingleObject(hEventBat,BAT_FREQ) == WAIT_TIMEOUT);
return 0; return 0;
UNREFERENCED_PARAMETER(pParam); UNREFERENCED_PARAMETER(pParam);
} }
VOID StartBatMeasure(VOID) VOID StartBatMeasure(VOID)
{ {
DWORD dwThreadId; DWORD dwThreadId;
if (hCThreadBat) // Bat measuring thread running if (hCThreadBat) // Bat measuring thread running
return; // -> quit return; // -> quit
// event to cancel Bat refresh loop // event to cancel Bat refresh loop
hEventBat = CreateEvent(NULL,FALSE,FALSE,NULL); hEventBat = CreateEvent(NULL,FALSE,FALSE,NULL);
VERIFY(hCThreadBat = CreateThread(NULL,0,&LowBatThread,NULL,0,&dwThreadId)); VERIFY(hCThreadBat = CreateThread(NULL,0,&LowBatThread,NULL,0,&dwThreadId));
return; return;
} }
VOID StopBatMeasure(VOID) VOID StopBatMeasure(VOID)
{ {
if (hCThreadBat == NULL) // thread stopped if (hCThreadBat == NULL) // thread stopped
return; // -> quit return; // -> quit
SetEvent(hEventBat); // leave Bat update thread SetEvent(hEventBat); // leave Bat update thread
WaitForSingleObject(hCThreadBat,INFINITE); WaitForSingleObject(hCThreadBat,INFINITE);
CloseHandle(hCThreadBat); CloseHandle(hCThreadBat);
hCThreadBat = NULL; // set flag Bat update stopped hCThreadBat = NULL; // set flag Bat update stopped
CloseHandle(hEventBat); // close Bat event CloseHandle(hEventBat); // close Bat event
return; return;
} }
VOID GetBatteryState(BOOL *pbLBI, BOOL *pbVLBI) VOID GetBatteryState(BOOL *pbLBI, BOOL *pbVLBI)
{ {
#if defined BAT_SIMULATION #if defined BAT_SIMULATION
switch (GetPrivateProfileInt(_T("LowBat"),_T("Level"),2,_T(".\\Lowbat.ini"))) switch (GetPrivateProfileInt(_T("LowBat"),_T("Level"),2,_T(".\\Lowbat.ini")))
{ {
case 0: // empty case 0: // empty
*pbLBI = TRUE; *pbLBI = TRUE;
*pbVLBI = TRUE; *pbVLBI = TRUE;
break; break;
case 1: // low case 1: // low
*pbLBI = TRUE; *pbLBI = TRUE;
*pbVLBI = FALSE; *pbVLBI = FALSE;
break; break;
default: // full default: // full
*pbLBI = FALSE; *pbLBI = FALSE;
*pbVLBI = FALSE; *pbVLBI = FALSE;
break; break;
} }
#else #else
SYSTEM_POWER_STATUS sSps; SYSTEM_POWER_STATUS sSps;
*pbLBI = FALSE; // no battery warning *pbLBI = FALSE; // no battery warning
*pbVLBI = FALSE; *pbVLBI = FALSE;
VERIFY(GetSystemPowerStatus(&sSps)); VERIFY(GetSystemPowerStatus(&sSps));
// low bat emulation enabled and battery powered // low bat emulation enabled and battery powered
if (!bLowBatDisable && sSps.ACLineStatus == AC_LINE_OFFLINE) if (!bLowBatDisable && sSps.ACLineStatus == AC_LINE_OFFLINE)
{ {
// on critical battery state make sure that lowbat flag is also set // on critical battery state make sure that lowbat flag is also set
if ((sSps.BatteryFlag & BATTERY_FLAG_CRITICAL) != 0) if ((sSps.BatteryFlag & BATTERY_FLAG_CRITICAL) != 0)
sSps.BatteryFlag |= BATTERY_FLAG_LOW; sSps.BatteryFlag |= BATTERY_FLAG_LOW;
// low bat detection // low bat detection
*pbLBI = ((sSps.BatteryFlag & BATTERY_FLAG_LOW) != 0); *pbLBI = ((sSps.BatteryFlag & BATTERY_FLAG_LOW) != 0);
// very low bat detection // very low bat detection
*pbVLBI = ((sSps.BatteryFlag & BATTERY_FLAG_CRITICAL) != 0); *pbVLBI = ((sSps.BatteryFlag & BATTERY_FLAG_CRITICAL) != 0);
} }
#endif #endif
return; return;
} }

File diff suppressed because it is too large Load diff

View file

@ -1,380 +1,380 @@
/* /*
* mru.c * mru.c
* *
* This file is part of Emu48 * This file is part of Emu48
* *
* Copyright (C) 2007 Christoph Gießelink * Copyright (C) 2007 Christoph Gießelink
* *
*/ */
#include "pch.h" #include "pch.h"
#include "resource.h" #include "resource.h"
#include "emu48.h" #include "Emu48.h"
static TCHAR szOriginal[MAX_PATH] = _T(""); static TCHAR szOriginal[MAX_PATH] = _T("");
static LPTSTR *ppszFiles = NULL; // pointer to MRU table static LPTSTR *ppszFiles = NULL; // pointer to MRU table
static UINT nEntry = 0; // no. of MRU entries static UINT nEntry = 0; // no. of MRU entries
static BOOL GetMenuPosForId(HMENU hMenu, UINT nItem, HMENU *phMruMenu, UINT *pnMruPos) static BOOL GetMenuPosForId(HMENU hMenu, UINT nItem, HMENU *phMruMenu, UINT *pnMruPos)
{ {
HMENU hSubMenu; HMENU hSubMenu;
UINT i,nID,nMaxID; UINT i,nID,nMaxID;
nMaxID = GetMenuItemCount(hMenu); nMaxID = GetMenuItemCount(hMenu);
for (i = 0; i < nMaxID; ++i) for (i = 0; i < nMaxID; ++i)
{ {
nID = GetMenuItemID(hMenu,i); // get ID nID = GetMenuItemID(hMenu,i); // get ID
if (nID == 0) continue; // separator or invalid command if (nID == 0) continue; // separator or invalid command
if (nID == (UINT)-1) // possibly a popup menu if (nID == (UINT)-1) // possibly a popup menu
{ {
hSubMenu = GetSubMenu(hMenu,i); // try to get handle to popup menu hSubMenu = GetSubMenu(hMenu,i); // try to get handle to popup menu
if (hSubMenu != NULL) // it's a popup menu if (hSubMenu != NULL) // it's a popup menu
{ {
// recursive search // recursive search
if (GetMenuPosForId(hSubMenu,nItem,phMruMenu,pnMruPos)) if (GetMenuPosForId(hSubMenu,nItem,phMruMenu,pnMruPos))
return TRUE; return TRUE;
} }
continue; continue;
} }
if (nID == nItem) // found ID if (nID == nItem) // found ID
{ {
*phMruMenu = hMenu; // remember menu and position *phMruMenu = hMenu; // remember menu and position
*pnMruPos = i; *pnMruPos = i;
return TRUE; return TRUE;
} }
} }
return FALSE; return FALSE;
} }
BOOL MruInit(UINT nNum) BOOL MruInit(UINT nNum)
{ {
HMENU hMenu = GetMenu(hWnd); // main menu HMENU hMenu = GetMenu(hWnd); // main menu
if (hMenu == NULL) return FALSE; // failed, no menu bar if (hMenu == NULL) return FALSE; // failed, no menu bar
_ASSERT(ppszFiles == NULL); // MRU already initialized _ASSERT(ppszFiles == NULL); // MRU already initialized
// no. of files in MRU list // no. of files in MRU list
nEntry = ReadSettingsInt(_T("MRU"),_T("FileCount"),nNum); nEntry = ReadSettingsInt(_T("MRU"),_T("FileCount"),nNum);
if (nEntry > 0) // allocate MRU table if (nEntry > 0) // allocate MRU table
{ {
// create MRU table // create MRU table
if ((ppszFiles = (LPTSTR *) malloc(nEntry * sizeof(*ppszFiles))) == NULL) if ((ppszFiles = (LPTSTR *) malloc(nEntry * sizeof(*ppszFiles))) == NULL)
return FALSE; return FALSE;
// fill each entry // fill each entry
for (nNum = 0; nNum < nEntry; ++nNum) for (nNum = 0; nNum < nEntry; ++nNum)
ppszFiles[nNum] = NULL; ppszFiles[nNum] = NULL;
MruReadList(); // read actual MRU list MruReadList(); // read actual MRU list
} }
return TRUE; return TRUE;
} }
VOID MruCleanup(VOID) VOID MruCleanup(VOID)
{ {
UINT i; UINT i;
MruWriteList(); // write actual MRU list MruWriteList(); // write actual MRU list
if (ppszFiles != NULL) // table defined if (ppszFiles != NULL) // table defined
{ {
for (i = 0; i < nEntry; ++i) // cleanup each entry for (i = 0; i < nEntry; ++i) // cleanup each entry
{ {
if (ppszFiles[i] != NULL) // valid entry if (ppszFiles[i] != NULL) // valid entry
free(ppszFiles[i]); // cleanup entry free(ppszFiles[i]); // cleanup entry
} }
free(ppszFiles); // free table free(ppszFiles); // free table
ppszFiles = NULL; ppszFiles = NULL;
} }
return; return;
} }
VOID MruAdd(LPCTSTR lpszEntry) VOID MruAdd(LPCTSTR lpszEntry)
{ {
TCHAR szFilename[MAX_PATH]; TCHAR szFilename[MAX_PATH];
LPTSTR lpFilePart; LPTSTR lpFilePart;
UINT i; UINT i;
if (ppszFiles != NULL) // MRU initialized if (ppszFiles != NULL) // MRU initialized
{ {
_ASSERT(nEntry > 0); // must have entries _ASSERT(nEntry > 0); // must have entries
// get full path name // get full path name
GetFullPathName(lpszEntry,ARRAYSIZEOF(szFilename),szFilename,&lpFilePart); GetFullPathName(lpszEntry,ARRAYSIZEOF(szFilename),szFilename,&lpFilePart);
// look if entry is already in table // look if entry is already in table
for (i = 0; i < nEntry; ++i) for (i = 0; i < nEntry; ++i)
{ {
// already in table -> quit // already in table -> quit
if ( ppszFiles[i] != NULL // valid entry if ( ppszFiles[i] != NULL // valid entry
&& lstrcmpi(ppszFiles[i],szFilename) == 0) && lstrcmpi(ppszFiles[i],szFilename) == 0)
{ {
MruMoveTop(i); // move to top and update menu MruMoveTop(i); // move to top and update menu
return; return;
} }
} }
i = nEntry - 1; // last index i = nEntry - 1; // last index
if (ppszFiles[i] != NULL) // valid entry if (ppszFiles[i] != NULL) // valid entry
free(ppszFiles[i]); // free oldest entry free(ppszFiles[i]); // free oldest entry
for (; i > 0; --i) // move old entries 1 line down for (; i > 0; --i) // move old entries 1 line down
{ {
ppszFiles[i] = ppszFiles[i-1]; ppszFiles[i] = ppszFiles[i-1];
} }
// add new entry to top // add new entry to top
ppszFiles[0] = DuplicateString(szFilename); ppszFiles[0] = DuplicateString(szFilename);
} }
return; return;
} }
VOID MruRemove(UINT nIndex) VOID MruRemove(UINT nIndex)
{ {
// MRU initialized and index inside valid range // MRU initialized and index inside valid range
if (ppszFiles != NULL && nIndex < nEntry) if (ppszFiles != NULL && nIndex < nEntry)
{ {
free(ppszFiles[nIndex]); // free entry free(ppszFiles[nIndex]); // free entry
for (; nIndex < nEntry - 1; ++nIndex) // move below entries 1 line up for (; nIndex < nEntry - 1; ++nIndex) // move below entries 1 line up
{ {
ppszFiles[nIndex] = ppszFiles[nIndex+1]; ppszFiles[nIndex] = ppszFiles[nIndex+1];
} }
ppszFiles[nIndex] = NULL; // clear last line ppszFiles[nIndex] = NULL; // clear last line
} }
return; return;
} }
VOID MruMoveTop(UINT nIndex) VOID MruMoveTop(UINT nIndex)
{ {
// MRU initialized and index inside valid range // MRU initialized and index inside valid range
if (ppszFiles != NULL && nIndex < nEntry) if (ppszFiles != NULL && nIndex < nEntry)
{ {
LPTSTR lpszEntry = ppszFiles[nIndex];// remember selected entry LPTSTR lpszEntry = ppszFiles[nIndex];// remember selected entry
for (; nIndex > 0; --nIndex) // move above entries 1 line down for (; nIndex > 0; --nIndex) // move above entries 1 line down
{ {
ppszFiles[nIndex] = ppszFiles[nIndex-1]; ppszFiles[nIndex] = ppszFiles[nIndex-1];
} }
ppszFiles[0] = lpszEntry; // insert entry on top ppszFiles[0] = lpszEntry; // insert entry on top
} }
return; return;
} }
UINT MruEntries(VOID) UINT MruEntries(VOID)
{ {
return nEntry; return nEntry;
} }
UINT MruID(LPCTSTR lpszEntry) UINT MruID(LPCTSTR lpszEntry)
{ {
TCHAR szFilename[MAX_PATH]; TCHAR szFilename[MAX_PATH];
LPTSTR lpFilePart; LPTSTR lpFilePart;
UINT i; UINT i;
if (ppszFiles != NULL) // MRU initialized if (ppszFiles != NULL) // MRU initialized
{ {
_ASSERT(nEntry > 0); // must have entries _ASSERT(nEntry > 0); // must have entries
// get full path name // get full path name
GetFullPathName(lpszEntry,ARRAYSIZEOF(szFilename),szFilename,&lpFilePart); GetFullPathName(lpszEntry,ARRAYSIZEOF(szFilename),szFilename,&lpFilePart);
// look if entry is already in table // look if entry is already in table
for (i = 0; i < nEntry; ++i) for (i = 0; i < nEntry; ++i)
{ {
if ( ppszFiles[i] != NULL // valid entry if ( ppszFiles[i] != NULL // valid entry
&& lstrcmpi(ppszFiles[i],szFilename) == 0) && lstrcmpi(ppszFiles[i],szFilename) == 0)
{ {
return i; // return ID return i; // return ID
} }
} }
} }
return (UINT) -1; // not found return (UINT) -1; // not found
} }
VOID MruFilename(UINT nIndex, LPTSTR szFilename, UINT nBuffersize) VOID MruFilename(UINT nIndex, LPTSTR szFilename, UINT nBuffersize)
{ {
*szFilename = 0; // not found *szFilename = 0; // not found
// MRU initialized and index inside valid range // MRU initialized and index inside valid range
if (ppszFiles != NULL && nIndex < nEntry) if (ppszFiles != NULL && nIndex < nEntry)
{ {
_ASSERT(ppszFiles[nIndex] != NULL); // valid entry _ASSERT(ppszFiles[nIndex] != NULL); // valid entry
lstrcpyn(szFilename,ppszFiles[nIndex],nBuffersize); lstrcpyn(szFilename,ppszFiles[nIndex],nBuffersize);
} }
return; return;
} }
VOID MruUpdateMenu(HMENU hMenu) VOID MruUpdateMenu(HMENU hMenu)
{ {
TCHAR szCurPath[MAX_PATH]; TCHAR szCurPath[MAX_PATH];
BOOL bEmpty; BOOL bEmpty;
UINT i; UINT i;
if (hMenu != NULL) // have menu if (hMenu != NULL) // have menu
{ {
HMENU hMruMenu; // menu handle for MRU list HMENU hMruMenu; // menu handle for MRU list
UINT nMruPos; // insert position for MRU list UINT nMruPos; // insert position for MRU list
_ASSERT(IsMenu(hMenu)); // validate menu handle _ASSERT(IsMenu(hMenu)); // validate menu handle
// search for menu position of ID_FILE_MRU_FILE1 // search for menu position of ID_FILE_MRU_FILE1
if (GetMenuPosForId(hMenu,ID_FILE_MRU_FILE1,&hMruMenu,&nMruPos)) if (GetMenuPosForId(hMenu,ID_FILE_MRU_FILE1,&hMruMenu,&nMruPos))
{ {
if (*szOriginal == 0) // get orginal value of first MRU entry if (*szOriginal == 0) // get orginal value of first MRU entry
{ {
VERIFY(GetMenuString(hMruMenu,nMruPos,szOriginal,ARRAYSIZEOF(szOriginal),MF_BYPOSITION)); VERIFY(GetMenuString(hMruMenu,nMruPos,szOriginal,ARRAYSIZEOF(szOriginal),MF_BYPOSITION));
} }
if (nEntry == 0) // kill MRU menu entry if (nEntry == 0) // kill MRU menu entry
{ {
// delete MRU menu // delete MRU menu
DeleteMenu(hMruMenu,nMruPos,MF_BYPOSITION); DeleteMenu(hMruMenu,nMruPos,MF_BYPOSITION);
// delete the following separator // delete the following separator
_ASSERT((GetMenuState(hMruMenu,nMruPos,MF_BYPOSITION) & MF_SEPARATOR) != 0); _ASSERT((GetMenuState(hMruMenu,nMruPos,MF_BYPOSITION) & MF_SEPARATOR) != 0);
DeleteMenu(hMruMenu,nMruPos,MF_BYPOSITION); DeleteMenu(hMruMenu,nMruPos,MF_BYPOSITION);
} }
if (ppszFiles != NULL) // MRU initialized if (ppszFiles != NULL) // MRU initialized
{ {
_ASSERT(nEntry > 0); // must have entries _ASSERT(nEntry > 0); // must have entries
// delete all menu entries // delete all menu entries
for (i = 0; DeleteMenu(hMenu,ID_FILE_MRU_FILE1+i,MF_BYCOMMAND) != FALSE; ++i) { } for (i = 0; DeleteMenu(hMenu,ID_FILE_MRU_FILE1+i,MF_BYCOMMAND) != FALSE; ++i) { }
// check if MRU list is empty // check if MRU list is empty
for (bEmpty = TRUE, i = 0; bEmpty && i < nEntry; ++i) for (bEmpty = TRUE, i = 0; bEmpty && i < nEntry; ++i)
{ {
bEmpty = (ppszFiles[i] == NULL); bEmpty = (ppszFiles[i] == NULL);
} }
if (bEmpty) // MRU list is empty if (bEmpty) // MRU list is empty
{ {
// fill with orginal string // fill with orginal string
VERIFY(InsertMenu(hMruMenu,nMruPos,MF_STRING|MF_BYPOSITION|MF_GRAYED,ID_FILE_MRU_FILE1,szOriginal)); VERIFY(InsertMenu(hMruMenu,nMruPos,MF_STRING|MF_BYPOSITION|MF_GRAYED,ID_FILE_MRU_FILE1,szOriginal));
return; return;
} }
// current directory // current directory
GetCurrentDirectory(ARRAYSIZEOF(szCurPath),szCurPath); GetCurrentDirectory(ARRAYSIZEOF(szCurPath),szCurPath);
for (i = 0; i < nEntry; ++i) // add menu entries for (i = 0; i < nEntry; ++i) // add menu entries
{ {
if (ppszFiles[i] != NULL) // valid entry if (ppszFiles[i] != NULL) // valid entry
{ {
TCHAR szMenuname[2*MAX_PATH+3]; TCHAR szMenuname[2*MAX_PATH+3];
TCHAR szFilename[MAX_PATH]; TCHAR szFilename[MAX_PATH];
LPTSTR lpFilePart,lpszPtr; LPTSTR lpFilePart,lpszPtr;
// check if file path and current path is identical // check if file path and current path is identical
if (GetFullPathName(ppszFiles[i],ARRAYSIZEOF(szFilename),szFilename,&lpFilePart)) if (GetFullPathName(ppszFiles[i],ARRAYSIZEOF(szFilename),szFilename,&lpFilePart))
{ {
TCHAR szCutname[MAX_PATH]; TCHAR szCutname[MAX_PATH];
*(lpFilePart-1) = 0; // devide path and name *(lpFilePart-1) = 0; // devide path and name
// name is current directory -> use only name // name is current directory -> use only name
if (lstrcmpi(szCurPath,szFilename) == 0) if (lstrcmpi(szCurPath,szFilename) == 0)
{ {
// short name view // short name view
} }
else else
{ {
// full name view // full name view
lpFilePart = ppszFiles[i]; lpFilePart = ppszFiles[i];
} }
// cut filename to fit into menu // cut filename to fit into menu
GetCutPathName(lpFilePart,szCutname,ARRAYSIZEOF(szCutname),36); GetCutPathName(lpFilePart,szCutname,ARRAYSIZEOF(szCutname),36);
lpFilePart = szCutname; lpFilePart = szCutname;
// adding accelerator key // adding accelerator key
lpszPtr = szMenuname; lpszPtr = szMenuname;
*lpszPtr++ = _T('&'); *lpszPtr++ = _T('&');
*lpszPtr++ = _T('0') + ((i + 1) % 10); *lpszPtr++ = _T('0') + ((i + 1) % 10);
*lpszPtr++ = _T(' '); *lpszPtr++ = _T(' ');
// copy file to view buffer and expand & to && // copy file to view buffer and expand & to &&
while (*lpFilePart != 0) while (*lpFilePart != 0)
{ {
if (*lpFilePart == _T('&')) if (*lpFilePart == _T('&'))
{ {
*lpszPtr++ = *lpFilePart; *lpszPtr++ = *lpFilePart;
} }
*lpszPtr++ = *lpFilePart++; *lpszPtr++ = *lpFilePart++;
} }
*lpszPtr = 0; *lpszPtr = 0;
VERIFY(InsertMenu(hMruMenu,nMruPos+i, VERIFY(InsertMenu(hMruMenu,nMruPos+i,
MF_STRING|MF_BYPOSITION,ID_FILE_MRU_FILE1+i, MF_STRING|MF_BYPOSITION,ID_FILE_MRU_FILE1+i,
szMenuname)); szMenuname));
} }
} }
} }
} }
} }
} }
return; return;
} }
VOID MruWriteList(VOID) VOID MruWriteList(VOID)
{ {
TCHAR szItemname[32]; TCHAR szItemname[32];
UINT i; UINT i;
if (nEntry > 0) if (nEntry > 0)
{ {
// no. of files in MRU list // no. of files in MRU list
WriteSettingsInt(_T("MRU"),_T("FileCount"),nEntry); WriteSettingsInt(_T("MRU"),_T("FileCount"),nEntry);
for (i = 0; i < nEntry; ++i) // add menu entries for (i = 0; i < nEntry; ++i) // add menu entries
{ {
_ASSERT(ppszFiles != NULL); // MRU not initialized _ASSERT(ppszFiles != NULL); // MRU not initialized
wsprintf(szItemname,_T("File%d"),i+1); wsprintf(szItemname,_T("File%d"),i+1);
if (ppszFiles[i] != NULL) // valid entry if (ppszFiles[i] != NULL) // valid entry
{ {
WriteSettingsString(_T("MRU"),szItemname,ppszFiles[i]); WriteSettingsString(_T("MRU"),szItemname,ppszFiles[i]);
} }
else else
{ {
DelSettingsKey(_T("MRU"),szItemname); DelSettingsKey(_T("MRU"),szItemname);
} }
} }
} }
return; return;
} }
VOID MruReadList(VOID) VOID MruReadList(VOID)
{ {
TCHAR szFilename[MAX_PATH]; TCHAR szFilename[MAX_PATH];
TCHAR szItemname[32]; TCHAR szItemname[32];
UINT i; UINT i;
for (i = 0; i < nEntry; ++i) // add menu entries for (i = 0; i < nEntry; ++i) // add menu entries
{ {
_ASSERT(ppszFiles != NULL); // MRU not initialized _ASSERT(ppszFiles != NULL); // MRU not initialized
wsprintf(szItemname,_T("File%d"),i+1); wsprintf(szItemname,_T("File%d"),i+1);
ReadSettingsString(_T("MRU"),szItemname,_T(""),szFilename,ARRAYSIZEOF(szFilename)); ReadSettingsString(_T("MRU"),szItemname,_T(""),szFilename,ARRAYSIZEOF(szFilename));
if (ppszFiles[i] != NULL) // valid entry if (ppszFiles[i] != NULL) // valid entry
{ {
free(ppszFiles[i]); // free entry free(ppszFiles[i]); // free entry
ppszFiles[i] = NULL; // clear last line ppszFiles[i] = NULL; // clear last line
} }
if (*szFilename) // read a valid entry if (*szFilename) // read a valid entry
{ {
ppszFiles[i] = DuplicateString(szFilename); ppszFiles[i] = DuplicateString(szFilename);
} }
} }
return; return;
} }

File diff suppressed because it is too large Load diff

View file

@ -1,443 +1,443 @@
/* /*
* opcodes.h * opcodes.h
* *
* This file is part of Emu48 * This file is part of Emu48
* *
* Copyright (C) 1999 Christoph Gießelink * Copyright (C) 1999 Christoph Gießelink
* *
*/ */
#define PCHANGED ((void)(F_s[0]=Chipset.P,F_l[1]=Chipset.P+1)) #define PCHANGED ((void)(F_s[0]=Chipset.P,F_l[1]=Chipset.P+1))
#define INTERRUPT ((void)(Chipset.SoftInt=TRUE,bInterrupt=TRUE)) #define INTERRUPT ((void)(Chipset.SoftInt=TRUE,bInterrupt=TRUE))
extern UINT F_s[16]; extern UINT F_s[16];
extern UINT F_l[16]; extern UINT F_l[16];
extern VOID o00(LPBYTE I); // RTNSXM extern VOID o00(LPBYTE I); // RTNSXM
extern VOID o01(LPBYTE I); // RTN extern VOID o01(LPBYTE I); // RTN
extern VOID o02(LPBYTE I); // RTNSC extern VOID o02(LPBYTE I); // RTNSC
extern VOID o03(LPBYTE I); // RTNCC extern VOID o03(LPBYTE I); // RTNCC
extern VOID o04(LPBYTE I); // SETHEX extern VOID o04(LPBYTE I); // SETHEX
extern VOID o05(LPBYTE I); // SETDEC extern VOID o05(LPBYTE I); // SETDEC
extern VOID o06(LPBYTE I); // RSTK=C extern VOID o06(LPBYTE I); // RSTK=C
extern VOID o07(LPBYTE I); // C=RSTK extern VOID o07(LPBYTE I); // C=RSTK
extern VOID o08(LPBYTE I); // CLRST extern VOID o08(LPBYTE I); // CLRST
extern VOID o09(LPBYTE I); // C=ST extern VOID o09(LPBYTE I); // C=ST
extern VOID o0A(LPBYTE I); // ST=C extern VOID o0A(LPBYTE I); // ST=C
extern VOID o0B(LPBYTE I); // CSTEX extern VOID o0B(LPBYTE I); // CSTEX
extern VOID o0C(LPBYTE I); // P=P+1 extern VOID o0C(LPBYTE I); // P=P+1
extern VOID o0D(LPBYTE I); // P=P-1 extern VOID o0D(LPBYTE I); // P=P-1
extern VOID o0Ef0(LPBYTE I); // A=A&B f extern VOID o0Ef0(LPBYTE I); // A=A&B f
extern VOID o0Ef1(LPBYTE I); // B=B&C f extern VOID o0Ef1(LPBYTE I); // B=B&C f
extern VOID o0Ef2(LPBYTE I); // C=C&A f extern VOID o0Ef2(LPBYTE I); // C=C&A f
extern VOID o0Ef3(LPBYTE I); // D=D&C f extern VOID o0Ef3(LPBYTE I); // D=D&C f
extern VOID o0Ef4(LPBYTE I); // B=B&A f extern VOID o0Ef4(LPBYTE I); // B=B&A f
extern VOID o0Ef5(LPBYTE I); // C=C&B f extern VOID o0Ef5(LPBYTE I); // C=C&B f
extern VOID o0Ef6(LPBYTE I); // A=A&C f extern VOID o0Ef6(LPBYTE I); // A=A&C f
extern VOID o0Ef7(LPBYTE I); // C=C&D f extern VOID o0Ef7(LPBYTE I); // C=C&D f
extern VOID o0Ef8(LPBYTE I); // A=A!B f extern VOID o0Ef8(LPBYTE I); // A=A!B f
extern VOID o0Ef9(LPBYTE I); // B=B!C f extern VOID o0Ef9(LPBYTE I); // B=B!C f
extern VOID o0EfA(LPBYTE I); // C=C!A f extern VOID o0EfA(LPBYTE I); // C=C!A f
extern VOID o0EfB(LPBYTE I); // D=D!C f extern VOID o0EfB(LPBYTE I); // D=D!C f
extern VOID o0EfC(LPBYTE I); // B=B!A f extern VOID o0EfC(LPBYTE I); // B=B!A f
extern VOID o0EfD(LPBYTE I); // C=C!B f extern VOID o0EfD(LPBYTE I); // C=C!B f
extern VOID o0EfE(LPBYTE I); // A=A!C f extern VOID o0EfE(LPBYTE I); // A=A!C f
extern VOID o0EfF(LPBYTE I); // C=C!D f extern VOID o0EfF(LPBYTE I); // C=C!D f
extern VOID o0F(LPBYTE I); // RTI extern VOID o0F(LPBYTE I); // RTI
extern VOID o100(LPBYTE I); // R0=A W extern VOID o100(LPBYTE I); // R0=A W
extern VOID o101(LPBYTE I); // R1=A W extern VOID o101(LPBYTE I); // R1=A W
extern VOID o102(LPBYTE I); // R2=A W extern VOID o102(LPBYTE I); // R2=A W
extern VOID o103(LPBYTE I); // R3=A W extern VOID o103(LPBYTE I); // R3=A W
extern VOID o104(LPBYTE I); // R4=A W extern VOID o104(LPBYTE I); // R4=A W
extern VOID o108(LPBYTE I); // R0=C W extern VOID o108(LPBYTE I); // R0=C W
extern VOID o109(LPBYTE I); // R1=C W extern VOID o109(LPBYTE I); // R1=C W
extern VOID o10A(LPBYTE I); // R2=C W extern VOID o10A(LPBYTE I); // R2=C W
extern VOID o10B(LPBYTE I); // R3=C W extern VOID o10B(LPBYTE I); // R3=C W
extern VOID o10C(LPBYTE I); // R4=C W extern VOID o10C(LPBYTE I); // R4=C W
extern VOID o110(LPBYTE I); // A=R0 W extern VOID o110(LPBYTE I); // A=R0 W
extern VOID o111(LPBYTE I); // A=R1 W extern VOID o111(LPBYTE I); // A=R1 W
extern VOID o112(LPBYTE I); // A=R2 W extern VOID o112(LPBYTE I); // A=R2 W
extern VOID o113(LPBYTE I); // A=R3 W extern VOID o113(LPBYTE I); // A=R3 W
extern VOID o114(LPBYTE I); // A=R4 W extern VOID o114(LPBYTE I); // A=R4 W
extern VOID o118(LPBYTE I); // C=R0 W extern VOID o118(LPBYTE I); // C=R0 W
extern VOID o119(LPBYTE I); // C=R1 W extern VOID o119(LPBYTE I); // C=R1 W
extern VOID o11A(LPBYTE I); // C=R2 W extern VOID o11A(LPBYTE I); // C=R2 W
extern VOID o11B(LPBYTE I); // C=R3 W extern VOID o11B(LPBYTE I); // C=R3 W
extern VOID o11C(LPBYTE I); // C=R4 W extern VOID o11C(LPBYTE I); // C=R4 W
extern VOID o120(LPBYTE I); // AR0EX W extern VOID o120(LPBYTE I); // AR0EX W
extern VOID o121(LPBYTE I); // AR1EX W extern VOID o121(LPBYTE I); // AR1EX W
extern VOID o122(LPBYTE I); // AR2EX W extern VOID o122(LPBYTE I); // AR2EX W
extern VOID o123(LPBYTE I); // AR3EX W extern VOID o123(LPBYTE I); // AR3EX W
extern VOID o124(LPBYTE I); // AR4EX W extern VOID o124(LPBYTE I); // AR4EX W
extern VOID o128(LPBYTE I); // CR0EX W extern VOID o128(LPBYTE I); // CR0EX W
extern VOID o129(LPBYTE I); // CR1EX W extern VOID o129(LPBYTE I); // CR1EX W
extern VOID o12A(LPBYTE I); // CR2EX W extern VOID o12A(LPBYTE I); // CR2EX W
extern VOID o12B(LPBYTE I); // CR3EX W extern VOID o12B(LPBYTE I); // CR3EX W
extern VOID o12C(LPBYTE I); // CR4EX W extern VOID o12C(LPBYTE I); // CR4EX W
extern VOID o130(LPBYTE I); // D0=A extern VOID o130(LPBYTE I); // D0=A
extern VOID o131(LPBYTE I); // D1=A extern VOID o131(LPBYTE I); // D1=A
extern VOID o132(LPBYTE I); // AD0EX extern VOID o132(LPBYTE I); // AD0EX
extern VOID o133(LPBYTE I); // AD1EX extern VOID o133(LPBYTE I); // AD1EX
extern VOID o134(LPBYTE I); // D0=C extern VOID o134(LPBYTE I); // D0=C
extern VOID o135(LPBYTE I); // D1=C extern VOID o135(LPBYTE I); // D1=C
extern VOID o136(LPBYTE I); // CD0EX extern VOID o136(LPBYTE I); // CD0EX
extern VOID o137(LPBYTE I); // CD1EX extern VOID o137(LPBYTE I); // CD1EX
extern VOID o138(LPBYTE I); // D0=AS extern VOID o138(LPBYTE I); // D0=AS
extern VOID o139(LPBYTE I); // D1=AS extern VOID o139(LPBYTE I); // D1=AS
extern VOID o13A(LPBYTE I); // AD0XS extern VOID o13A(LPBYTE I); // AD0XS
extern VOID o13B(LPBYTE I); // AD1XS extern VOID o13B(LPBYTE I); // AD1XS
extern VOID o13C(LPBYTE I); // D0=CS extern VOID o13C(LPBYTE I); // D0=CS
extern VOID o13D(LPBYTE I); // D1=CS extern VOID o13D(LPBYTE I); // D1=CS
extern VOID o13E(LPBYTE I); // CD0XS extern VOID o13E(LPBYTE I); // CD0XS
extern VOID o13F(LPBYTE I); // CD1XS extern VOID o13F(LPBYTE I); // CD1XS
extern VOID o140(LPBYTE I); // DAT0=A A extern VOID o140(LPBYTE I); // DAT0=A A
extern VOID o141(LPBYTE I); // DAT0=A A extern VOID o141(LPBYTE I); // DAT0=A A
extern VOID o144(LPBYTE I); // DAT0=C A extern VOID o144(LPBYTE I); // DAT0=C A
extern VOID o145(LPBYTE I); // DAT1=C A extern VOID o145(LPBYTE I); // DAT1=C A
extern VOID o148(LPBYTE I); // DAT0=A B extern VOID o148(LPBYTE I); // DAT0=A B
extern VOID o149(LPBYTE I); // DAT1=A B extern VOID o149(LPBYTE I); // DAT1=A B
extern VOID o14C(LPBYTE I); // DAT0=C B extern VOID o14C(LPBYTE I); // DAT0=C B
extern VOID o14D(LPBYTE I); // DAT1=C B extern VOID o14D(LPBYTE I); // DAT1=C B
extern VOID o142(LPBYTE I); // A=DAT0 A extern VOID o142(LPBYTE I); // A=DAT0 A
extern VOID o143(LPBYTE I); // A=DAT1 A extern VOID o143(LPBYTE I); // A=DAT1 A
extern VOID o146(LPBYTE I); // C=DAT0 A extern VOID o146(LPBYTE I); // C=DAT0 A
extern VOID o147(LPBYTE I); // C=DAT1 A extern VOID o147(LPBYTE I); // C=DAT1 A
extern VOID o14A(LPBYTE I); // A=DAT0 B extern VOID o14A(LPBYTE I); // A=DAT0 B
extern VOID o14B(LPBYTE I); // A=DAT1 B extern VOID o14B(LPBYTE I); // A=DAT1 B
extern VOID o14E(LPBYTE I); // C=DAT0 B extern VOID o14E(LPBYTE I); // C=DAT0 B
extern VOID o14F(LPBYTE I); // C=DAT0 B extern VOID o14F(LPBYTE I); // C=DAT0 B
extern VOID o150a(LPBYTE I); // DAT0=A a extern VOID o150a(LPBYTE I); // DAT0=A a
extern VOID o151a(LPBYTE I); // DAT1=A a extern VOID o151a(LPBYTE I); // DAT1=A a
extern VOID o154a(LPBYTE I); // DAT0=C a extern VOID o154a(LPBYTE I); // DAT0=C a
extern VOID o155a(LPBYTE I); // DAT1=C a extern VOID o155a(LPBYTE I); // DAT1=C a
extern VOID o152a(LPBYTE I); // A=DAT0 a extern VOID o152a(LPBYTE I); // A=DAT0 a
extern VOID o153a(LPBYTE I); // A=DAT1 a extern VOID o153a(LPBYTE I); // A=DAT1 a
extern VOID o156a(LPBYTE I); // C=DAT0 a extern VOID o156a(LPBYTE I); // C=DAT0 a
extern VOID o157a(LPBYTE I); // C=DAT1 a extern VOID o157a(LPBYTE I); // C=DAT1 a
extern VOID o158x(LPBYTE I); // DAT0=A x extern VOID o158x(LPBYTE I); // DAT0=A x
extern VOID o159x(LPBYTE I); // DAT1=A x extern VOID o159x(LPBYTE I); // DAT1=A x
extern VOID o15Cx(LPBYTE I); // DAT0=C x extern VOID o15Cx(LPBYTE I); // DAT0=C x
extern VOID o15Dx(LPBYTE I); // DAT1=C x extern VOID o15Dx(LPBYTE I); // DAT1=C x
extern VOID o15Ax(LPBYTE I); // A=DAT0 x extern VOID o15Ax(LPBYTE I); // A=DAT0 x
extern VOID o15Bx(LPBYTE I); // A=DAT1 x extern VOID o15Bx(LPBYTE I); // A=DAT1 x
extern VOID o15Ex(LPBYTE I); // C=DAT0 x extern VOID o15Ex(LPBYTE I); // C=DAT0 x
extern VOID o15Fx(LPBYTE I); // C=DAT1 x extern VOID o15Fx(LPBYTE I); // C=DAT1 x
extern VOID o16x(LPBYTE I); // D0=D0+ (n+1) extern VOID o16x(LPBYTE I); // D0=D0+ (n+1)
extern VOID o17x(LPBYTE I); // D1=D1+ (n+1) extern VOID o17x(LPBYTE I); // D1=D1+ (n+1)
extern VOID o18x(LPBYTE I); // D0=D0- (n+1) extern VOID o18x(LPBYTE I); // D0=D0- (n+1)
extern VOID o19d2(LPBYTE I); // D0=(2) #dd extern VOID o19d2(LPBYTE I); // D0=(2) #dd
extern VOID o1Ad4(LPBYTE I); // D0=(4) #dddd extern VOID o1Ad4(LPBYTE I); // D0=(4) #dddd
extern VOID o1Bd5(LPBYTE I); // D0=(5) #ddddd extern VOID o1Bd5(LPBYTE I); // D0=(5) #ddddd
extern VOID o1Cx(LPBYTE I); // D1=D1- (n+1) extern VOID o1Cx(LPBYTE I); // D1=D1- (n+1)
extern VOID o1Dd2(LPBYTE I); // D1=(2) #dd extern VOID o1Dd2(LPBYTE I); // D1=(2) #dd
extern VOID o1Ed4(LPBYTE I); // D1=(4) #dddd extern VOID o1Ed4(LPBYTE I); // D1=(4) #dddd
extern VOID o1Fd5(LPBYTE I); // D1=(5) #ddddd extern VOID o1Fd5(LPBYTE I); // D1=(5) #ddddd
extern VOID o2n(LPBYTE I); // P= n extern VOID o2n(LPBYTE I); // P= n
extern VOID o3X(LPBYTE I); // LCHEX extern VOID o3X(LPBYTE I); // LCHEX
extern VOID o4d2(LPBYTE I); // GOC #dd extern VOID o4d2(LPBYTE I); // GOC #dd
extern VOID o5d2(LPBYTE I); // GONC extern VOID o5d2(LPBYTE I); // GONC
extern VOID o6d3(LPBYTE I); // GOTO extern VOID o6d3(LPBYTE I); // GOTO
extern VOID o7d3(LPBYTE I); // GOSUB extern VOID o7d3(LPBYTE I); // GOSUB
extern VOID o800(LPBYTE I); // OUT=CS extern VOID o800(LPBYTE I); // OUT=CS
extern VOID o801(LPBYTE I); // OUT=C extern VOID o801(LPBYTE I); // OUT=C
extern VOID o802(LPBYTE I); // A=IN extern VOID o802(LPBYTE I); // A=IN
extern VOID o803(LPBYTE I); // C=IN extern VOID o803(LPBYTE I); // C=IN
extern VOID o804(LPBYTE I); // UNCNFG extern VOID o804(LPBYTE I); // UNCNFG
extern VOID o805(LPBYTE I); // CONFIG extern VOID o805(LPBYTE I); // CONFIG
extern VOID o806(LPBYTE I); // C=ID extern VOID o806(LPBYTE I); // C=ID
extern VOID o807(LPBYTE I); // SHUTDN extern VOID o807(LPBYTE I); // SHUTDN
extern VOID o8080(LPBYTE I); // INTON extern VOID o8080(LPBYTE I); // INTON
extern VOID o80810(LPBYTE I); // RSI extern VOID o80810(LPBYTE I); // RSI
extern VOID o8082X(LPBYTE I); // LA extern VOID o8082X(LPBYTE I); // LA
extern VOID o8083(LPBYTE I); // BUSCB extern VOID o8083(LPBYTE I); // BUSCB
extern VOID o8084n(LPBYTE I); // ABIT=0 n extern VOID o8084n(LPBYTE I); // ABIT=0 n
extern VOID o8085n(LPBYTE I); // ABIT=1 n extern VOID o8085n(LPBYTE I); // ABIT=1 n
extern VOID o8086n(LPBYTE I); // ?ABIT=0 n extern VOID o8086n(LPBYTE I); // ?ABIT=0 n
extern VOID o8087n(LPBYTE I); // ?ABIT=1 n extern VOID o8087n(LPBYTE I); // ?ABIT=1 n
extern VOID o8088n(LPBYTE I); // CBIT=0 n extern VOID o8088n(LPBYTE I); // CBIT=0 n
extern VOID o8089n(LPBYTE I); // CBIT=1 n extern VOID o8089n(LPBYTE I); // CBIT=1 n
extern VOID o808An(LPBYTE I); // ?CBIT=0 n extern VOID o808An(LPBYTE I); // ?CBIT=0 n
extern VOID o808Bn(LPBYTE I); // ?CBIT=1 n extern VOID o808Bn(LPBYTE I); // ?CBIT=1 n
extern VOID o808C(LPBYTE I); // PC=(A) extern VOID o808C(LPBYTE I); // PC=(A)
extern VOID o808D(LPBYTE I); // BUSCD extern VOID o808D(LPBYTE I); // BUSCD
extern VOID o808E(LPBYTE I); // PC=(C) extern VOID o808E(LPBYTE I); // PC=(C)
extern VOID o808F(LPBYTE I); // INTOFF extern VOID o808F(LPBYTE I); // INTOFF
extern VOID o809(LPBYTE I); // C+P+1 - HEX MODE extern VOID o809(LPBYTE I); // C+P+1 - HEX MODE
extern VOID o80A(LPBYTE I); // RESET extern VOID o80A(LPBYTE I); // RESET
extern VOID o80B(LPBYTE I); // BUSCC extern VOID o80B(LPBYTE I); // BUSCC
extern VOID o80Cn(LPBYTE I); // C=P n extern VOID o80Cn(LPBYTE I); // C=P n
extern VOID o80Dn(LPBYTE I); // P=C n extern VOID o80Dn(LPBYTE I); // P=C n
extern VOID o80E(LPBYTE I); // SREQ? extern VOID o80E(LPBYTE I); // SREQ?
extern VOID o80Fn(LPBYTE I); // CPEX n extern VOID o80Fn(LPBYTE I); // CPEX n
extern VOID o810(LPBYTE I); // ASLC extern VOID o810(LPBYTE I); // ASLC
extern VOID o811(LPBYTE I); // BSLC extern VOID o811(LPBYTE I); // BSLC
extern VOID o812(LPBYTE I); // CSLC extern VOID o812(LPBYTE I); // CSLC
extern VOID o813(LPBYTE I); // DSLC extern VOID o813(LPBYTE I); // DSLC
extern VOID o814(LPBYTE I); // ASRC extern VOID o814(LPBYTE I); // ASRC
extern VOID o815(LPBYTE I); // BSRC extern VOID o815(LPBYTE I); // BSRC
extern VOID o816(LPBYTE I); // CSRC extern VOID o816(LPBYTE I); // CSRC
extern VOID o817(LPBYTE I); // DSRC extern VOID o817(LPBYTE I); // DSRC
extern VOID o818f0x(LPBYTE I); // A=A+x+1 f extern VOID o818f0x(LPBYTE I); // A=A+x+1 f
extern VOID o818f1x(LPBYTE I); // B=B+x+1 f extern VOID o818f1x(LPBYTE I); // B=B+x+1 f
extern VOID o818f2x(LPBYTE I); // C=C+x+1 f extern VOID o818f2x(LPBYTE I); // C=C+x+1 f
extern VOID o818f3x(LPBYTE I); // D=D+x+1 f extern VOID o818f3x(LPBYTE I); // D=D+x+1 f
extern VOID o818f8x(LPBYTE I); // A=A-x-1 f extern VOID o818f8x(LPBYTE I); // A=A-x-1 f
extern VOID o818f9x(LPBYTE I); // B=B-x-1 f extern VOID o818f9x(LPBYTE I); // B=B-x-1 f
extern VOID o818fAx(LPBYTE I); // C=C-x-1 f extern VOID o818fAx(LPBYTE I); // C=C-x-1 f
extern VOID o818fBx(LPBYTE I); // D=D-x-1 f extern VOID o818fBx(LPBYTE I); // D=D-x-1 f
extern VOID o819f0(LPBYTE I); // ASRB.F extern VOID o819f0(LPBYTE I); // ASRB.F
extern VOID o819f1(LPBYTE I); // BSRB.F extern VOID o819f1(LPBYTE I); // BSRB.F
extern VOID o819f2(LPBYTE I); // CSRB.F extern VOID o819f2(LPBYTE I); // CSRB.F
extern VOID o819f3(LPBYTE I); // DSRB.F extern VOID o819f3(LPBYTE I); // DSRB.F
extern VOID o81Af00(LPBYTE I); // R0=A.F f extern VOID o81Af00(LPBYTE I); // R0=A.F f
extern VOID o81Af01(LPBYTE I); // R1=A.F f extern VOID o81Af01(LPBYTE I); // R1=A.F f
extern VOID o81Af02(LPBYTE I); // R2=A.F f extern VOID o81Af02(LPBYTE I); // R2=A.F f
extern VOID o81Af03(LPBYTE I); // R3=A.F f extern VOID o81Af03(LPBYTE I); // R3=A.F f
extern VOID o81Af04(LPBYTE I); // R4=A.F f extern VOID o81Af04(LPBYTE I); // R4=A.F f
extern VOID o81Af08(LPBYTE I); // R0=C.F f extern VOID o81Af08(LPBYTE I); // R0=C.F f
extern VOID o81Af09(LPBYTE I); // R1=C.F f extern VOID o81Af09(LPBYTE I); // R1=C.F f
extern VOID o81Af0A(LPBYTE I); // R2=C.F f extern VOID o81Af0A(LPBYTE I); // R2=C.F f
extern VOID o81Af0B(LPBYTE I); // R3=C.F f extern VOID o81Af0B(LPBYTE I); // R3=C.F f
extern VOID o81Af0C(LPBYTE I); // R4=C.F f extern VOID o81Af0C(LPBYTE I); // R4=C.F f
extern VOID o81Af10(LPBYTE I); // A=R0.F f extern VOID o81Af10(LPBYTE I); // A=R0.F f
extern VOID o81Af11(LPBYTE I); // A=R1.F f extern VOID o81Af11(LPBYTE I); // A=R1.F f
extern VOID o81Af12(LPBYTE I); // A=R2.F f extern VOID o81Af12(LPBYTE I); // A=R2.F f
extern VOID o81Af13(LPBYTE I); // A=R3.F f extern VOID o81Af13(LPBYTE I); // A=R3.F f
extern VOID o81Af14(LPBYTE I); // A=R4.F f extern VOID o81Af14(LPBYTE I); // A=R4.F f
extern VOID o81Af18(LPBYTE I); // C=R0.F f extern VOID o81Af18(LPBYTE I); // C=R0.F f
extern VOID o81Af19(LPBYTE I); // C=R1.F f extern VOID o81Af19(LPBYTE I); // C=R1.F f
extern VOID o81Af1A(LPBYTE I); // C=R2.F f extern VOID o81Af1A(LPBYTE I); // C=R2.F f
extern VOID o81Af1B(LPBYTE I); // C=R3.F f extern VOID o81Af1B(LPBYTE I); // C=R3.F f
extern VOID o81Af1C(LPBYTE I); // C=R4.F f extern VOID o81Af1C(LPBYTE I); // C=R4.F f
extern VOID o81Af20(LPBYTE I); // AR0EX.F f extern VOID o81Af20(LPBYTE I); // AR0EX.F f
extern VOID o81Af21(LPBYTE I); // AR1EX.F f extern VOID o81Af21(LPBYTE I); // AR1EX.F f
extern VOID o81Af22(LPBYTE I); // AR2EX.F f extern VOID o81Af22(LPBYTE I); // AR2EX.F f
extern VOID o81Af23(LPBYTE I); // AR3EX.F f extern VOID o81Af23(LPBYTE I); // AR3EX.F f
extern VOID o81Af24(LPBYTE I); // AR4EX.F f extern VOID o81Af24(LPBYTE I); // AR4EX.F f
extern VOID o81Af28(LPBYTE I); // CR0EX.F f extern VOID o81Af28(LPBYTE I); // CR0EX.F f
extern VOID o81Af29(LPBYTE I); // CR1EX.F f extern VOID o81Af29(LPBYTE I); // CR1EX.F f
extern VOID o81Af2A(LPBYTE I); // CR2EX.F f extern VOID o81Af2A(LPBYTE I); // CR2EX.F f
extern VOID o81Af2B(LPBYTE I); // CR3EX.F f extern VOID o81Af2B(LPBYTE I); // CR3EX.F f
extern VOID o81Af2C(LPBYTE I); // CR4EX.F f extern VOID o81Af2C(LPBYTE I); // CR4EX.F f
extern VOID o81B2(LPBYTE I); // PC=A extern VOID o81B2(LPBYTE I); // PC=A
extern VOID o81B3(LPBYTE I); // PC=C extern VOID o81B3(LPBYTE I); // PC=C
extern VOID o81B4(LPBYTE I); // A=PC extern VOID o81B4(LPBYTE I); // A=PC
extern VOID o81B5(LPBYTE I); // C=PC extern VOID o81B5(LPBYTE I); // C=PC
extern VOID o81B6(LPBYTE I); // APCEX extern VOID o81B6(LPBYTE I); // APCEX
extern VOID o81B7(LPBYTE I); // CPCEX extern VOID o81B7(LPBYTE I); // CPCEX
extern VOID o81C(LPBYTE I); // ASRB extern VOID o81C(LPBYTE I); // ASRB
extern VOID o81D(LPBYTE I); // BSRB extern VOID o81D(LPBYTE I); // BSRB
extern VOID o81E(LPBYTE I); // CSRB extern VOID o81E(LPBYTE I); // CSRB
extern VOID o81F(LPBYTE I); // DSRB extern VOID o81F(LPBYTE I); // DSRB
extern VOID o82n(LPBYTE I); // HST=0 m extern VOID o82n(LPBYTE I); // HST=0 m
extern VOID o83n(LPBYTE I); // ?HST=0 m extern VOID o83n(LPBYTE I); // ?HST=0 m
extern VOID o84n(LPBYTE I); // ST=0 n extern VOID o84n(LPBYTE I); // ST=0 n
extern VOID o85n(LPBYTE I); // ST=1 n extern VOID o85n(LPBYTE I); // ST=1 n
extern VOID o86n(LPBYTE I); // ?ST=0 n extern VOID o86n(LPBYTE I); // ?ST=0 n
extern VOID o87n(LPBYTE I); // ?ST=1 n extern VOID o87n(LPBYTE I); // ?ST=1 n
extern VOID o88n(LPBYTE I); // ?P# n extern VOID o88n(LPBYTE I); // ?P# n
extern VOID o89n(LPBYTE I); // ?P= n extern VOID o89n(LPBYTE I); // ?P= n
extern VOID o8A0(LPBYTE I); // ?A=B A extern VOID o8A0(LPBYTE I); // ?A=B A
extern VOID o8A1(LPBYTE I); // ?B=C A extern VOID o8A1(LPBYTE I); // ?B=C A
extern VOID o8A2(LPBYTE I); // ?C=A A extern VOID o8A2(LPBYTE I); // ?C=A A
extern VOID o8A3(LPBYTE I); // ?D=C A extern VOID o8A3(LPBYTE I); // ?D=C A
extern VOID o8A4(LPBYTE I); // ?A#B A extern VOID o8A4(LPBYTE I); // ?A#B A
extern VOID o8A5(LPBYTE I); // ?B#C A extern VOID o8A5(LPBYTE I); // ?B#C A
extern VOID o8A6(LPBYTE I); // ?C#A A extern VOID o8A6(LPBYTE I); // ?C#A A
extern VOID o8A7(LPBYTE I); // ?D#C A extern VOID o8A7(LPBYTE I); // ?D#C A
extern VOID o8A8(LPBYTE I); // ?A=0 A extern VOID o8A8(LPBYTE I); // ?A=0 A
extern VOID o8A9(LPBYTE I); // ?B=0 A extern VOID o8A9(LPBYTE I); // ?B=0 A
extern VOID o8AA(LPBYTE I); // ?C=0 A extern VOID o8AA(LPBYTE I); // ?C=0 A
extern VOID o8AB(LPBYTE I); // ?D=0 A extern VOID o8AB(LPBYTE I); // ?D=0 A
extern VOID o8AC(LPBYTE I); // ?A#0 A extern VOID o8AC(LPBYTE I); // ?A#0 A
extern VOID o8AD(LPBYTE I); // ?B#0 A extern VOID o8AD(LPBYTE I); // ?B#0 A
extern VOID o8AE(LPBYTE I); // ?C#0 A extern VOID o8AE(LPBYTE I); // ?C#0 A
extern VOID o8AF(LPBYTE I); // ?D#0 A extern VOID o8AF(LPBYTE I); // ?D#0 A
extern VOID o8B0(LPBYTE I); // ?A>B A extern VOID o8B0(LPBYTE I); // ?A>B A
extern VOID o8B1(LPBYTE I); // ?B>C A extern VOID o8B1(LPBYTE I); // ?B>C A
extern VOID o8B2(LPBYTE I); // ?C>A A extern VOID o8B2(LPBYTE I); // ?C>A A
extern VOID o8B3(LPBYTE I); // ?D>C A extern VOID o8B3(LPBYTE I); // ?D>C A
extern VOID o8B4(LPBYTE I); // ?A<B A extern VOID o8B4(LPBYTE I); // ?A<B A
extern VOID o8B5(LPBYTE I); // ?B<C A extern VOID o8B5(LPBYTE I); // ?B<C A
extern VOID o8B6(LPBYTE I); // ?C<A A extern VOID o8B6(LPBYTE I); // ?C<A A
extern VOID o8B7(LPBYTE I); // ?D<C A extern VOID o8B7(LPBYTE I); // ?D<C A
extern VOID o8B8(LPBYTE I); // ?A>=B A extern VOID o8B8(LPBYTE I); // ?A>=B A
extern VOID o8B9(LPBYTE I); // ?B>=C A extern VOID o8B9(LPBYTE I); // ?B>=C A
extern VOID o8BA(LPBYTE I); // ?C>=A A extern VOID o8BA(LPBYTE I); // ?C>=A A
extern VOID o8BB(LPBYTE I); // ?D>=C A extern VOID o8BB(LPBYTE I); // ?D>=C A
extern VOID o8BC(LPBYTE I); // ?A<=B A extern VOID o8BC(LPBYTE I); // ?A<=B A
extern VOID o8BD(LPBYTE I); // ?B<=C A extern VOID o8BD(LPBYTE I); // ?B<=C A
extern VOID o8BE(LPBYTE I); // ?C<=A A extern VOID o8BE(LPBYTE I); // ?C<=A A
extern VOID o8BF(LPBYTE I); // ?D<=C A extern VOID o8BF(LPBYTE I); // ?D<=C A
extern VOID o8Cd4(LPBYTE I); // GOLONG #dddd extern VOID o8Cd4(LPBYTE I); // GOLONG #dddd
extern VOID o8Dd5(LPBYTE I); // GOVLNG #ddddd extern VOID o8Dd5(LPBYTE I); // GOVLNG #ddddd
extern VOID o8Ed4(LPBYTE I); // GOSUBL #dddd extern VOID o8Ed4(LPBYTE I); // GOSUBL #dddd
extern VOID o8Fd5(LPBYTE I); // GOSBVL #ddddd extern VOID o8Fd5(LPBYTE I); // GOSBVL #ddddd
extern VOID o9a0(LPBYTE I); // ?A=B f extern VOID o9a0(LPBYTE I); // ?A=B f
extern VOID o9a1(LPBYTE I); // ?B=C f extern VOID o9a1(LPBYTE I); // ?B=C f
extern VOID o9a2(LPBYTE I); // ?C=A f extern VOID o9a2(LPBYTE I); // ?C=A f
extern VOID o9a3(LPBYTE I); // ?D=C f extern VOID o9a3(LPBYTE I); // ?D=C f
extern VOID o9a4(LPBYTE I); // ?A#B f extern VOID o9a4(LPBYTE I); // ?A#B f
extern VOID o9a5(LPBYTE I); // ?B#C f extern VOID o9a5(LPBYTE I); // ?B#C f
extern VOID o9a6(LPBYTE I); // ?C#A f extern VOID o9a6(LPBYTE I); // ?C#A f
extern VOID o9a7(LPBYTE I); // ?D#C f extern VOID o9a7(LPBYTE I); // ?D#C f
extern VOID o9a8(LPBYTE I); // ?A=0 f extern VOID o9a8(LPBYTE I); // ?A=0 f
extern VOID o9a9(LPBYTE I); // ?B=0 f extern VOID o9a9(LPBYTE I); // ?B=0 f
extern VOID o9aA(LPBYTE I); // ?C=0 f extern VOID o9aA(LPBYTE I); // ?C=0 f
extern VOID o9aB(LPBYTE I); // ?D=0 f extern VOID o9aB(LPBYTE I); // ?D=0 f
extern VOID o9aC(LPBYTE I); // ?A#0 f extern VOID o9aC(LPBYTE I); // ?A#0 f
extern VOID o9aD(LPBYTE I); // ?B#0 f extern VOID o9aD(LPBYTE I); // ?B#0 f
extern VOID o9aE(LPBYTE I); // ?C#0 f extern VOID o9aE(LPBYTE I); // ?C#0 f
extern VOID o9aF(LPBYTE I); // ?D#0 f extern VOID o9aF(LPBYTE I); // ?D#0 f
extern VOID o9b0(LPBYTE I); // ?A>B f extern VOID o9b0(LPBYTE I); // ?A>B f
extern VOID o9b1(LPBYTE I); // ?B>C f extern VOID o9b1(LPBYTE I); // ?B>C f
extern VOID o9b2(LPBYTE I); // ?C>A f extern VOID o9b2(LPBYTE I); // ?C>A f
extern VOID o9b3(LPBYTE I); // ?D>C f extern VOID o9b3(LPBYTE I); // ?D>C f
extern VOID o9b4(LPBYTE I); // ?A<B f extern VOID o9b4(LPBYTE I); // ?A<B f
extern VOID o9b5(LPBYTE I); // ?B<C f extern VOID o9b5(LPBYTE I); // ?B<C f
extern VOID o9b6(LPBYTE I); // ?C<A f extern VOID o9b6(LPBYTE I); // ?C<A f
extern VOID o9b7(LPBYTE I); // ?D<C f extern VOID o9b7(LPBYTE I); // ?D<C f
extern VOID o9b8(LPBYTE I); // ?A>=B f extern VOID o9b8(LPBYTE I); // ?A>=B f
extern VOID o9b9(LPBYTE I); // ?B>=C f extern VOID o9b9(LPBYTE I); // ?B>=C f
extern VOID o9bA(LPBYTE I); // ?C>=A f extern VOID o9bA(LPBYTE I); // ?C>=A f
extern VOID o9bB(LPBYTE I); // ?D>=C f extern VOID o9bB(LPBYTE I); // ?D>=C f
extern VOID o9bC(LPBYTE I); // ?A<=B f extern VOID o9bC(LPBYTE I); // ?A<=B f
extern VOID o9bD(LPBYTE I); // ?B<=C f extern VOID o9bD(LPBYTE I); // ?B<=C f
extern VOID o9bE(LPBYTE I); // ?C<=A f extern VOID o9bE(LPBYTE I); // ?C<=A f
extern VOID o9bF(LPBYTE I); // ?D<=C f extern VOID o9bF(LPBYTE I); // ?D<=C f
extern VOID oAa0(LPBYTE I); // A=A+B f extern VOID oAa0(LPBYTE I); // A=A+B f
extern VOID oAa1(LPBYTE I); // B=B+C f extern VOID oAa1(LPBYTE I); // B=B+C f
extern VOID oAa2(LPBYTE I); // C=C+A f extern VOID oAa2(LPBYTE I); // C=C+A f
extern VOID oAa3(LPBYTE I); // D=D+C f extern VOID oAa3(LPBYTE I); // D=D+C f
extern VOID oAa4(LPBYTE I); // A=A+A f extern VOID oAa4(LPBYTE I); // A=A+A f
extern VOID oAa5(LPBYTE I); // B=B+B f extern VOID oAa5(LPBYTE I); // B=B+B f
extern VOID oAa6(LPBYTE I); // C=C+C f extern VOID oAa6(LPBYTE I); // C=C+C f
extern VOID oAa7(LPBYTE I); // D=D+D f extern VOID oAa7(LPBYTE I); // D=D+D f
extern VOID oAa8(LPBYTE I); // B=B+A f extern VOID oAa8(LPBYTE I); // B=B+A f
extern VOID oAa9(LPBYTE I); // C=C+B f extern VOID oAa9(LPBYTE I); // C=C+B f
extern VOID oAaA(LPBYTE I); // A=A+C f extern VOID oAaA(LPBYTE I); // A=A+C f
extern VOID oAaB(LPBYTE I); // C=C+D f extern VOID oAaB(LPBYTE I); // C=C+D f
extern VOID oAaC(LPBYTE I); // A=A-1 f extern VOID oAaC(LPBYTE I); // A=A-1 f
extern VOID oAaD(LPBYTE I); // B=B-1 f extern VOID oAaD(LPBYTE I); // B=B-1 f
extern VOID oAaE(LPBYTE I); // C=C-1 f extern VOID oAaE(LPBYTE I); // C=C-1 f
extern VOID oAaF(LPBYTE I); // D=D-1 f extern VOID oAaF(LPBYTE I); // D=D-1 f
extern VOID oAb0(LPBYTE I); // A=0 f extern VOID oAb0(LPBYTE I); // A=0 f
extern VOID oAb1(LPBYTE I); // B=0 f extern VOID oAb1(LPBYTE I); // B=0 f
extern VOID oAb2(LPBYTE I); // C=0 f extern VOID oAb2(LPBYTE I); // C=0 f
extern VOID oAb3(LPBYTE I); // D=0 f extern VOID oAb3(LPBYTE I); // D=0 f
extern VOID oAb4(LPBYTE I); // A=B f extern VOID oAb4(LPBYTE I); // A=B f
extern VOID oAb5(LPBYTE I); // B=C f extern VOID oAb5(LPBYTE I); // B=C f
extern VOID oAb6(LPBYTE I); // C=A f extern VOID oAb6(LPBYTE I); // C=A f
extern VOID oAb7(LPBYTE I); // D=C f extern VOID oAb7(LPBYTE I); // D=C f
extern VOID oAb8(LPBYTE I); // B=A f extern VOID oAb8(LPBYTE I); // B=A f
extern VOID oAb9(LPBYTE I); // C=B f extern VOID oAb9(LPBYTE I); // C=B f
extern VOID oAbA(LPBYTE I); // A=C f extern VOID oAbA(LPBYTE I); // A=C f
extern VOID oAbB(LPBYTE I); // C=D f extern VOID oAbB(LPBYTE I); // C=D f
extern VOID oAbC(LPBYTE I); // ABEX f extern VOID oAbC(LPBYTE I); // ABEX f
extern VOID oAbD(LPBYTE I); // BCEX f extern VOID oAbD(LPBYTE I); // BCEX f
extern VOID oAbE(LPBYTE I); // CAEX f extern VOID oAbE(LPBYTE I); // CAEX f
extern VOID oAbF(LPBYTE I); // DCEX f extern VOID oAbF(LPBYTE I); // DCEX f
extern VOID oBa0(LPBYTE I); // A=A-B f extern VOID oBa0(LPBYTE I); // A=A-B f
extern VOID oBa1(LPBYTE I); // B=B-C f extern VOID oBa1(LPBYTE I); // B=B-C f
extern VOID oBa2(LPBYTE I); // C=C-A f extern VOID oBa2(LPBYTE I); // C=C-A f
extern VOID oBa3(LPBYTE I); // D=D-C f extern VOID oBa3(LPBYTE I); // D=D-C f
extern VOID oBa4(LPBYTE I); // A=A+1 f extern VOID oBa4(LPBYTE I); // A=A+1 f
extern VOID oBa5(LPBYTE I); // B=B+1 f extern VOID oBa5(LPBYTE I); // B=B+1 f
extern VOID oBa6(LPBYTE I); // C=C+1 f extern VOID oBa6(LPBYTE I); // C=C+1 f
extern VOID oBa7(LPBYTE I); // D=D+1 f extern VOID oBa7(LPBYTE I); // D=D+1 f
extern VOID oBa8(LPBYTE I); // B=B-A f extern VOID oBa8(LPBYTE I); // B=B-A f
extern VOID oBa9(LPBYTE I); // C=C-B f extern VOID oBa9(LPBYTE I); // C=C-B f
extern VOID oBaA(LPBYTE I); // A=A-C f extern VOID oBaA(LPBYTE I); // A=A-C f
extern VOID oBaB(LPBYTE I); // C=C-D f extern VOID oBaB(LPBYTE I); // C=C-D f
extern VOID oBaC(LPBYTE I); // A=B-A f extern VOID oBaC(LPBYTE I); // A=B-A f
extern VOID oBaD(LPBYTE I); // B=C-B f extern VOID oBaD(LPBYTE I); // B=C-B f
extern VOID oBaE(LPBYTE I); // C=A-C f extern VOID oBaE(LPBYTE I); // C=A-C f
extern VOID oBaF(LPBYTE I); // D=C-D f extern VOID oBaF(LPBYTE I); // D=C-D f
extern VOID oBb0(LPBYTE I); // ASL f extern VOID oBb0(LPBYTE I); // ASL f
extern VOID oBb1(LPBYTE I); // BSL f extern VOID oBb1(LPBYTE I); // BSL f
extern VOID oBb2(LPBYTE I); // CSL f extern VOID oBb2(LPBYTE I); // CSL f
extern VOID oBb3(LPBYTE I); // DSL f extern VOID oBb3(LPBYTE I); // DSL f
extern VOID oBb4(LPBYTE I); // ASR f extern VOID oBb4(LPBYTE I); // ASR f
extern VOID oBb5(LPBYTE I); // BSR f extern VOID oBb5(LPBYTE I); // BSR f
extern VOID oBb6(LPBYTE I); // CSR f extern VOID oBb6(LPBYTE I); // CSR f
extern VOID oBb7(LPBYTE I); // DSR f extern VOID oBb7(LPBYTE I); // DSR f
extern VOID oBb8(LPBYTE I); // A=-A f extern VOID oBb8(LPBYTE I); // A=-A f
extern VOID oBb9(LPBYTE I); // B=-B f extern VOID oBb9(LPBYTE I); // B=-B f
extern VOID oBbA(LPBYTE I); // C=-C f extern VOID oBbA(LPBYTE I); // C=-C f
extern VOID oBbB(LPBYTE I); // D=-D f extern VOID oBbB(LPBYTE I); // D=-D f
extern VOID oBbC(LPBYTE I); // A=-A-1 f extern VOID oBbC(LPBYTE I); // A=-A-1 f
extern VOID oBbD(LPBYTE I); // B=-B-1 f extern VOID oBbD(LPBYTE I); // B=-B-1 f
extern VOID oBbE(LPBYTE I); // C=-C-1 f extern VOID oBbE(LPBYTE I); // C=-C-1 f
extern VOID oBbF(LPBYTE I); // D=-D-1 f extern VOID oBbF(LPBYTE I); // D=-D-1 f
extern VOID oC0(LPBYTE I); // A=A+B A extern VOID oC0(LPBYTE I); // A=A+B A
extern VOID oC1(LPBYTE I); // B=B+C A extern VOID oC1(LPBYTE I); // B=B+C A
extern VOID oC2(LPBYTE I); // C=C+A A extern VOID oC2(LPBYTE I); // C=C+A A
extern VOID oC3(LPBYTE I); // D=D+C A extern VOID oC3(LPBYTE I); // D=D+C A
extern VOID oC4(LPBYTE I); // A=A+A A extern VOID oC4(LPBYTE I); // A=A+A A
extern VOID oC5(LPBYTE I); // B=B+B A extern VOID oC5(LPBYTE I); // B=B+B A
extern VOID oC6(LPBYTE I); // C=C+C A extern VOID oC6(LPBYTE I); // C=C+C A
extern VOID oC7(LPBYTE I); // D=D+D A extern VOID oC7(LPBYTE I); // D=D+D A
extern VOID oC8(LPBYTE I); // B=B+A A extern VOID oC8(LPBYTE I); // B=B+A A
extern VOID oC9(LPBYTE I); // C=C+B A extern VOID oC9(LPBYTE I); // C=C+B A
extern VOID oCA(LPBYTE I); // A=A+C A extern VOID oCA(LPBYTE I); // A=A+C A
extern VOID oCB(LPBYTE I); // C=C+D A extern VOID oCB(LPBYTE I); // C=C+D A
extern VOID oCC(LPBYTE I); // A=A-1 A extern VOID oCC(LPBYTE I); // A=A-1 A
extern VOID oCD(LPBYTE I); // B=B-1 A extern VOID oCD(LPBYTE I); // B=B-1 A
extern VOID oCE(LPBYTE I); // C=C-1 A extern VOID oCE(LPBYTE I); // C=C-1 A
extern VOID oCF(LPBYTE I); // D=D-1 A extern VOID oCF(LPBYTE I); // D=D-1 A
extern VOID oD0(LPBYTE I); // A=0 A extern VOID oD0(LPBYTE I); // A=0 A
extern VOID oD1(LPBYTE I); // B=0 A extern VOID oD1(LPBYTE I); // B=0 A
extern VOID oD2(LPBYTE I); // C=0 A extern VOID oD2(LPBYTE I); // C=0 A
extern VOID oD3(LPBYTE I); // D=0 A extern VOID oD3(LPBYTE I); // D=0 A
extern VOID oD4(LPBYTE I); // A=B A extern VOID oD4(LPBYTE I); // A=B A
extern VOID oD5(LPBYTE I); // B=C A extern VOID oD5(LPBYTE I); // B=C A
extern VOID oD6(LPBYTE I); // C=A A extern VOID oD6(LPBYTE I); // C=A A
extern VOID oD7(LPBYTE I); // D=C A extern VOID oD7(LPBYTE I); // D=C A
extern VOID oD8(LPBYTE I); // B=A A extern VOID oD8(LPBYTE I); // B=A A
extern VOID oD9(LPBYTE I); // C=B A extern VOID oD9(LPBYTE I); // C=B A
extern VOID oDA(LPBYTE I); // A=C A extern VOID oDA(LPBYTE I); // A=C A
extern VOID oDB(LPBYTE I); // C=D A extern VOID oDB(LPBYTE I); // C=D A
extern VOID oDC(LPBYTE I); // ABEX extern VOID oDC(LPBYTE I); // ABEX
extern VOID oDD(LPBYTE I); // BCEX extern VOID oDD(LPBYTE I); // BCEX
extern VOID oDE(LPBYTE I); // CAEX extern VOID oDE(LPBYTE I); // CAEX
extern VOID oDF(LPBYTE I); // DCEX extern VOID oDF(LPBYTE I); // DCEX
extern VOID oE0(LPBYTE I); // A=A-B A extern VOID oE0(LPBYTE I); // A=A-B A
extern VOID oE1(LPBYTE I); // B=B-C A extern VOID oE1(LPBYTE I); // B=B-C A
extern VOID oE2(LPBYTE I); // C=C-A A extern VOID oE2(LPBYTE I); // C=C-A A
extern VOID oE3(LPBYTE I); // D=D-C A extern VOID oE3(LPBYTE I); // D=D-C A
extern VOID oE4(LPBYTE I); // A=A+1 A extern VOID oE4(LPBYTE I); // A=A+1 A
extern VOID oE5(LPBYTE I); // B=B+1 A extern VOID oE5(LPBYTE I); // B=B+1 A
extern VOID oE6(LPBYTE I); // C=C+1 A extern VOID oE6(LPBYTE I); // C=C+1 A
extern VOID oE7(LPBYTE I); // D=D+1 A extern VOID oE7(LPBYTE I); // D=D+1 A
extern VOID oE8(LPBYTE I); // B=B-A A extern VOID oE8(LPBYTE I); // B=B-A A
extern VOID oE9(LPBYTE I); // C=C-B A extern VOID oE9(LPBYTE I); // C=C-B A
extern VOID oEA(LPBYTE I); // A=A-C A extern VOID oEA(LPBYTE I); // A=A-C A
extern VOID oEB(LPBYTE I); // C=C-D A extern VOID oEB(LPBYTE I); // C=C-D A
extern VOID oEC(LPBYTE I); // A=B-A A extern VOID oEC(LPBYTE I); // A=B-A A
extern VOID oED(LPBYTE I); // B=C-B A extern VOID oED(LPBYTE I); // B=C-B A
extern VOID oEE(LPBYTE I); // C=A-C A extern VOID oEE(LPBYTE I); // C=A-C A
extern VOID oEF(LPBYTE I); // D=C-D A extern VOID oEF(LPBYTE I); // D=C-D A
extern VOID oF0(LPBYTE I); // ASL A extern VOID oF0(LPBYTE I); // ASL A
extern VOID oF1(LPBYTE I); // BSL A extern VOID oF1(LPBYTE I); // BSL A
extern VOID oF2(LPBYTE I); // CSL A extern VOID oF2(LPBYTE I); // CSL A
extern VOID oF3(LPBYTE I); // DSL A extern VOID oF3(LPBYTE I); // DSL A
extern VOID oF4(LPBYTE I); // ASR A extern VOID oF4(LPBYTE I); // ASR A
extern VOID oF5(LPBYTE I); // BSR A extern VOID oF5(LPBYTE I); // BSR A
extern VOID oF6(LPBYTE I); // CSR A extern VOID oF6(LPBYTE I); // CSR A
extern VOID oF7(LPBYTE I); // DSR A extern VOID oF7(LPBYTE I); // DSR A
extern VOID oF8(LPBYTE I); // A=-A A extern VOID oF8(LPBYTE I); // A=-A A
extern VOID oF9(LPBYTE I); // B=-B A extern VOID oF9(LPBYTE I); // B=-B A
extern VOID oFA(LPBYTE I); // C=-C A extern VOID oFA(LPBYTE I); // C=-C A
extern VOID oFB(LPBYTE I); // D=-D A extern VOID oFB(LPBYTE I); // D=-D A
extern VOID oFC(LPBYTE I); // A=-A-1 A extern VOID oFC(LPBYTE I); // A=-A-1 A
extern VOID oFD(LPBYTE I); // B=-B-1 A extern VOID oFD(LPBYTE I); // B=-B-1 A
extern VOID oFE(LPBYTE I); // C=-C-1 A extern VOID oFE(LPBYTE I); // C=-C-1 A
extern VOID oFF(LPBYTE I); // D=-D-1 A extern VOID oFF(LPBYTE I); // D=-D-1 A
extern VOID o_invalid3(LPBYTE I); extern VOID o_invalid3(LPBYTE I);
extern VOID o_invalid4(LPBYTE I); extern VOID o_invalid4(LPBYTE I);
extern VOID o_invalid5(LPBYTE I); extern VOID o_invalid5(LPBYTE I);
extern VOID o_invalid6(LPBYTE I); extern VOID o_invalid6(LPBYTE I);
extern VOID o_goyes3(LPBYTE I); extern VOID o_goyes3(LPBYTE I);
extern VOID o_goyes5(LPBYTE I); extern VOID o_goyes5(LPBYTE I);

View file

@ -1,462 +1,462 @@
/* /*
* ops.h * ops.h
* *
* This file is part of Emu48 * This file is part of Emu48
* *
* Copyright (C) 1995 Sebastien Carlier * Copyright (C) 1995 Sebastien Carlier
* *
*/ */
#define NFunpack(a, b, f) Nunpack((a)+F_s[f], b, F_l[f]) #define NFunpack(a, b, f) Nunpack((a)+F_s[f], b, F_l[f])
#define NFread(a, b, f) Nread((a)+F_s[f], b, F_l[f]) #define NFread(a, b, f) Nread((a)+F_s[f], b, F_l[f])
#define NFwrite(a, b, f) Nwrite((a)+F_s[f], b, F_l[f]) #define NFwrite(a, b, f) Nwrite((a)+F_s[f], b, F_l[f])
#define NFcopy(a, b, f) memcpy((a)+F_s[f], (b)+F_s[f], F_l[f]) #define NFcopy(a, b, f) memcpy((a)+F_s[f], (b)+F_s[f], F_l[f])
#define NFxchg(a, b, f) Nxchg((a)+F_s[f], (b)+F_s[f], F_l[f]) #define NFxchg(a, b, f) Nxchg((a)+F_s[f], (b)+F_s[f], F_l[f])
#define NFadd(a, b, f) Nadd((a)+F_s[f], (b)+F_s[f], F_l[f]) #define NFadd(a, b, f) Nadd((a)+F_s[f], (b)+F_s[f], F_l[f])
#define NFsub(a, b, f) Nsub((a)+F_s[f], (b)+F_s[f], F_l[f]) #define NFsub(a, b, f) Nsub((a)+F_s[f], (b)+F_s[f], F_l[f])
#define NFrsub(a, b, f) Nrsub((a)+F_s[f], (b)+F_s[f], F_l[f]) #define NFrsub(a, b, f) Nrsub((a)+F_s[f], (b)+F_s[f], F_l[f])
#define NFand(a, b, f) Nand((a)+F_s[f], (b)+F_s[f], F_l[f]) #define NFand(a, b, f) Nand((a)+F_s[f], (b)+F_s[f], F_l[f])
#define NFor(a, b, f) Nor((a)+F_s[f], (b)+F_s[f], F_l[f]) #define NFor(a, b, f) Nor((a)+F_s[f], (b)+F_s[f], F_l[f])
#define NFzero(a,f) memset((a)+F_s[f], 0, F_l[f]) #define NFzero(a,f) memset((a)+F_s[f], 0, F_l[f])
#define NFpack(a, f) Npack((a)+F_s[f], F_l[f]) #define NFpack(a, f) Npack((a)+F_s[f], F_l[f])
#define NFinc(a, f) Ninc(a, F_l[f], F_s[f]) #define NFinc(a, f) Ninc(a, F_l[f], F_s[f])
#define NFdec(a, f) Ndec(a, F_l[f], F_s[f]) #define NFdec(a, f) Ndec(a, F_l[f], F_s[f])
#define NFnot(a, f) Nnot((a)+F_s[f], F_l[f]) #define NFnot(a, f) Nnot((a)+F_s[f], F_l[f])
#define NFneg(a, f) Nneg((a)+F_s[f], F_l[f]) #define NFneg(a, f) Nneg((a)+F_s[f], F_l[f])
#define NFsl(a, f) Nsl((a)+F_s[f], F_l[f]) #define NFsl(a, f) Nsl((a)+F_s[f], F_l[f])
#define NFsr(a, f) Nsr((a)+F_s[f], F_l[f]) #define NFsr(a, f) Nsr((a)+F_s[f], F_l[f])
#define NFsrb(a, f) Nsrb((a)+F_s[f], F_l[f]) #define NFsrb(a, f) Nsrb((a)+F_s[f], F_l[f])
#define TFe(a, b, f) Te((a)+F_s[f], (b)+F_s[f], F_l[f]) #define TFe(a, b, f) Te((a)+F_s[f], (b)+F_s[f], F_l[f])
#define TFa(a, b, f) Ta((a)+F_s[f], (b)+F_s[f], F_l[f]) #define TFa(a, b, f) Ta((a)+F_s[f], (b)+F_s[f], F_l[f])
#define TFb(a, b, f) Tb((a)+F_s[f], (b)+F_s[f], F_l[f]) #define TFb(a, b, f) Tb((a)+F_s[f], (b)+F_s[f], F_l[f])
#define TFz(a, f) Tz((a)+F_s[f], F_l[f]) #define TFz(a, f) Tz((a)+F_s[f], F_l[f])
#define TFne(a, b, f) Tne((a)+F_s[f], (b)+F_s[f], F_l[f]) #define TFne(a, b, f) Tne((a)+F_s[f], (b)+F_s[f], F_l[f])
#define TFae(a, b, f) Tae((a)+F_s[f], (b)+F_s[f], F_l[f]) #define TFae(a, b, f) Tae((a)+F_s[f], (b)+F_s[f], F_l[f])
#define TFbe(a, b, f) Tbe((a)+F_s[f], (b)+F_s[f], F_l[f]) #define TFbe(a, b, f) Tbe((a)+F_s[f], (b)+F_s[f], F_l[f])
#define TFnz(a, f) Tnz((a)+F_s[f], F_l[f]) #define TFnz(a, f) Tnz((a)+F_s[f], F_l[f])
static __inline LPBYTE FASTPTR(DWORD d) static __inline LPBYTE FASTPTR(DWORD d)
{ {
static BYTE pbyNULL[21]; static BYTE pbyNULL[21];
LPBYTE lpbyPage; LPBYTE lpbyPage;
DWORD u, v; DWORD u, v;
d &= 0xFFFFF; // handle address overflows d &= 0xFFFFF; // handle address overflows
u = d >> 12; // page u = d >> 12; // page
v = d & 0xFFF; // offset v = d & 0xFFF; // offset
if ( !(Chipset.IOCfig && ((d & 0xFFFC0) == Chipset.IOBase)) if ( !(Chipset.IOCfig && ((d & 0xFFFC0) == Chipset.IOBase))
&& RMap[u] != NULL // page valid && RMap[u] != NULL // page valid
&& ( v < 0x1000 - ARRAYSIZEOF(pbyNULL) // complete opcode inside page && ( v < 0x1000 - ARRAYSIZEOF(pbyNULL) // complete opcode inside page
// or next page continue linear addressing // or next page continue linear addressing
|| (RMap[u] + 0x1000 == RMap[(u+1) & (ARRAYSIZEOF(RMap)-1)]) || (RMap[u] + 0x1000 == RMap[(u+1) & (ARRAYSIZEOF(RMap)-1)])
) )
) )
{ {
lpbyPage = RMap[u] + v; // full address lpbyPage = RMap[u] + v; // full address
} }
else else
{ {
lpbyPage = pbyNULL; // memory allocation lpbyPage = pbyNULL; // memory allocation
Npeek(lpbyPage, d, ARRAYSIZEOF(pbyNULL)); // fill with data (LAHEX + 16 digits = longest opcode) Npeek(lpbyPage, d, ARRAYSIZEOF(pbyNULL)); // fill with data (LAHEX + 16 digits = longest opcode)
} }
return lpbyPage; return lpbyPage;
} }
static __inline void rstkpush(DWORD d) static __inline void rstkpush(DWORD d)
{ {
Chipset.rstk[Chipset.rstkp] = d; Chipset.rstk[Chipset.rstkp] = d;
Chipset.rstkp=(Chipset.rstkp+1)&7; Chipset.rstkp=(Chipset.rstkp+1)&7;
} }
static __inline DWORD rstkpop(VOID) static __inline DWORD rstkpop(VOID)
{ {
DWORD r; DWORD r;
Chipset.rstkp=(Chipset.rstkp-1)&7; Chipset.rstkp=(Chipset.rstkp-1)&7;
r = Chipset.rstk[Chipset.rstkp]; r = Chipset.rstk[Chipset.rstkp];
Chipset.rstk[Chipset.rstkp] = 0; Chipset.rstk[Chipset.rstkp] = 0;
return r; return r;
} }
static __inline DWORD Npack(BYTE *a, UINT s) static __inline DWORD Npack(BYTE *a, UINT s)
{ {
DWORD r = 0; DWORD r = 0;
while (s--) r = (r<<4)|a[s]; while (s--) r = (r<<4)|a[s];
return r; return r;
} }
static __inline VOID Nunpack(BYTE *a, DWORD b, UINT s) static __inline VOID Nunpack(BYTE *a, DWORD b, UINT s)
{ {
for (; s>0; --s) { *a++ = (BYTE)(b&0xf); b>>=4; } for (; s>0; --s) { *a++ = (BYTE)(b&0xf); b>>=4; }
} }
static __inline void Nxchg(BYTE *a, BYTE *b, UINT s) static __inline void Nxchg(BYTE *a, BYTE *b, UINT s)
{ {
BYTE X[16]; BYTE X[16];
memcpy(X, b, s); memcpy(X, b, s);
memcpy(b, a, s); memcpy(b, a, s);
memcpy(a, X, s); memcpy(a, X, s);
} }
static __inline void Ninc(BYTE *a, UINT s, UINT d) static __inline void Ninc(BYTE *a, UINT s, UINT d)
{ {
UINT i; UINT i;
if (Chipset.mode_dec) if (Chipset.mode_dec)
{ {
BYTE c = 1; BYTE c = 1;
for (i=d; i<s+d; ++i) for (i=d; i<s+d; ++i)
{ {
// no register wrap // no register wrap
_ASSERT(i < ARRAYSIZEOF(((CHIPSET *) NULL)->A)); _ASSERT(i < ARRAYSIZEOF(((CHIPSET *) NULL)->A));
// illegal number in dec mode // illegal number in dec mode
if (a[i] >= 10) a[i] &= 0x7; if (a[i] >= 10) a[i] &= 0x7;
a[i] += c; a[i] += c;
c = (a[i] >= 10); c = (a[i] >= 10);
if (c) a[i] -= 10; if (c) a[i] -= 10;
} }
Chipset.carry = (c==1); Chipset.carry = (c==1);
} }
else else
{ {
for (i=d; i<s+d; ++i) for (i=d; i<s+d; ++i)
{ {
// no register wrap // no register wrap
_ASSERT(i < ARRAYSIZEOF(((CHIPSET *) NULL)->A)); _ASSERT(i < ARRAYSIZEOF(((CHIPSET *) NULL)->A));
a[i]++; a[i]++;
if (a[i] < 16) if (a[i] < 16)
{ {
Chipset.carry = FALSE; Chipset.carry = FALSE;
return; return;
} }
a[i] -= 16; a[i] -= 16;
} }
Chipset.carry = TRUE; Chipset.carry = TRUE;
} }
} }
static __inline void Ninc16(BYTE *a, UINT s, UINT d) static __inline void Ninc16(BYTE *a, UINT s, UINT d)
{ {
UINT i; UINT i;
for (i=d; i<s+d; ++i) for (i=d; i<s+d; ++i)
{ {
a[i&0xf]++; a[i&0xf]++;
if (a[i&0xf] < 16) if (a[i&0xf] < 16)
{ {
Chipset.carry = FALSE; Chipset.carry = FALSE;
return; return;
} }
a[i&0xf] -= 16; a[i&0xf] -= 16;
} }
Chipset.carry = TRUE; Chipset.carry = TRUE;
} }
static __inline void Nincx(BYTE *a, UINT s) static __inline void Nincx(BYTE *a, UINT s)
{ {
UINT i; UINT i;
for (i=0; i<s; ++i) for (i=0; i<s; ++i)
{ {
a[i]++; a[i]++;
if (a[i] < 16) if (a[i] < 16)
{ {
Chipset.carry = FALSE; Chipset.carry = FALSE;
return; return;
} }
a[i] -= 16; a[i] -= 16;
} }
Chipset.carry = TRUE; Chipset.carry = TRUE;
} }
static __inline void Ndec(BYTE *a, UINT s, UINT d) static __inline void Ndec(BYTE *a, UINT s, UINT d)
{ {
UINT i; UINT i;
BYTE cBase = Chipset.mode_dec ? 10 : 16; BYTE cBase = Chipset.mode_dec ? 10 : 16;
for (i=d; i<s+d; ++i) for (i=d; i<s+d; ++i)
{ {
// no register wrap // no register wrap
_ASSERT(i < ARRAYSIZEOF(((CHIPSET *) NULL)->A)); _ASSERT(i < ARRAYSIZEOF(((CHIPSET *) NULL)->A));
a[i]--; a[i]--;
if ((a[i] & 0xF0) == 0) // check overflow if ((a[i] & 0xF0) == 0) // check overflow
{ {
Chipset.carry = FALSE; Chipset.carry = FALSE;
return; return;
} }
a[i] += cBase; a[i] += cBase;
} }
Chipset.carry = TRUE; Chipset.carry = TRUE;
} }
static __inline void Ndec16(BYTE *a, UINT s, UINT d) static __inline void Ndec16(BYTE *a, UINT s, UINT d)
{ {
UINT i; UINT i;
for (i=d; i<s+d; ++i) for (i=d; i<s+d; ++i)
{ {
a[i&0xf]--; a[i&0xf]--;
if (a[i&0xf] < 16) if (a[i&0xf] < 16)
{ {
Chipset.carry = FALSE; Chipset.carry = FALSE;
return; return;
} }
a[i&0xf] += 16; a[i&0xf] += 16;
} }
Chipset.carry = TRUE; Chipset.carry = TRUE;
} }
static __inline void Nadd(BYTE *a, BYTE *b, UINT s) static __inline void Nadd(BYTE *a, BYTE *b, UINT s)
{ {
UINT i; UINT i;
BYTE c = 0; BYTE c = 0;
BYTE cBase = Chipset.mode_dec ? 10 : 16; BYTE cBase = Chipset.mode_dec ? 10 : 16;
for (i=0; i<s; ++i) for (i=0; i<s; ++i)
{ {
// illegal number in dec mode // illegal number in dec mode
if (a[i] >= cBase) a[i] &= 0x7; if (a[i] >= cBase) a[i] &= 0x7;
a[i] += b[i] + c; a[i] += b[i] + c;
if (a[i] >= cBase) if (a[i] >= cBase)
{ {
a[i] -= cBase; a[i] -= cBase;
c = 1; c = 1;
} }
else else
c = 0; c = 0;
} }
Chipset.carry = (c==1); Chipset.carry = (c==1);
} }
static __inline void Nsub(BYTE *a, BYTE *b, UINT s) static __inline void Nsub(BYTE *a, BYTE *b, UINT s)
{ {
UINT i; UINT i;
BYTE c = 0; BYTE c = 0;
BYTE cBase = Chipset.mode_dec ? 10 : 16; BYTE cBase = Chipset.mode_dec ? 10 : 16;
for (i=0; i<s; ++i) for (i=0; i<s; ++i)
{ {
a[i] = a[i] - b[i] - c; a[i] = a[i] - b[i] - c;
if ((a[i] & 0xF0) != 0) // check overflow if ((a[i] & 0xF0) != 0) // check overflow
{ {
a[i] += cBase; a[i] += cBase;
// illegal number in dec mode // illegal number in dec mode
if ((a[i] & 0xF0) != 0) a[i] &= 0x7; if ((a[i] & 0xF0) != 0) a[i] &= 0x7;
c = 1; c = 1;
} }
else else
c = 0; c = 0;
} }
Chipset.carry = (c==1); Chipset.carry = (c==1);
} }
static __inline void Nrsub(BYTE *a, BYTE *b, UINT s) static __inline void Nrsub(BYTE *a, BYTE *b, UINT s)
{ {
UINT i; UINT i;
BYTE c = 0; BYTE c = 0;
BYTE cBase = Chipset.mode_dec ? 10 : 16; BYTE cBase = Chipset.mode_dec ? 10 : 16;
for (i=0; i<s; ++i) for (i=0; i<s; ++i)
{ {
a[i] = b[i] - a[i] - c; a[i] = b[i] - a[i] - c;
if ((a[i] & 0xF0) != 0) // check overflow if ((a[i] & 0xF0) != 0) // check overflow
{ {
a[i] += cBase; a[i] += cBase;
// illegal number in dec mode // illegal number in dec mode
if ((a[i] & 0xF0) != 0) a[i] &= 0x7; if ((a[i] & 0xF0) != 0) a[i] &= 0x7;
c = 1; c = 1;
} }
else else
c = 0; c = 0;
} }
Chipset.carry = (c==1); Chipset.carry = (c==1);
} }
static __inline void Nand(BYTE *a, BYTE *b, UINT s) static __inline void Nand(BYTE *a, BYTE *b, UINT s)
{ {
while (s--) a[s] &= b[s]; while (s--) a[s] &= b[s];
} }
static __inline void Nor(BYTE *a, BYTE *b, UINT s) static __inline void Nor(BYTE *a, BYTE *b, UINT s)
{ {
while (s--) a[s] |= b[s]; while (s--) a[s] |= b[s];
} }
static __inline void Nnot(BYTE *a, UINT s) static __inline void Nnot(BYTE *a, UINT s)
{ {
BYTE cBase = Chipset.mode_dec ? 9 : 15; BYTE cBase = Chipset.mode_dec ? 9 : 15;
while (s--) while (s--)
{ {
a[s] = cBase - a[s]; a[s] = cBase - a[s];
if ((a[s] & 0xF0) != 0) // check overflow (dec mode only) if ((a[s] & 0xF0) != 0) // check overflow (dec mode only)
a[s] &= 0x7; a[s] &= 0x7;
} }
Chipset.carry = FALSE; Chipset.carry = FALSE;
} }
static __inline void Nneg(BYTE *a, UINT s) static __inline void Nneg(BYTE *a, UINT s)
{ {
UINT i; UINT i;
for (i=0; i<s && a[i]==0; ++i) { } // search for non-zero digit for (i=0; i<s && a[i]==0; ++i) { } // search for non-zero digit
if ((Chipset.carry = (i!=s))) // value was non-zero if ((Chipset.carry = (i!=s))) // value was non-zero
{ {
BYTE cBase = Chipset.mode_dec ? 9 : 15; BYTE cBase = Chipset.mode_dec ? 9 : 15;
_ASSERT(a[i] > 0); // check for non-zero digit _ASSERT(a[i] > 0); // check for non-zero digit
for (--a[i]; i<s; ++i) for (--a[i]; i<s; ++i)
{ {
a[i] = cBase - a[i]; a[i] = cBase - a[i];
if ((a[i] & 0xF0) != 0) // check overflow (dec mode only) if ((a[i] & 0xF0) != 0) // check overflow (dec mode only)
a[i] &= 0x7; a[i] &= 0x7;
} }
} }
} }
static __inline void Nsl(BYTE *a, UINT s) static __inline void Nsl(BYTE *a, UINT s)
{ {
while (--s) a[s] = a[s-1]; while (--s) a[s] = a[s-1];
*a = 0; *a = 0;
} }
static __inline void Nslc(BYTE *a, UINT s) static __inline void Nslc(BYTE *a, UINT s)
{ {
BYTE c = a[s-1]; BYTE c = a[s-1];
while (--s) a[s] = a[s-1]; while (--s) a[s] = a[s-1];
*a = c; *a = c;
} }
static __inline void Nsr(BYTE *a, UINT s) static __inline void Nsr(BYTE *a, UINT s)
{ {
if (*a) Chipset.HST |= SB; if (*a) Chipset.HST |= SB;
while (--s) { *a = a[1]; a++; } while (--s) { *a = a[1]; a++; }
*a = 0; *a = 0;
} }
static __inline void Nsrc(BYTE *a, UINT s) static __inline void Nsrc(BYTE *a, UINT s)
{ {
BYTE c = *a; BYTE c = *a;
if (c) Chipset.HST |= SB; if (c) Chipset.HST |= SB;
while (--s) { *a = a[1]; a++; } while (--s) { *a = a[1]; a++; }
*a = c; *a = c;
} }
static __inline void Nsrb(BYTE *a, UINT s) static __inline void Nsrb(BYTE *a, UINT s)
{ {
if (*a & 1) Chipset.HST |= SB; if (*a & 1) Chipset.HST |= SB;
while (--s) while (--s)
{ {
*a >>= 1; *a >>= 1;
*a |= ((a[1] & 1) << 3); *a |= ((a[1] & 1) << 3);
a++; a++;
} }
*a >>= 1; *a >>= 1;
} }
static __inline void Nbit0(BYTE *a, UINT b) static __inline void Nbit0(BYTE *a, UINT b)
{ {
a[b>>2] &= ~(1<<(b&3)); a[b>>2] &= ~(1<<(b&3));
} }
static __inline void Nbit1(BYTE *a, UINT b) static __inline void Nbit1(BYTE *a, UINT b)
{ {
a[b>>2] |= 1<<(b&3); a[b>>2] |= 1<<(b&3);
} }
static __inline void Tbit0(BYTE *a, UINT b) static __inline void Tbit0(BYTE *a, UINT b)
{ {
Chipset.carry = ((a[b>>2] & (1<<(b&3))) == 0); Chipset.carry = ((a[b>>2] & (1<<(b&3))) == 0);
} }
static __inline void Tbit1(BYTE *a, UINT b) static __inline void Tbit1(BYTE *a, UINT b)
{ {
Chipset.carry = ((a[b>>2] & (1<<(b&3))) != 0); Chipset.carry = ((a[b>>2] & (1<<(b&3))) != 0);
} }
static __inline void Te(BYTE *a, BYTE *b, UINT s) static __inline void Te(BYTE *a, BYTE *b, UINT s)
{ {
while (s--) while (s--)
{ {
if (a[s]!=b[s]) if (a[s]!=b[s])
{ {
Chipset.carry = FALSE; Chipset.carry = FALSE;
return; return;
} }
} }
Chipset.carry = TRUE; Chipset.carry = TRUE;
} }
static __inline void Tne(BYTE *a, BYTE *b, UINT s) static __inline void Tne(BYTE *a, BYTE *b, UINT s)
{ {
while (s--) while (s--)
{ {
if (a[s]!=b[s]) if (a[s]!=b[s])
{ {
Chipset.carry = TRUE; Chipset.carry = TRUE;
return; return;
} }
} }
Chipset.carry = FALSE; Chipset.carry = FALSE;
} }
static __inline void Tz(BYTE *a, UINT s) static __inline void Tz(BYTE *a, UINT s)
{ {
while (s--) while (s--)
{ {
if (a[s]!=0) if (a[s]!=0)
{ {
Chipset.carry = FALSE; Chipset.carry = FALSE;
return; return;
} }
} }
Chipset.carry = TRUE; Chipset.carry = TRUE;
} }
static __inline void Tnz(BYTE *a, UINT s) static __inline void Tnz(BYTE *a, UINT s)
{ {
while (s--) while (s--)
{ {
if (a[s]!=0) if (a[s]!=0)
{ {
Chipset.carry = TRUE; Chipset.carry = TRUE;
return; return;
} }
} }
Chipset.carry = FALSE; Chipset.carry = FALSE;
} }
static __inline void Ta(BYTE *a, BYTE *b, UINT s) static __inline void Ta(BYTE *a, BYTE *b, UINT s)
{ {
while (--s) if (a[s]!=b[s]) break; while (--s) if (a[s]!=b[s]) break;
Chipset.carry = (a[s]>b[s]); Chipset.carry = (a[s]>b[s]);
} }
static __inline void Tb(BYTE *a, BYTE *b, UINT s) static __inline void Tb(BYTE *a, BYTE *b, UINT s)
{ {
while (--s) if (a[s]!=b[s]) break; while (--s) if (a[s]!=b[s]) break;
Chipset.carry = (a[s]<b[s]); Chipset.carry = (a[s]<b[s]);
} }
static __inline void Tae(BYTE *a, BYTE *b, UINT s) static __inline void Tae(BYTE *a, BYTE *b, UINT s)
{ {
while (--s) if (a[s]!=b[s]) break; while (--s) if (a[s]!=b[s]) break;
Chipset.carry = (a[s]>=b[s]); Chipset.carry = (a[s]>=b[s]);
} }
static __inline void Tbe(BYTE *a, BYTE *b, UINT s) static __inline void Tbe(BYTE *a, BYTE *b, UINT s)
{ {
while (--s) if (a[s]!=b[s]) break; while (--s) if (a[s]!=b[s]) break;
Chipset.carry = (a[s]<=b[s]); Chipset.carry = (a[s]<=b[s]);
} }

View file

@ -1,5 +1,5 @@
// //
// PCH.C // PCH.C
// //
#include "pch.h" #include "pch.h"

View file

@ -1,112 +1,112 @@
// //
// PCH.H // PCH.H
// //
#define _WIN32_IE 0x0200 #define _WIN32_IE 0x0200
#define _CRT_SECURE_NO_DEPRECATE #define _CRT_SECURE_NO_DEPRECATE
#define _CRTDBG_MAP_ALLOC #define _CRTDBG_MAP_ALLOC
#define _WINSOCK_DEPRECATED_NO_WARNINGS #define _WINSOCK_DEPRECATED_NO_WARNINGS
#include <winsock2.h> #include <winsock2.h>
#include <windows.h> #include <windows.h>
#include <tchar.h> #include <tchar.h>
#include <shellapi.h> #include <shellapi.h>
#include <commctrl.h> #include <commctrl.h>
#include <shlobj.h> #include <shlobj.h>
#include <stdlib.h> #include <stdlib.h>
#include <malloc.h> #include <malloc.h>
#include <stddef.h> #include <stddef.h>
#include <ctype.h> #include <ctype.h>
#include <stdio.h> #include <stdio.h>
#include <direct.h> #include <direct.h>
#include <conio.h> #include <conio.h>
#include <crtdbg.h> #include <crtdbg.h>
#if !defined VERIFY #if !defined VERIFY
#if defined _DEBUG #if defined _DEBUG
#define VERIFY(f) _ASSERT(f) #define VERIFY(f) _ASSERT(f)
#else // _DEBUG #else // _DEBUG
#define VERIFY(f) ((VOID)(f)) #define VERIFY(f) ((VOID)(f))
#endif // _DEBUG #endif // _DEBUG
#endif // _VERIFY #endif // _VERIFY
#if !defined INVALID_SET_FILE_POINTER #if !defined INVALID_SET_FILE_POINTER
#define INVALID_SET_FILE_POINTER ((DWORD)-1) #define INVALID_SET_FILE_POINTER ((DWORD)-1)
#endif #endif
#if !defined INVALID_FILE_ATTRIBUTES #if !defined INVALID_FILE_ATTRIBUTES
#define INVALID_FILE_ATTRIBUTES ((DWORD)-1) #define INVALID_FILE_ATTRIBUTES ((DWORD)-1)
#endif #endif
#if !defined GWLP_USERDATA #if !defined GWLP_USERDATA
#define GWLP_USERDATA GWL_USERDATA #define GWLP_USERDATA GWL_USERDATA
#endif #endif
#if !defined GCLP_HCURSOR #if !defined GCLP_HCURSOR
#define GCLP_HCURSOR GCL_HCURSOR #define GCLP_HCURSOR GCL_HCURSOR
#endif #endif
#if !defined IDC_HAND // Win2k specific definition #if !defined IDC_HAND // Win2k specific definition
#define IDC_HAND MAKEINTRESOURCE(32649) #define IDC_HAND MAKEINTRESOURCE(32649)
#endif #endif
#if _MSC_VER <= 1200 // missing type definition in the MSVC6.0 SDK and earlier #if _MSC_VER <= 1200 // missing type definition in the MSVC6.0 SDK and earlier
#define __unaligned #define __unaligned
#define SetWindowLongPtr SetWindowLong #define SetWindowLongPtr SetWindowLong
#define GetWindowLongPtr GetWindowLong #define GetWindowLongPtr GetWindowLong
#define SetClassLongPtr SetClassLong #define SetClassLongPtr SetClassLong
#define GetClassLongPtr GetClassLong #define GetClassLongPtr GetClassLong
typedef SIZE_T DWORD_PTR, *PDWORD_PTR; typedef SIZE_T DWORD_PTR, *PDWORD_PTR;
typedef ULONG ULONG_PTR, *PULONG_PTR; typedef ULONG ULONG_PTR, *PULONG_PTR;
typedef LONG LONG_PTR, *PLONG_PTR; typedef LONG LONG_PTR, *PLONG_PTR;
#endif #endif
#if !defined PROCESS_POWER_THROTTLING_CURRENT_VERSION #if !defined PROCESS_POWER_THROTTLING_CURRENT_VERSION
#define PROCESS_POWER_THROTTLING_CURRENT_VERSION 1 #define PROCESS_POWER_THROTTLING_CURRENT_VERSION 1
#endif #endif
#if !defined PROCESS_POWER_THROTTLING_IGNORE_TIMER_RESOLUTION #if !defined PROCESS_POWER_THROTTLING_IGNORE_TIMER_RESOLUTION
#define PROCESS_POWER_THROTTLING_IGNORE_TIMER_RESOLUTION 0x04 #define PROCESS_POWER_THROTTLING_IGNORE_TIMER_RESOLUTION 0x04
#endif #endif
#if _MSC_VER <= 1900 // add until VS2015 from processthreadsapi.h #if _MSC_VER <= 1900 // add until VS2015 from processthreadsapi.h
enum { ProcessPowerThrottling = 4 }; enum { ProcessPowerThrottling = 4 };
typedef struct _PROCESS_POWER_THROTTLING_STATE { typedef struct _PROCESS_POWER_THROTTLING_STATE {
ULONG Version; ULONG Version;
ULONG ControlMask; ULONG ControlMask;
ULONG StateMask; ULONG StateMask;
} PROCESS_POWER_THROTTLING_STATE, * PPROCESS_POWER_THROTTLING_STATE; } PROCESS_POWER_THROTTLING_STATE, * PPROCESS_POWER_THROTTLING_STATE;
#endif #endif
#if _MSC_VER >= 1400 // valid for VS2005 and later #if _MSC_VER >= 1400 // valid for VS2005 and later
#if defined _M_IX86 #if defined _M_IX86
#pragma comment(linker,"/manifestdependency:\" \ #pragma comment(linker,"/manifestdependency:\" \
type='win32' \ type='win32' \
name='Microsoft.Windows.Common-Controls' \ name='Microsoft.Windows.Common-Controls' \
version='6.0.0.0' processorArchitecture='x86' \ version='6.0.0.0' processorArchitecture='x86' \
publicKeyToken='6595b64144ccf1df' \ publicKeyToken='6595b64144ccf1df' \
language='*'\"") language='*'\"")
#elif defined _M_IA64 #elif defined _M_IA64
#pragma comment(linker,"/manifestdependency:\" \ #pragma comment(linker,"/manifestdependency:\" \
type='win32' \ type='win32' \
name='Microsoft.Windows.Common-Controls' \ name='Microsoft.Windows.Common-Controls' \
version='6.0.0.0' processorArchitecture='ia64' \ version='6.0.0.0' processorArchitecture='ia64' \
publicKeyToken='6595b64144ccf1df' \ publicKeyToken='6595b64144ccf1df' \
language='*'\"") language='*'\"")
#elif defined _M_X64 #elif defined _M_X64
#pragma comment(linker,"/manifestdependency:\" \ #pragma comment(linker,"/manifestdependency:\" \
type='win32' \ type='win32' \
name='Microsoft.Windows.Common-Controls' \ name='Microsoft.Windows.Common-Controls' \
version='6.0.0.0' processorArchitecture='amd64' \ version='6.0.0.0' processorArchitecture='amd64' \
publicKeyToken='6595b64144ccf1df' \ publicKeyToken='6595b64144ccf1df' \
language='*'\"") language='*'\"")
#else #else
#pragma comment(linker,"/manifestdependency:\" \ #pragma comment(linker,"/manifestdependency:\" \
type='win32' \ type='win32' \
name='Microsoft.Windows.Common-Controls' \ name='Microsoft.Windows.Common-Controls' \
version='6.0.0.0' processorArchitecture='*' \ version='6.0.0.0' processorArchitecture='*' \
publicKeyToken='6595b64144ccf1df' \ publicKeyToken='6595b64144ccf1df' \
language='*'\"") language='*'\"")
#endif #endif
#endif #endif

View file

@ -1,57 +1,57 @@
/* /*
* pngcrc.c * pngcrc.c
* *
* This file is part of Emu48 * This file is part of Emu48
* *
* Copyright (C) 2023 Christoph Gießelink * Copyright (C) 2023 Christoph Gießelink
* *
*/ */
#include "pch.h" #include "pch.h"
/* CRC polynomial: 0xedb88320 */ /* CRC polynomial: 0xedb88320 */
static const unsigned lodepng_crc32_table[256] = static const unsigned lodepng_crc32_table[256] =
{ {
0x00000000, 0x77073096, 0xEE0E612C, 0x990951BA, 0x076DC419, 0x706AF48F, 0xE963A535, 0x9E6495A3, 0x00000000, 0x77073096, 0xEE0E612C, 0x990951BA, 0x076DC419, 0x706AF48F, 0xE963A535, 0x9E6495A3,
0x0EDB8832, 0x79DCB8A4, 0xE0D5E91E, 0x97D2D988, 0x09B64C2B, 0x7EB17CBD, 0xE7B82D07, 0x90BF1D91, 0x0EDB8832, 0x79DCB8A4, 0xE0D5E91E, 0x97D2D988, 0x09B64C2B, 0x7EB17CBD, 0xE7B82D07, 0x90BF1D91,
0x1DB71064, 0x6AB020F2, 0xF3B97148, 0x84BE41DE, 0x1ADAD47D, 0x6DDDE4EB, 0xF4D4B551, 0x83D385C7, 0x1DB71064, 0x6AB020F2, 0xF3B97148, 0x84BE41DE, 0x1ADAD47D, 0x6DDDE4EB, 0xF4D4B551, 0x83D385C7,
0x136C9856, 0x646BA8C0, 0xFD62F97A, 0x8A65C9EC, 0x14015C4F, 0x63066CD9, 0xFA0F3D63, 0x8D080DF5, 0x136C9856, 0x646BA8C0, 0xFD62F97A, 0x8A65C9EC, 0x14015C4F, 0x63066CD9, 0xFA0F3D63, 0x8D080DF5,
0x3B6E20C8, 0x4C69105E, 0xD56041E4, 0xA2677172, 0x3C03E4D1, 0x4B04D447, 0xD20D85FD, 0xA50AB56B, 0x3B6E20C8, 0x4C69105E, 0xD56041E4, 0xA2677172, 0x3C03E4D1, 0x4B04D447, 0xD20D85FD, 0xA50AB56B,
0x35B5A8FA, 0x42B2986C, 0xDBBBC9D6, 0xACBCF940, 0x32D86CE3, 0x45DF5C75, 0xDCD60DCF, 0xABD13D59, 0x35B5A8FA, 0x42B2986C, 0xDBBBC9D6, 0xACBCF940, 0x32D86CE3, 0x45DF5C75, 0xDCD60DCF, 0xABD13D59,
0x26D930AC, 0x51DE003A, 0xC8D75180, 0xBFD06116, 0x21B4F4B5, 0x56B3C423, 0xCFBA9599, 0xB8BDA50F, 0x26D930AC, 0x51DE003A, 0xC8D75180, 0xBFD06116, 0x21B4F4B5, 0x56B3C423, 0xCFBA9599, 0xB8BDA50F,
0x2802B89E, 0x5F058808, 0xC60CD9B2, 0xB10BE924, 0x2F6F7C87, 0x58684C11, 0xC1611DAB, 0xB6662D3D, 0x2802B89E, 0x5F058808, 0xC60CD9B2, 0xB10BE924, 0x2F6F7C87, 0x58684C11, 0xC1611DAB, 0xB6662D3D,
0x76DC4190, 0x01DB7106, 0x98D220BC, 0xEFD5102A, 0x71B18589, 0x06B6B51F, 0x9FBFE4A5, 0xE8B8D433, 0x76DC4190, 0x01DB7106, 0x98D220BC, 0xEFD5102A, 0x71B18589, 0x06B6B51F, 0x9FBFE4A5, 0xE8B8D433,
0x7807C9A2, 0x0F00F934, 0x9609A88E, 0xE10E9818, 0x7F6A0DBB, 0x086D3D2D, 0x91646C97, 0xE6635C01, 0x7807C9A2, 0x0F00F934, 0x9609A88E, 0xE10E9818, 0x7F6A0DBB, 0x086D3D2D, 0x91646C97, 0xE6635C01,
0x6B6B51F4, 0x1C6C6162, 0x856530D8, 0xF262004E, 0x6C0695ED, 0x1B01A57B, 0x8208F4C1, 0xF50FC457, 0x6B6B51F4, 0x1C6C6162, 0x856530D8, 0xF262004E, 0x6C0695ED, 0x1B01A57B, 0x8208F4C1, 0xF50FC457,
0x65B0D9C6, 0x12B7E950, 0x8BBEB8EA, 0xFCB9887C, 0x62DD1DDF, 0x15DA2D49, 0x8CD37CF3, 0xFBD44C65, 0x65B0D9C6, 0x12B7E950, 0x8BBEB8EA, 0xFCB9887C, 0x62DD1DDF, 0x15DA2D49, 0x8CD37CF3, 0xFBD44C65,
0x4DB26158, 0x3AB551CE, 0xA3BC0074, 0xD4BB30E2, 0x4ADFA541, 0x3DD895D7, 0xA4D1C46D, 0xD3D6F4FB, 0x4DB26158, 0x3AB551CE, 0xA3BC0074, 0xD4BB30E2, 0x4ADFA541, 0x3DD895D7, 0xA4D1C46D, 0xD3D6F4FB,
0x4369E96A, 0x346ED9FC, 0xAD678846, 0xDA60B8D0, 0x44042D73, 0x33031DE5, 0xAA0A4C5F, 0xDD0D7CC9, 0x4369E96A, 0x346ED9FC, 0xAD678846, 0xDA60B8D0, 0x44042D73, 0x33031DE5, 0xAA0A4C5F, 0xDD0D7CC9,
0x5005713C, 0x270241AA, 0xBE0B1010, 0xC90C2086, 0x5768B525, 0x206F85B3, 0xB966D409, 0xCE61E49F, 0x5005713C, 0x270241AA, 0xBE0B1010, 0xC90C2086, 0x5768B525, 0x206F85B3, 0xB966D409, 0xCE61E49F,
0x5EDEF90E, 0x29D9C998, 0xB0D09822, 0xC7D7A8B4, 0x59B33D17, 0x2EB40D81, 0xB7BD5C3B, 0xC0BA6CAD, 0x5EDEF90E, 0x29D9C998, 0xB0D09822, 0xC7D7A8B4, 0x59B33D17, 0x2EB40D81, 0xB7BD5C3B, 0xC0BA6CAD,
0xEDB88320, 0x9ABFB3B6, 0x03B6E20C, 0x74B1D29A, 0xEAD54739, 0x9DD277AF, 0x04DB2615, 0x73DC1683, 0xEDB88320, 0x9ABFB3B6, 0x03B6E20C, 0x74B1D29A, 0xEAD54739, 0x9DD277AF, 0x04DB2615, 0x73DC1683,
0xE3630B12, 0x94643B84, 0x0D6D6A3E, 0x7A6A5AA8, 0xE40ECF0B, 0x9309FF9D, 0x0A00AE27, 0x7D079EB1, 0xE3630B12, 0x94643B84, 0x0D6D6A3E, 0x7A6A5AA8, 0xE40ECF0B, 0x9309FF9D, 0x0A00AE27, 0x7D079EB1,
0xF00F9344, 0x8708A3D2, 0x1E01F268, 0x6906C2FE, 0xF762575D, 0x806567CB, 0x196C3671, 0x6E6B06E7, 0xF00F9344, 0x8708A3D2, 0x1E01F268, 0x6906C2FE, 0xF762575D, 0x806567CB, 0x196C3671, 0x6E6B06E7,
0xFED41B76, 0x89D32BE0, 0x10DA7A5A, 0x67DD4ACC, 0xF9B9DF6F, 0x8EBEEFF9, 0x17B7BE43, 0x60B08ED5, 0xFED41B76, 0x89D32BE0, 0x10DA7A5A, 0x67DD4ACC, 0xF9B9DF6F, 0x8EBEEFF9, 0x17B7BE43, 0x60B08ED5,
0xD6D6A3E8, 0xA1D1937E, 0x38D8C2C4, 0x4FDFF252, 0xD1BB67F1, 0xA6BC5767, 0x3FB506DD, 0x48B2364B, 0xD6D6A3E8, 0xA1D1937E, 0x38D8C2C4, 0x4FDFF252, 0xD1BB67F1, 0xA6BC5767, 0x3FB506DD, 0x48B2364B,
0xD80D2BDA, 0xAF0A1B4C, 0x36034AF6, 0x41047A60, 0xDF60EFC3, 0xA867DF55, 0x316E8EEF, 0x4669BE79, 0xD80D2BDA, 0xAF0A1B4C, 0x36034AF6, 0x41047A60, 0xDF60EFC3, 0xA867DF55, 0x316E8EEF, 0x4669BE79,
0xCB61B38C, 0xBC66831A, 0x256FD2A0, 0x5268E236, 0xCC0C7795, 0xBB0B4703, 0x220216B9, 0x5505262F, 0xCB61B38C, 0xBC66831A, 0x256FD2A0, 0x5268E236, 0xCC0C7795, 0xBB0B4703, 0x220216B9, 0x5505262F,
0xC5BA3BBE, 0xB2BD0B28, 0x2BB45A92, 0x5CB36A04, 0xC2D7FFA7, 0xB5D0CF31, 0x2CD99E8B, 0x5BDEAE1D, 0xC5BA3BBE, 0xB2BD0B28, 0x2BB45A92, 0x5CB36A04, 0xC2D7FFA7, 0xB5D0CF31, 0x2CD99E8B, 0x5BDEAE1D,
0x9B64C2B0, 0xEC63F226, 0x756AA39C, 0x026D930A, 0x9C0906A9, 0xEB0E363F, 0x72076785, 0x05005713, 0x9B64C2B0, 0xEC63F226, 0x756AA39C, 0x026D930A, 0x9C0906A9, 0xEB0E363F, 0x72076785, 0x05005713,
0x95BF4A82, 0xE2B87A14, 0x7BB12BAE, 0x0CB61B38, 0x92D28E9B, 0xE5D5BE0D, 0x7CDCEFB7, 0x0BDBDF21, 0x95BF4A82, 0xE2B87A14, 0x7BB12BAE, 0x0CB61B38, 0x92D28E9B, 0xE5D5BE0D, 0x7CDCEFB7, 0x0BDBDF21,
0x86D3D2D4, 0xF1D4E242, 0x68DDB3F8, 0x1FDA836E, 0x81BE16CD, 0xF6B9265B, 0x6FB077E1, 0x18B74777, 0x86D3D2D4, 0xF1D4E242, 0x68DDB3F8, 0x1FDA836E, 0x81BE16CD, 0xF6B9265B, 0x6FB077E1, 0x18B74777,
0x88085AE6, 0xFF0F6A70, 0x66063BCA, 0x11010B5C, 0x8F659EFF, 0xF862AE69, 0x616BFFD3, 0x166CCF45, 0x88085AE6, 0xFF0F6A70, 0x66063BCA, 0x11010B5C, 0x8F659EFF, 0xF862AE69, 0x616BFFD3, 0x166CCF45,
0xA00AE278, 0xD70DD2EE, 0x4E048354, 0x3903B3C2, 0xA7672661, 0xD06016F7, 0x4969474D, 0x3E6E77DB, 0xA00AE278, 0xD70DD2EE, 0x4E048354, 0x3903B3C2, 0xA7672661, 0xD06016F7, 0x4969474D, 0x3E6E77DB,
0xAED16A4A, 0xD9D65ADC, 0x40DF0B66, 0x37D83BF0, 0xA9BCAE53, 0xDEBB9EC5, 0x47B2CF7F, 0x30B5FFE9, 0xAED16A4A, 0xD9D65ADC, 0x40DF0B66, 0x37D83BF0, 0xA9BCAE53, 0xDEBB9EC5, 0x47B2CF7F, 0x30B5FFE9,
0xBDBDF21C, 0xCABAC28A, 0x53B39330, 0x24B4A3A6, 0xBAD03605, 0xCDD70693, 0x54DE5729, 0x23D967BF, 0xBDBDF21C, 0xCABAC28A, 0x53B39330, 0x24B4A3A6, 0xBAD03605, 0xCDD70693, 0x54DE5729, 0x23D967BF,
0xB3667A2E, 0xC4614AB8, 0x5D681B02, 0x2A6F2B94, 0xB40BBE37, 0xC30C8EA1, 0x5A05DF1B, 0x2D02EF8D 0xB3667A2E, 0xC4614AB8, 0x5D681B02, 0x2A6F2B94, 0xB40BBE37, 0xC30C8EA1, 0x5A05DF1B, 0x2D02EF8D
}; };
/*Return the CRC of the bytes buf[0..len-1].*/ /*Return the CRC of the bytes buf[0..len-1].*/
unsigned lodepng_crc32(const unsigned char* data, size_t length) unsigned lodepng_crc32(const unsigned char* data, size_t length)
{ {
unsigned r = 0xffffffffu; unsigned r = 0xffffffffu;
while (length--) while (length--)
{ {
r = lodepng_crc32_table[(r ^ *data++) & 0xffu] ^ (r >> 8u); r = lodepng_crc32_table[(r ^ *data++) & 0xffu] ^ (r >> 8u);
} }
return ~r; return ~r;
} }

View file

@ -1,177 +1,177 @@
/* /*
* redeye.c * redeye.c
* *
* This file is part of Emu48 * This file is part of Emu48
* *
* Copyright (C) 2011 Christoph Gießelink * Copyright (C) 2011 Christoph Gießelink
* *
*/ */
#include "pch.h" #include "pch.h"
#include "emu48.h" #include "Emu48.h"
#include "io.h" #include "io.h"
#define ERR_CHAR 127 // character for transfer error #define ERR_CHAR 127 // character for transfer error
#define H1 0x78 #define H1 0x78
#define H2 0xE6 #define H2 0xE6
#define H3 0xD5 #define H3 0xD5
#define H4 0x8B #define H4 0x8B
// HP redeye correction masks // HP redeye correction masks
static CONST BYTE byEmask[] = { H1, H2, H3, H4 }; static CONST BYTE byEmask[] = { H1, H2, H3, H4 };
static __inline UINT MAX(UINT a, UINT b) static __inline UINT MAX(UINT a, UINT b)
{ {
return (a>b)?a:b; return (a>b)?a:b;
} }
static __inline BYTE Parity(BYTE b) static __inline BYTE Parity(BYTE b)
{ {
b ^= (b >> 4); b ^= (b >> 4);
b ^= (b >> 2); b ^= (b >> 2);
b ^= (b >> 1); b ^= (b >> 1);
return b & 1; return b & 1;
} }
static __inline BYTE CreateCorrectionBits(BYTE b) static __inline BYTE CreateCorrectionBits(BYTE b)
{ {
UINT i; UINT i;
BYTE byVal = 0; BYTE byVal = 0;
for (i = 0; i < ARRAYSIZEOF(byEmask);++i) for (i = 0; i < ARRAYSIZEOF(byEmask);++i)
{ {
byVal <<= 1; byVal <<= 1;
byVal |= Parity((BYTE) (b & byEmask[i])); byVal |= Parity((BYTE) (b & byEmask[i]));
} }
return byVal; return byVal;
} }
static __inline WORD CorrectData(WORD wData,WORD wMissed) static __inline WORD CorrectData(WORD wData,WORD wMissed)
{ {
while ((wMissed & 0xFF) != 0) // clear every missed bit in data area while ((wMissed & 0xFF) != 0) // clear every missed bit in data area
{ {
BYTE byBitMask; BYTE byBitMask;
// detect valid H(i) mask // detect valid H(i) mask
WORD wMi = 0x800; // first M(i) bit WORD wMi = 0x800; // first M(i) bit
INT i = 0; // index to first H(i) mask INT i = 0; // index to first H(i) mask
while (TRUE) while (TRUE)
{ {
if ((wMissed & wMi) == 0) // possible valid mask if ((wMissed & wMi) == 0) // possible valid mask
{ {
_ASSERT(i < ARRAYSIZEOF(byEmask)); _ASSERT(i < ARRAYSIZEOF(byEmask));
// select bit to correct // select bit to correct
byBitMask = wMissed & byEmask[i]; byBitMask = wMissed & byEmask[i];
if (Parity(byBitMask)) // only one bit set (parity odd) if (Parity(byBitMask)) // only one bit set (parity odd)
break; // -> valid H(i) mask break; // -> valid H(i) mask
} }
wMi >>= 1; // next M(i) bit wMi >>= 1; // next M(i) bit
i++; // next H(i) mask i++; // next H(i) mask
} }
// correct bit with H(i) mask // correct bit with H(i) mask
wMissed ^= byBitMask; // clear this missed bit wMissed ^= byBitMask; // clear this missed bit
// parity odd -> wrong data value // parity odd -> wrong data value
if (Parity((BYTE) ((wData & byEmask[i]) ^ ((wData & wMi) >> 8)))) if (Parity((BYTE) ((wData & byEmask[i]) ^ ((wData & wMi) >> 8))))
wData ^= byBitMask; // correct value wData ^= byBitMask; // correct value
} }
return wData & 0xFF; // only data byte is correct return wData & 0xFF; // only data byte is correct
} }
VOID IrPrinter(BYTE c) VOID IrPrinter(BYTE c)
{ {
static INT nFrame = 0; // frame counter static INT nFrame = 0; // frame counter
static DWORD dwData = 0; // half bit data container static DWORD dwData = 0; // half bit data container
static INT nStart = 0; // frame counter disabled static INT nStart = 0; // frame counter disabled
BOOL bLSRQ; BOOL bLSRQ;
dwData = (dwData << 1) | (c & LBO); // grab the last 32 bit send through IR dwData = (dwData << 1) | (c & LBO); // grab the last 32 bit send through IR
// Led Service ReQuest on Led Buffer Empty enabled // Led Service ReQuest on Led Buffer Empty enabled
bLSRQ = (Chipset.IORam[LCR] & ELBE) != 0; bLSRQ = (Chipset.IORam[LCR] & ELBE) != 0;
IOBit(SRQ2,LSRQ,bLSRQ); // update LSRQ bit IOBit(SRQ2,LSRQ,bLSRQ); // update LSRQ bit
if (bLSRQ) // interrupt on Led Buffer Empty enabled if (bLSRQ) // interrupt on Led Buffer Empty enabled
{ {
Chipset.SoftInt = TRUE; // execute interrupt Chipset.SoftInt = TRUE; // execute interrupt
bInterrupt = TRUE; bInterrupt = TRUE;
} }
// HP40G and HP49G have no IR transmitter Led // HP40G and HP49G have no IR transmitter Led
if ((cCurrentRomType == 'E' && nCurrentClass == 40) || cCurrentRomType == 'X') if ((cCurrentRomType == 'E' && nCurrentClass == 40) || cCurrentRomType == 'X')
return; return;
if (nFrame == 0) // waiting for start bit condition if (nFrame == 0) // waiting for start bit condition
{ {
if ((dwData & 0x3F) == 0x07) // start bit condition (000111 pattern) if ((dwData & 0x3F) == 0x07) // start bit condition (000111 pattern)
{ {
nStart = 1; // enable frame counter nStart = 1; // enable frame counter
} }
} }
if (nFrame == 24) // 24 half bit received if (nFrame == 24) // 24 half bit received
{ {
INT i; INT i;
WORD wData = 0; // data container WORD wData = 0; // data container
WORD wMissed = 0; // missed bit container WORD wMissed = 0; // missed bit container
INT nCount = 0; // no. of missed bits INT nCount = 0; // no. of missed bits
nFrame = 0; // reset for next character nFrame = 0; // reset for next character
nStart = 0; // disable frame counter nStart = 0; // disable frame counter
// separate to data and missed bits // separate to data and missed bits
for (i = 0; i < 12; ++i) // 12 bit frames for (i = 0; i < 12; ++i) // 12 bit frames
{ {
BYTE b = (BYTE) (dwData & 3); // last 2 half bits BYTE b = (BYTE) (dwData & 3); // last 2 half bits
if (b == 0x0 || b == 0x3) // illegal half bit combination if (b == 0x0 || b == 0x3) // illegal half bit combination
{ {
wMissed |= (1 << i); // this is a missed bit wMissed |= (1 << i); // this is a missed bit
++nCount; // incr. number of missed bits ++nCount; // incr. number of missed bits
} }
else // valid data bit else // valid data bit
{ {
wData |= ((b >> 1) << i); // add data bit wData |= ((b >> 1) << i); // add data bit
} }
dwData >>= 2; // next 2 half bits dwData >>= 2; // next 2 half bits
} }
if (nCount <= 2) // error can be fixed if (nCount <= 2) // error can be fixed
{ {
BYTE byOrgParity,byNewParity; BYTE byOrgParity,byNewParity;
byOrgParity = wData >> 8; // the original parity information with missed bits byOrgParity = wData >> 8; // the original parity information with missed bits
byNewParity = ~(wMissed >> 8); // missed bit mask for recalculated parity byNewParity = ~(wMissed >> 8); // missed bit mask for recalculated parity
if (nCount > 0) // error correction if (nCount > 0) // error correction
{ {
wData = CorrectData(wData,wMissed); wData = CorrectData(wData,wMissed);
} }
wData &= 0xFF; // remove parity information wData &= 0xFF; // remove parity information
// recalculate parity data // recalculate parity data
byNewParity &= CreateCorrectionBits((BYTE) wData); byNewParity &= CreateCorrectionBits((BYTE) wData);
// wrong parity // wrong parity
if (byOrgParity != byNewParity) if (byOrgParity != byNewParity)
wData = ERR_CHAR; // character for transfer error wData = ERR_CHAR; // character for transfer error
} }
else else
{ {
wData = ERR_CHAR; // character for transfer error wData = ERR_CHAR; // character for transfer error
} }
SendByteUdp((BYTE) wData); // send data byte SendByteUdp((BYTE) wData); // send data byte
return; return;
} }
nFrame += nStart; // next frame nFrame += nStart; // next frame
return; return;
} }

View file

@ -1,263 +1,268 @@
//{{NO_DEPENDENCIES}} //{{NO_DEPENDENCIES}}
// Microsoft Developer Studio generated include file. // Microsoft Developer Studio generated include file.
// Used by Emu48.rc // Used by Emu48.rc
// //
#define IDM_DEBUG_SETTINGS 0x0010 #define IDM_DEBUG_SETTINGS 0x0010
#define IDI_EMU48 100 #define IDI_EMU48 100
#define IDR_MENU 101 #define IDR_MENU 101
#define IDM_MENU 102 #define IDM_MENU 102
#define IDR_DEBUG 103 #define IDR_DEBUG 103
#define IDR_DEBUG_TOOLBAR 104 #define IDR_DEBUG_TOOLBAR 104
#define IDR_DEBUG_CODE 105 #define IDR_DEBUG_CODE 105
#define IDR_DEBUG_MEM 106 #define IDR_DEBUG_MEM 106
#define IDR_DEBUG_STACK 107 #define IDR_DEBUG_STACK 107
#define IDB_CHECKBOX 108 #define IDB_CHECKBOX 108
#define IDD_ABOUT 109 #define IDD_ABOUT 109
#define IDD_SET_GENERAL 110 #define IDD_SET_GENERAL 110
#define IDD_SET_MEMORY 111 #define IDD_SET_MEMORY 111
#define IDD_SET_PERIPHERAL 112 #define IDD_SET_PERIPHERAL 112
#define IDD_CHOOSEKML 113 #define IDD_CHOOSEKML 113
#define IDD_KMLLOG 114 #define IDD_KMLLOG 114
#define IDD_DISASM 115 #define IDD_DISASM 115
#define IDD_DEBUG 116 #define IDD_DEBUG 116
#define IDD_NEWVALUE 117 #define IDD_NEWVALUE 117
#define IDD_ENTERADR 118 #define IDD_ENTERADR 118
#define IDD_BREAKEDIT 119 #define IDD_BREAKEDIT 119
#define IDD_ENTERBREAK 120 #define IDD_ENTERBREAK 120
#define IDD_INSTRUCTIONS 121 #define IDD_INSTRUCTIONS 121
#define IDD_WRITEONLYREG 122 #define IDD_WRITEONLYREG 122
#define IDD_FIND 123 #define IDD_FIND 123
#define IDD_PROFILE 124 #define IDD_PROFILE 124
#define IDD_RPLVIEW 125 #define IDD_RPLVIEW 125
#define IDD_MACROSET 126 #define IDD_MACROSET 126
#define IDD_DEBUG_MEMSAVE 127 #define IDD_DEBUG_MEMSAVE 127
#define IDD_DEBUG_MEMLOAD 128 #define IDD_DEBUG_MEMLOAD 128
#define IDD_DEBUG_SETTINGS 129 #define IDD_DEBUG_SETTINGS 129
#define IDD_TRACE 130 #define IDD_TRACE 130
#define IDC_REALSPEED 1000 #define IDC_REALSPEED 1000
#define IDC_GRAYSCALE 1001 #define IDC_GRAYSCALE 1001
#define IDC_ALWAYSONTOP 1002 #define IDC_ALWAYSONTOP 1002
#define IDC_ACTFOLLOWSMOUSE 1003 #define IDC_ACTFOLLOWSMOUSE 1003
#define IDC_SINGLEINSTANCE 1004 #define IDC_SINGLEINSTANCE 1004
#define IDC_AUTOSAVE 1005 #define IDC_AUTOSAVE 1005
#define IDC_AUTOSAVEONEXIT 1006 #define IDC_AUTOSAVEONEXIT 1006
#define IDC_OBJECTLOADWARNING 1007 #define IDC_OBJECTLOADWARNING 1007
#define IDC_SHOWTITLE 1008 #define IDC_SHOWTITLE 1008
#define IDC_SHOWMENU 1009 #define IDC_SHOWMENU 1009
#define IDC_ALWAYSDISPLOG 1010 #define IDC_ALWAYSDISPLOG 1010
#define IDC_PORT1EN 1011 #define IDC_PORT1EN 1011
#define IDC_PORT1WR 1012 #define IDC_PORT1WR 1012
#define IDC_PORT2ISSHARED 1013 #define IDC_PORT2ISSHARED 1013
#define IDC_PORT2WR 1014 #define IDC_PORT2WR 1014
#define IDC_PORT2 1015 #define IDC_PORT2 1015
#define IDC_PORT2LOAD 1016 #define IDC_PORT2LOAD 1016
#define IDC_IR_ADDR 1017 #define IDC_IR_ADDR 1017
#define IDC_IR_PORT 1018 #define IDC_IR_PORT 1018
#define IDC_WIRE 1019 #define IDC_WIRE 1019
#define IDC_IR 1020 #define IDC_IR 1020
#define IDC_EMUDIR 1021 #define IDC_EMUDIR 1021
#define IDC_EMUDIRSEL 1022 #define IDC_EMUDIRSEL 1022
#define IDC_UPDATE 1023 #define IDC_UPDATE 1023
#define IDC_KMLSCRIPT 1024 #define IDC_KMLSCRIPT 1024
#define IDC_AUTHOR 1025 #define IDC_AUTHOR 1025
#define IDC_TITLE 1026 #define IDC_TITLE 1026
#define IDC_KMLLOG 1027 #define IDC_KMLLOG 1027
#define IDC_VERSION 1028 #define IDC_VERSION 1028
#define IDC_LICENSE 1029 #define IDC_LICENSE 1029
#define IDC_DISASM_WIN 1030 #define IDC_DISASM_WIN 1030
#define IDC_DISASM_MODE_TEXT 1031 #define IDC_DISASM_MODE_TEXT 1031
#define IDC_DISASM_MODE 1032 #define IDC_DISASM_MODE 1032
#define IDC_DISASM_MODULE 1033 #define IDC_DISASM_MODULE 1033
#define IDC_DISASM_HP 1034 #define IDC_DISASM_HP 1034
#define IDC_DISASM_CLASS 1035 #define IDC_DISASM_CLASS 1035
#define IDC_ADDRESS 1036 #define IDC_ADDRESS 1036
#define IDC_DISASM_ADR 1037 #define IDC_DISASM_ADR 1037
#define IDC_DISASM_NEXT 1038 #define IDC_DISASM_NEXT 1038
#define IDC_DISASM_COPY 1039 #define IDC_DISASM_COPY 1039
#define IDC_DEBUG_CODE 1040 #define IDC_DEBUG_CODE 1040
#define IDC_STATIC_CODE 1041 #define IDC_STATIC_CODE 1041
#define IDC_STATIC_REGISTERS 1042 #define IDC_STATIC_REGISTERS 1042
#define IDC_STATIC_MEMORY 1043 #define IDC_STATIC_MEMORY 1043
#define IDC_STATIC_STACK 1044 #define IDC_STATIC_STACK 1044
#define IDC_REG_A 1045 #define IDC_REG_A 1045
#define IDC_REG_B 1046 #define IDC_REG_B 1046
#define IDC_REG_C 1047 #define IDC_REG_C 1047
#define IDC_REG_D 1048 #define IDC_REG_D 1048
#define IDC_REG_R0 1049 #define IDC_REG_R0 1049
#define IDC_REG_R1 1050 #define IDC_REG_R1 1050
#define IDC_REG_R2 1051 #define IDC_REG_R2 1051
#define IDC_REG_R3 1052 #define IDC_REG_R3 1052
#define IDC_REG_R4 1053 #define IDC_REG_R4 1053
#define IDC_REG_D0 1054 #define IDC_REG_D0 1054
#define IDC_REG_D1 1055 #define IDC_REG_D1 1055
#define IDC_REG_P 1056 #define IDC_REG_P 1056
#define IDC_REG_PC 1057 #define IDC_REG_PC 1057
#define IDC_REG_OUT 1058 #define IDC_REG_OUT 1058
#define IDC_REG_IN 1059 #define IDC_REG_IN 1059
#define IDC_REG_ST 1060 #define IDC_REG_ST 1060
#define IDC_REG_CY 1061 #define IDC_REG_CY 1061
#define IDC_REG_MODE 1062 #define IDC_REG_MODE 1062
#define IDC_REG_MP 1063 #define IDC_REG_MP 1063
#define IDC_REG_SR 1064 #define IDC_REG_SR 1064
#define IDC_REG_SB 1065 #define IDC_REG_SB 1065
#define IDC_REG_XM 1066 #define IDC_REG_XM 1066
#define IDC_MISC_INT 1067 #define IDC_MISC_INT 1067
#define IDC_MISC_KEY 1068 #define IDC_MISC_KEY 1068
#define IDC_MISC_BS 1069 #define IDC_MISC_BS 1069
#define IDC_NEWVALUE 1070 #define IDC_NEWVALUE 1070
#define IDC_ENTERADR 1071 #define IDC_ENTERADR 1071
#define IDC_DEBUG_MEM 1072 #define IDC_DEBUG_MEM 1072
#define IDC_DEBUG_MEM_ADDR 1073 #define IDC_DEBUG_MEM_ADDR 1073
#define IDC_DEBUG_MEM_COL0 1074 #define IDC_DEBUG_MEM_COL0 1074
#define IDC_DEBUG_MEM_COL1 1075 #define IDC_DEBUG_MEM_COL1 1075
#define IDC_DEBUG_MEM_COL2 1076 #define IDC_DEBUG_MEM_COL2 1076
#define IDC_DEBUG_MEM_COL3 1077 #define IDC_DEBUG_MEM_COL3 1077
#define IDC_DEBUG_MEM_COL4 1078 #define IDC_DEBUG_MEM_COL4 1078
#define IDC_DEBUG_MEM_COL5 1079 #define IDC_DEBUG_MEM_COL5 1079
#define IDC_DEBUG_MEM_COL6 1080 #define IDC_DEBUG_MEM_COL6 1080
#define IDC_DEBUG_MEM_COL7 1081 #define IDC_DEBUG_MEM_COL7 1081
#define IDC_DEBUG_MEM_TEXT 1082 #define IDC_DEBUG_MEM_TEXT 1082
#define IDC_DEBUG_DATA_FILE 1083 #define IDC_DEBUG_DATA_FILE 1083
#define IDC_DEBUG_DATA_BUT 1084 #define IDC_DEBUG_DATA_BUT 1084
#define IDC_DEBUG_DATA_STARTADDR 1085 #define IDC_DEBUG_DATA_STARTADDR 1085
#define IDC_DEBUG_DATA_ENDADDR 1086 #define IDC_DEBUG_DATA_ENDADDR 1086
#define IDC_DEBUG_SET_SYMB 1087 #define IDC_DEBUG_DATA_SAVE_8BIT 1087
#define IDC_DEBUG_SET_MODEL 1088 #define IDC_DEBUG_DATA_SAVE_4BIT 1088
#define IDC_DEBUG_SET_FILE 1089 #define IDC_DEBUG_DATA_LOAD_8BIT 1089
#define IDC_DEBUG_SET_BROWSE 1090 #define IDC_DEBUG_DATA_LOAD_4BIT 1090
#define IDC_DEBUG_STACK 1091 #define IDC_DEBUG_DATA_LOAD_ABIT 1091
#define IDC_STATIC_BREAKPOINT 1092 #define IDC_DEBUG_SET_SYMB 1092
#define IDC_BREAKEDIT_ADD 1093 #define IDC_DEBUG_SET_MODEL 1093
#define IDC_BREAKEDIT_DELETE 1094 #define IDC_DEBUG_SET_FILE 1094
#define IDC_BREAKEDIT_WND 1095 #define IDC_DEBUG_SET_BROWSE 1095
#define IDC_STATIC_MMU 1096 #define IDC_DEBUG_STACK 1096
#define IDC_MMU_IO_A 1097 #define IDC_STATIC_BREAKPOINT 1097
#define IDC_MMU_NCE2_A 1098 #define IDC_BREAKEDIT_ADD 1098
#define IDC_MMU_CE1_A 1099 #define IDC_BREAKEDIT_DELETE 1099
#define IDC_MMU_CE2_A 1100 #define IDC_BREAKEDIT_WND 1100
#define IDC_MMU_NCE3_A 1101 #define IDC_STATIC_MMU 1101
#define IDC_MMU_IO_S 1102 #define IDC_MMU_IO_A 1102
#define IDC_MMU_CE1_S 1103 #define IDC_MMU_NCE2_A 1103
#define IDC_MMU_CE2_S 1104 #define IDC_MMU_CE1_A 1104
#define IDC_MMU_NCE2_S 1105 #define IDC_MMU_CE2_A 1105
#define IDC_MMU_NCE3_S 1106 #define IDC_MMU_NCE3_A 1106
#define IDC_STATIC_MISC 1107 #define IDC_MMU_IO_S 1107
#define IDC_MISC_BS_TXT 1108 #define IDC_MMU_CE1_S 1108
#define IDC_INSTR_TEXT 1109 #define IDC_MMU_CE2_S 1109
#define IDC_INSTR_CODE 1110 #define IDC_MMU_NCE2_S 1110
#define IDC_INSTR_COPY 1111 #define IDC_MMU_NCE3_S 1111
#define IDC_INSTR_CLEAR 1112 #define IDC_STATIC_MISC 1112
#define IDC_PROFILE_LASTCYCLES 1113 #define IDC_MISC_BS_TXT 1113
#define IDC_PROFILE_LASTTIME 1114 #define IDC_INSTR_TEXT 1114
#define IDC_BPCODE 1115 #define IDC_INSTR_CODE 1115
#define IDC_BPRPL 1116 #define IDC_INSTR_COPY 1116
#define IDC_BPACCESS 1117 #define IDC_INSTR_CLEAR 1117
#define IDC_BPREAD 1118 #define IDC_PROFILE_LASTCYCLES 1118
#define IDC_BPWRITE 1119 #define IDC_PROFILE_LASTTIME 1119
#define IDC_FIND_DATA 1120 #define IDC_BPCODE 1120
#define IDC_FIND_PREV 1121 #define IDC_BPRPL 1121
#define IDC_FIND_NEXT 1122 #define IDC_BPACCESS 1122
#define IDC_FIND_ASCII 1123 #define IDC_BPREAD 1123
#define IDC_ADDR20_24 1124 #define IDC_BPWRITE 1124
#define IDC_ADDR25_27 1125 #define IDC_FIND_DATA 1125
#define IDC_ADDR28_29 1126 #define IDC_FIND_PREV 1126
#define IDC_ADDR30_34 1127 #define IDC_FIND_NEXT 1127
#define IDC_RPLVIEW_DATA 1128 #define IDC_FIND_ASCII 1128
#define IDC_MACRO_SLOW 1129 #define IDC_ADDR20_24 1129
#define IDC_MACRO_FAST 1130 #define IDC_ADDR25_27 1130
#define IDC_MACRO_SLIDER 1131 #define IDC_ADDR28_29 1131
#define IDC_MACRO_REAL 1132 #define IDC_ADDR30_34 1132
#define IDC_MACRO_MANUAL 1133 #define IDC_RPLVIEW_DATA 1133
#define IDC_SOUND_SLIDER 1134 #define IDC_MACRO_SLOW 1134
#define IDC_SOUND_DEVICE 1135 #define IDC_MACRO_FAST 1135
#define IDC_TRACE_FILE 1136 #define IDC_MACRO_SLIDER 1136
#define IDC_TRACE_BROWSE 1137 #define IDC_MACRO_REAL 1137
#define IDC_TRACE_NEW 1138 #define IDC_MACRO_MANUAL 1138
#define IDC_TRACE_APPEND 1139 #define IDC_SOUND_SLIDER 1139
#define IDC_TRACE_REGISTER 1140 #define IDC_SOUND_DEVICE 1140
#define IDC_TRACE_MMU 1141 #define IDC_TRACE_FILE 1141
#define IDC_TRACE_OPCODE 1142 #define IDC_TRACE_BROWSE 1142
#define ID_FILE_NEW 40001 #define IDC_TRACE_NEW 1143
#define ID_FILE_OPEN 40002 #define IDC_TRACE_APPEND 1144
#define ID_FILE_SAVE 40003 #define IDC_TRACE_REGISTER 1145
#define ID_FILE_SAVEAS 40004 #define IDC_TRACE_MMU 1146
#define ID_FILE_EXIT 40005 #define IDC_TRACE_OPCODE 1147
#define ID_VIEW_COPY 40006 #define ID_FILE_NEW 40001
#define ID_VIEW_SETTINGS 40007 #define ID_FILE_OPEN 40002
#define ID_VIEW_RESET 40008 #define ID_FILE_SAVE 40003
#define ID_OBJECT_LOAD 40009 #define ID_FILE_SAVEAS 40004
#define ID_OBJECT_SAVE 40010 #define ID_FILE_EXIT 40005
#define ID_ABOUT 40011 #define ID_VIEW_COPY 40006
#define ID_HELP_TOPICS 40012 #define ID_VIEW_SETTINGS 40007
#define ID_FILE_CLOSE 40013 #define ID_VIEW_RESET 40008
#define ID_BACKUP_SAVE 40014 #define ID_OBJECT_LOAD 40009
#define ID_BACKUP_RESTORE 40015 #define ID_OBJECT_SAVE 40010
#define ID_BACKUP_DELETE 40016 #define ID_ABOUT 40011
#define ID_VIEW_SCRIPT 40017 #define ID_HELP_TOPICS 40012
#define ID_STACK_COPY 40019 #define ID_FILE_CLOSE 40013
#define ID_STACK_PASTE 40020 #define ID_BACKUP_SAVE 40014
#define ID_TOOL_DISASM 40021 #define ID_BACKUP_RESTORE 40015
#define ID_TOOL_DEBUG 40022 #define ID_BACKUP_DELETE 40016
#define ID_TOOL_MACRO_RECORD 40023 #define ID_VIEW_SCRIPT 40017
#define ID_TOOL_MACRO_PLAY 40024 #define ID_STACK_COPY 40019
#define ID_TOOL_MACRO_STOP 40025 #define ID_STACK_PASTE 40020
#define ID_TOOL_MACRO_SETTINGS 40026 #define ID_TOOL_DISASM 40021
#define ID_DEBUG_RUN 40027 #define ID_TOOL_DEBUG 40022
#define ID_DEBUG_RUNCURSOR 40028 #define ID_TOOL_MACRO_RECORD 40023
#define ID_DEBUG_STEP 40029 #define ID_TOOL_MACRO_PLAY 40024
#define ID_DEBUG_STEPOVER 40030 #define ID_TOOL_MACRO_STOP 40025
#define ID_DEBUG_BREAK 40031 #define ID_TOOL_MACRO_SETTINGS 40026
#define ID_DEBUG_STEPOUT 40032 #define ID_DEBUG_RUN 40027
#define ID_DEBUG_CANCEL 40033 #define ID_DEBUG_RUNCURSOR 40028
#define ID_BREAKPOINTS_SETBREAK 40034 #define ID_DEBUG_STEP 40029
#define ID_BREAKPOINTS_CODEEDIT 40035 #define ID_DEBUG_STEPOVER 40030
#define ID_BREAKPOINTS_CLEARALL 40036 #define ID_DEBUG_BREAK 40031
#define ID_BREAKPOINTS_NOP3 40037 #define ID_DEBUG_STEPOUT 40032
#define ID_BREAKPOINTS_DOCODE 40038 #define ID_DEBUG_CANCEL 40033
#define ID_BREAKPOINTS_RPL 40039 #define ID_BREAKPOINTS_SETBREAK 40034
#define ID_DEBUG_CODE_GOADR 40040 #define ID_BREAKPOINTS_CODEEDIT 40035
#define ID_DEBUG_CODE_GOPC 40041 #define ID_BREAKPOINTS_CLEARALL 40036
#define ID_DEBUG_CODE_SETPCTOSELECT 40042 #define ID_BREAKPOINTS_NOP3 40037
#define ID_DEBUG_CODE_PREVPCO 40043 #define ID_BREAKPOINTS_DOCODE 40038
#define ID_DEBUG_CODE_NEXTPCO 40044 #define ID_BREAKPOINTS_RPL 40039
#define ID_DEBUG_MEM_GOADR 40045 #define ID_DEBUG_CODE_GOADR 40040
#define ID_DEBUG_MEM_GOPC 40046 #define ID_DEBUG_CODE_GOPC 40041
#define ID_DEBUG_MEM_GOD0 40047 #define ID_DEBUG_CODE_SETPCTOSELECT 40042
#define ID_DEBUG_MEM_GOD1 40048 #define ID_DEBUG_CODE_PREVPCO 40043
#define ID_DEBUG_MEM_GOSTACK 40049 #define ID_DEBUG_CODE_NEXTPCO 40044
#define ID_DEBUG_MEM_FNONE 40050 #define ID_DEBUG_MEM_GOADR 40045
#define ID_DEBUG_MEM_FADDR 40051 #define ID_DEBUG_MEM_GOPC 40046
#define ID_DEBUG_MEM_FPC 40052 #define ID_DEBUG_MEM_GOD0 40047
#define ID_DEBUG_MEM_FD0 40053 #define ID_DEBUG_MEM_GOD1 40048
#define ID_DEBUG_MEM_FD1 40054 #define ID_DEBUG_MEM_GOSTACK 40049
#define ID_DEBUG_MEM_FIND 40055 #define ID_DEBUG_MEM_FNONE 40050
#define ID_DEBUG_MEM_MAP 40056 #define ID_DEBUG_MEM_FADDR 40051
#define ID_DEBUG_MEM_NCE1 40057 #define ID_DEBUG_MEM_FPC 40052
#define ID_DEBUG_MEM_NCE2 40058 #define ID_DEBUG_MEM_FD0 40053
#define ID_DEBUG_MEM_CE1 40059 #define ID_DEBUG_MEM_FD1 40054
#define ID_DEBUG_MEM_CE2 40060 #define ID_DEBUG_MEM_FIND 40055
#define ID_DEBUG_MEM_NCE3 40061 #define ID_DEBUG_MEM_MAP 40056
#define ID_DEBUG_MEM_SAVE 40062 #define ID_DEBUG_MEM_NCE1 40057
#define ID_DEBUG_MEM_LOAD 40063 #define ID_DEBUG_MEM_NCE2 40058
#define ID_DEBUG_MEM_RPLVIEW 40064 #define ID_DEBUG_MEM_CE1 40059
#define ID_DEBUG_STACK_PUSH 40065 #define ID_DEBUG_MEM_CE2 40060
#define ID_DEBUG_STACK_POP 40066 #define ID_DEBUG_MEM_NCE3 40061
#define ID_DEBUG_STACK_MODIFY 40067 #define ID_DEBUG_MEM_SAVE 40062
#define ID_INTR_STEPOVERINT 40068 #define ID_DEBUG_MEM_LOAD 40063
#define ID_INFO_LASTINSTRUCTIONS 40069 #define ID_DEBUG_MEM_RPLVIEW 40064
#define ID_INFO_PROFILE 40070 #define ID_DEBUG_STACK_PUSH 40065
#define ID_INFO_WRITEONLYREG 40071 #define ID_DEBUG_STACK_POP 40066
#define ID_TRACE_SETTINGS 40072 #define ID_DEBUG_STACK_MODIFY 40067
#define ID_TRACE_ENABLE 40073 #define ID_INTR_STEPOVERINT 40068
#define ID_FILE_MRU_FILE1 40100 #define ID_INFO_LASTINSTRUCTIONS 40069
#define ID_INFO_PROFILE 40070
// Next default values for new objects #define ID_INFO_WRITEONLYREG 40071
// #define ID_TRACE_SETTINGS 40072
#ifdef APSTUDIO_INVOKED #define ID_TRACE_ENABLE 40073
#ifndef APSTUDIO_READONLY_SYMBOLS #define ID_FILE_MRU_FILE1 40100
#define _APS_NEXT_RESOURCE_VALUE 131
#define _APS_NEXT_COMMAND_VALUE 40074 // Next default values for new objects
#define _APS_NEXT_CONTROL_VALUE 1143 //
#define _APS_NEXT_SYMED_VALUE 109 #ifdef APSTUDIO_INVOKED
#endif #ifndef APSTUDIO_READONLY_SYMBOLS
#endif #define _APS_NEXT_RESOURCE_VALUE 131
#define _APS_NEXT_COMMAND_VALUE 40074
#define _APS_NEXT_CONTROL_VALUE 1148
#define _APS_NEXT_SYMED_VALUE 109
#endif
#endif

View file

@ -1,250 +1,250 @@
/* /*
* romcrc.c * romcrc.c
* *
* This file is part of Emu48 * This file is part of Emu48
* *
* Copyright (C) 2022 Christoph Gießelink * Copyright (C) 2022 Christoph Gießelink
* *
*/ */
#include "pch.h" #include "pch.h"
#include "emu48.h" #include "Emu48.h"
#include "ops.h" #include "ops.h"
// flash page types // flash page types
#define BOOT 0x86 #define BOOT 0x86
#define FS 0x18 #define FS 0x18
#define SYSTEM 0x32 #define SYSTEM 0x32
#define ROM 0x0F #define ROM 0x0F
#define RAM 0xF0 #define RAM 0xF0
//################ //################
//# //#
//# Restore HP38G/HP48GX/SX ROM CRC //# Restore HP38G/HP48GX/SX ROM CRC
//# //#
//################ //################
// Clarke/Yorke CRC for HP38G and HP48GX/SX // Clarke/Yorke CRC for HP38G and HP48GX/SX
#define a0 0x0 // Start Address #define a0 0x0 // Start Address
#define d0 (n0*16) // Address offset #define d0 (n0*16) // Address offset
#define n0 0x4000 // Reads/Half-Sector #define n0 0x4000 // Reads/Half-Sector
#define s0 1 // #Sectors (Sector Size=2*d) #define s0 1 // #Sectors (Sector Size=2*d)
// rebuild of the calculator =CHECKSUM function for the Clarke and the Yorke chip ROM // rebuild of the calculator =CHECKSUM function for the Clarke and the Yorke chip ROM
static WORD Checksum(LPBYTE pbyROM, DWORD dwStart, DWORD dwOffset, INT nReads, INT nSector) static WORD Checksum(LPBYTE pbyROM, DWORD dwStart, DWORD dwOffset, INT nReads, INT nSector)
{ {
int i,j; int i,j;
WORD wCrc = 0; WORD wCrc = 0;
for (;nSector > 0; --nSector) // evaluate each sector for (;nSector > 0; --nSector) // evaluate each sector
{ {
LPBYTE pbyAddr1 = pbyROM + dwStart; LPBYTE pbyAddr1 = pbyROM + dwStart;
LPBYTE pbyAddr2 = pbyAddr1 + dwOffset; LPBYTE pbyAddr2 = pbyAddr1 + dwOffset;
for (i = 0; i < nReads; ++i) // no. of reads in sector for (i = 0; i < nReads; ++i) // no. of reads in sector
{ {
for (j = 0; j < 16; ++j) wCrc = UpCRC(wCrc,*pbyAddr1++); for (j = 0; j < 16; ++j) wCrc = UpCRC(wCrc,*pbyAddr1++);
for (j = 0; j < 16; ++j) wCrc = UpCRC(wCrc,*pbyAddr2++); for (j = 0; j < 16; ++j) wCrc = UpCRC(wCrc,*pbyAddr2++);
} }
dwStart += 2 * dwOffset; // next start page dwStart += 2 * dwOffset; // next start page
} }
return wCrc; return wCrc;
} }
// calculate proper checksum to produce final CRC of FFFF // calculate proper checksum to produce final CRC of FFFF
static __inline WORD CalcChksum(WORD wCrc, WORD wChksum) static __inline WORD CalcChksum(WORD wCrc, WORD wChksum)
{ {
WORD q, r = wCrc, s = wChksum; WORD q, r = wCrc, s = wChksum;
// first take the last 4-nib back out of the CRC // first take the last 4-nib back out of the CRC
r = (((r >> 12) * 0x811) ^ (r << 4) ^ (s & 0xf)); r = (((r >> 12) * 0x811) ^ (r << 4) ^ (s & 0xf));
s >>= 4; s >>= 4;
r = (((r >> 12) * 0x811) ^ (r << 4) ^ (s & 0xf)); r = (((r >> 12) * 0x811) ^ (r << 4) ^ (s & 0xf));
s >>= 4; s >>= 4;
r = (((r >> 12) * 0x811) ^ (r << 4) ^ (s & 0xf)); r = (((r >> 12) * 0x811) ^ (r << 4) ^ (s & 0xf));
s >>= 4; s >>= 4;
r = (((r >> 12) * 0x811) ^ (r << 4) ^ (s & 0xf)); r = (((r >> 12) * 0x811) ^ (r << 4) ^ (s & 0xf));
// calculate new checksum to correct the CRC // calculate new checksum to correct the CRC
s = 0xf831; // required MSNs to make goal s = 0xf831; // required MSNs to make goal
q = (q<<4) | ((r ^ s) & 0xf); // get 1st (least sig) nib q = (q<<4) | ((r ^ s) & 0xf); // get 1st (least sig) nib
r = (r>>4) ^ ((s & 0xf) * 0x1081); r = (r>>4) ^ ((s & 0xf) * 0x1081);
s >>= 4; s >>= 4;
q = (q<<4) | ((r ^ s) & 0xf); q = (q<<4) | ((r ^ s) & 0xf);
r = (r>>4) ^ ((s & 0xf) * 0x1081); r = (r>>4) ^ ((s & 0xf) * 0x1081);
s >>= 4; s >>= 4;
q = (q<<4) | ((r ^ s) & 0xf); q = (q<<4) | ((r ^ s) & 0xf);
r = (r>>4) ^ ((s & 0xf) * 0x1081); r = (r>>4) ^ ((s & 0xf) * 0x1081);
s >>= 4; s >>= 4;
q = (q<<4) | ((r ^ s) & 0xf); q = (q<<4) | ((r ^ s) & 0xf);
return q; return q;
} }
static VOID CorrectCrc(DWORD dwAddrCrc, WORD wCrc) static VOID CorrectCrc(DWORD dwAddrCrc, WORD wCrc)
{ {
if (wCrc != 0xFFFF) // wrong crc result if (wCrc != 0xFFFF) // wrong crc result
{ {
INT s; INT s;
// get actual crc correction value // get actual crc correction value
const WORD wChkAct = (pbyRom[dwAddrCrc+0] << 12) const WORD wChkAct = (pbyRom[dwAddrCrc+0] << 12)
| (pbyRom[dwAddrCrc+1] << 8) | (pbyRom[dwAddrCrc+1] << 8)
| (pbyRom[dwAddrCrc+2] << 4) | (pbyRom[dwAddrCrc+2] << 4)
| (pbyRom[dwAddrCrc+3]); | (pbyRom[dwAddrCrc+3]);
wCrc = CalcChksum(wCrc,wChkAct); // calculate new checksum wCrc = CalcChksum(wCrc,wChkAct); // calculate new checksum
for (s = 3; s >= 0; --s) // write new checksum for (s = 3; s >= 0; --s) // write new checksum
{ {
PatchNibble(dwAddrCrc + s,(BYTE) (wCrc & 0xf)); PatchNibble(dwAddrCrc + s,(BYTE) (wCrc & 0xf));
wCrc >>= 4; wCrc >>= 4;
} }
} }
return; return;
} }
//################ //################
//# //#
//# Restore HP49G ROM CRC //# Restore HP49G ROM CRC
//# //#
//################ //################
static VOID CorrectFlashCrc(LPBYTE pbyMem, DWORD dwSize, DWORD dwOffset, DWORD dwLength) static VOID CorrectFlashCrc(LPBYTE pbyMem, DWORD dwSize, DWORD dwOffset, DWORD dwLength)
{ {
// address overflow (data length + 4 nibble CRC) // address overflow (data length + 4 nibble CRC)
if (dwOffset + dwLength + 4 <= dwSize) if (dwOffset + dwLength + 4 <= dwSize)
{ {
WORD wRefCrc,wCrc = 0; WORD wRefCrc,wCrc = 0;
pbyMem += dwOffset; // start address pbyMem += dwOffset; // start address
for (; dwLength > 0; --dwLength) // update CRC for (; dwLength > 0; --dwLength) // update CRC
{ {
wCrc = UpCRC(wCrc,*pbyMem++); wCrc = UpCRC(wCrc,*pbyMem++);
} }
wRefCrc = (WORD) Npack(pbyMem,4); // read reference CRC wRefCrc = (WORD) Npack(pbyMem,4); // read reference CRC
if(wRefCrc != wCrc) // wrong page CRC if(wRefCrc != wCrc) // wrong page CRC
{ {
INT s; INT s;
// linear CRC address in ROM // linear CRC address in ROM
DWORD dwAddrCrc = (DWORD) (pbyMem - pbyRom); DWORD dwAddrCrc = (DWORD) (pbyMem - pbyRom);
wRefCrc = wCrc; // working copy of CRC wRefCrc = wCrc; // working copy of CRC
for (s = 0; s < 4; ++s) // write new checksum for (s = 0; s < 4; ++s) // write new checksum
{ {
PatchNibble(dwAddrCrc++,(BYTE) (wRefCrc & 0xf)); PatchNibble(dwAddrCrc++,(BYTE) (wRefCrc & 0xf));
wRefCrc >>= 4; wRefCrc >>= 4;
} }
_ASSERT(wCrc == (WORD) Npack(pbyMem,4)); _ASSERT(wCrc == (WORD) Npack(pbyMem,4));
} }
} }
return; return;
} }
static __inline VOID CorrectFlashRom(LPBYTE pbyMem, DWORD dwSize) static __inline VOID CorrectFlashRom(LPBYTE pbyMem, DWORD dwSize)
{ {
CorrectFlashCrc(pbyMem,dwSize,0x20A,Npack(pbyMem+0x20A,5)); CorrectFlashCrc(pbyMem,dwSize,0x20A,Npack(pbyMem+0x20A,5));
return; return;
} }
static __inline VOID CorrectFlashSystem(LPBYTE pbyMem, DWORD dwSize) static __inline VOID CorrectFlashSystem(LPBYTE pbyMem, DWORD dwSize)
{ {
CorrectFlashCrc(pbyMem,dwSize,0x20A,Npack(pbyMem+0x100,5)); CorrectFlashCrc(pbyMem,dwSize,0x20A,Npack(pbyMem+0x100,5));
return; return;
} }
static __inline VOID CorrectFlashPage(LPBYTE pbyMem, DWORD dwSize, DWORD dwPage) static __inline VOID CorrectFlashPage(LPBYTE pbyMem, DWORD dwSize, DWORD dwPage)
{ {
_ASSERT(dwPage >= 0 && dwPage < 16); _ASSERT(dwPage >= 0 && dwPage < 16);
dwPage *= _KB(128); // convert page no. to data offset dwPage *= _KB(128); // convert page no. to data offset
if (dwPage + _KB(128) <= dwSize) // page inside flash chip if (dwPage + _KB(128) <= dwSize) // page inside flash chip
{ {
BYTE byType; BYTE byType;
pbyMem += dwPage; // page address pbyMem += dwPage; // page address
dwPage = _KB(128); // page size dwPage = _KB(128); // page size
// get bank type // get bank type
byType = (BYTE) Npack(pbyMem+0x200,2); byType = (BYTE) Npack(pbyMem+0x200,2);
if (byType == BOOT) // 1st half of page is the boot bank if (byType == BOOT) // 1st half of page is the boot bank
{ {
pbyMem += _KB(64); // 2nd half of page pbyMem += _KB(64); // 2nd half of page
dwPage = _KB(64); // page size dwPage = _KB(64); // page size
// get bank type // get bank type
byType = (BYTE) Npack(pbyMem+0x200,2); byType = (BYTE) Npack(pbyMem+0x200,2);
} }
_ASSERT(dwPage == _KB(64) || dwPage == _KB(128)); _ASSERT(dwPage == _KB(64) || dwPage == _KB(128));
switch (byType) switch (byType)
{ {
case FS: // FRBankFileSystem case FS: // FRBankFileSystem
case ROM: // FRBankRom case ROM: // FRBankRom
CorrectFlashRom(pbyMem,dwPage); CorrectFlashRom(pbyMem,dwPage);
break; break;
case SYSTEM: // FRBankSystem case SYSTEM: // FRBankSystem
CorrectFlashSystem(pbyMem,dwPage); CorrectFlashSystem(pbyMem,dwPage);
break; break;
case RAM: // FRBankRam case RAM: // FRBankRam
default: // illegal bank identifier default: // illegal bank identifier
break; break;
} }
} }
return; return;
} }
static __inline VOID CorrectAllFlashPages(VOID) static __inline VOID CorrectAllFlashPages(VOID)
{ {
DWORD dwPage; DWORD dwPage;
// check CRC of all pages // check CRC of all pages
CONST DWORD dwLastPage = dwRomSize / _KB(128); CONST DWORD dwLastPage = dwRomSize / _KB(128);
for (dwPage = 0; dwPage < dwLastPage; ++dwPage) for (dwPage = 0; dwPage < dwLastPage; ++dwPage)
{ {
// correct CRC of page // correct CRC of page
CorrectFlashPage(pbyRom,dwRomSize,dwPage); CorrectFlashPage(pbyRom,dwRomSize,dwPage);
} }
return; return;
} }
//################ //################
//# //#
//# Restore ROM CRC //# Restore ROM CRC
//# //#
//################ //################
VOID RebuildRomCrc(VOID) VOID RebuildRomCrc(VOID)
{ {
// HP38G, HP48GX, HP48SX // HP38G, HP48GX, HP48SX
if ((strchr("6AGS",cCurrentRomType)) && dwRomSize >= _KB(256)) if ((strchr("6AGS",cCurrentRomType)) && dwRomSize >= _KB(256))
{ {
// first 256KB // first 256KB
CorrectCrc(0x7FFFC,Checksum(pbyRom,a0,d0,n0,s0)); CorrectCrc(0x7FFFC,Checksum(pbyRom,a0,d0,n0,s0));
} }
// HP38G, HP48GX // HP38G, HP48GX
if ((strchr("6AG",cCurrentRomType)) && dwRomSize == _KB(512)) if ((strchr("6AG",cCurrentRomType)) && dwRomSize == _KB(512))
{ {
// second 256KB // second 256KB
CorrectCrc(0xFFFFC,Checksum(pbyRom,a0+_KB(256),d0,n0,s0)); CorrectCrc(0xFFFFC,Checksum(pbyRom,a0+_KB(256),d0,n0,s0));
} }
// HP39G/40G // HP39G/40G
if (cCurrentRomType == 'E') if (cCurrentRomType == 'E')
{ {
// has no Crc // has no Crc
} }
// HP49G // HP49G
if (cCurrentRomType == 'X' && dwRomSize == _KB(2048)) if (cCurrentRomType == 'X' && dwRomSize == _KB(2048))
{ {
CorrectAllFlashPages(); // go through all pages CorrectAllFlashPages(); // go through all pages
} }
return; return;
} }

View file

@ -1,453 +1,453 @@
/* /*
* rpl.c * rpl.c
* *
* This file is part of Emu48 * This file is part of Emu48
* *
* Copyright (C) 1995 Sebastien Carlier * Copyright (C) 1995 Sebastien Carlier
* *
*/ */
#include "pch.h" #include "pch.h"
#include "emu48.h" #include "Emu48.h"
#include "ops.h" #include "ops.h"
#include "io.h" #include "io.h"
//| 38G | 39G | 40G | 48SX | 48GX | 49G | Name //| 38G | 39G | 40G | 48SX | 48GX | 49G | Name
//#F0688 #806E9 #806E9 #7056A #806E9 #806E9 =TEMPOB //#F0688 #806E9 #806E9 #7056A #806E9 #806E9 =TEMPOB
//#F068D #806EE #806EE #7056F #806EE #806EE =TEMPTOP //#F068D #806EE #806EE #7056F #806EE #806EE =TEMPTOP
//#F0692 #806F3 #806F3 #70574 #806F3 #806F3 =RSKTOP (B) //#F0692 #806F3 #806F3 #70574 #806F3 #806F3 =RSKTOP (B)
//#F0697 #806F8 #806F8 #70579 #806F8 #806F8 =DSKTOP (D1) //#F0697 #806F8 #806F8 #70579 #806F8 #806F8 =DSKTOP (D1)
//#F069C #806FD #806FD #7057E #806FD #806FD =EDITLINE //#F069C #806FD #806FD #7057E #806FD #806FD =EDITLINE
//#F0DEA #80E9B #80E9B #7066E #807ED #80E9B =AVMEM (D) //#F0DEA #80E9B #80E9B #7066E #807ED #80E9B =AVMEM (D)
//#F0705 #8076B #8076B #705B0 #8072F #8076B =INTRPPTR (D0) //#F0705 #8076B #8076B #705B0 #8072F #8076B =INTRPPTR (D0)
//#F0E42 #80F02 #80F02 #706C5 #80843 #80F02 =SystemFlags //#F0E42 #80F02 #80F02 #706C5 #80843 #80F02 =SystemFlags
#define TEMPOB ((cCurrentRomType=='S')?0x7056A:0x806E9) #define TEMPOB ((cCurrentRomType=='S')?0x7056A:0x806E9)
#define TEMPTOP ((cCurrentRomType=='S')?0x7056F:0x806EE) #define TEMPTOP ((cCurrentRomType=='S')?0x7056F:0x806EE)
#define RSKTOP ((cCurrentRomType=='S')?0x70574:0x806F3) #define RSKTOP ((cCurrentRomType=='S')?0x70574:0x806F3)
#define DSKTOP ((cCurrentRomType=='S')?0x70579:0x806F8) #define DSKTOP ((cCurrentRomType=='S')?0x70579:0x806F8)
#define EDITLINE ((cCurrentRomType=='S')?0x7057E:0x806FD) #define EDITLINE ((cCurrentRomType=='S')?0x7057E:0x806FD)
#define AVMEM ((cCurrentRomType!='X')?((cCurrentRomType=='S')?0x7066E:0x807ED):0x80E9B) #define AVMEM ((cCurrentRomType!='X')?((cCurrentRomType=='S')?0x7066E:0x807ED):0x80E9B)
#define INTRPPTR ((cCurrentRomType!='X')?((cCurrentRomType=='S')?0x705B0:0x8072F):0x8076B) #define INTRPPTR ((cCurrentRomType!='X')?((cCurrentRomType=='S')?0x705B0:0x8072F):0x8076B)
#define SYSTEMFLAGS ((cCurrentRomType!='X')?((cCurrentRomType=='S')?0x706C5:0x80843):0x80F02) #define SYSTEMFLAGS ((cCurrentRomType!='X')?((cCurrentRomType=='S')?0x706C5:0x80843):0x80F02)
#define DOINT 0x02614 // Precision Integer (HP49G) #define DOINT 0x02614 // Precision Integer (HP49G)
#define DOLNGREAL 0x0263A // Precision Real (HP49G) #define DOLNGREAL 0x0263A // Precision Real (HP49G)
#define DOLNGCMP 0x02660 // Precision Complex (HP49G) #define DOLNGCMP 0x02660 // Precision Complex (HP49G)
#define DOMATRIX 0x02686 // Symbolic matrix (HP49G) #define DOMATRIX 0x02686 // Symbolic matrix (HP49G)
#define DOFLASHP 0x026AC // Flash PTR (HP49G) #define DOFLASHP 0x026AC // Flash PTR (HP49G)
#define DOAPLET 0x026D5 // Aplet (HP49G) #define DOAPLET 0x026D5 // Aplet (HP49G)
#define DOMINIFONT 0x026FE // Mini Font (HP49G) #define DOMINIFONT 0x026FE // Mini Font (HP49G)
#define DOBINT 0x02911 // System Binary #define DOBINT 0x02911 // System Binary
#define DOREAL 0x02933 // Real #define DOREAL 0x02933 // Real
#define DOEREL 0x02955 // Long Real #define DOEREL 0x02955 // Long Real
#define DOCMP 0x02977 // Complex #define DOCMP 0x02977 // Complex
#define DOECMP 0x0299D // Long Complex #define DOECMP 0x0299D // Long Complex
#define DOCHAR 0x029BF // Character #define DOCHAR 0x029BF // Character
#define DOARRY 0x029E8 // Array #define DOARRY 0x029E8 // Array
#define DOLNKARRY 0x02A0A // Linked Array #define DOLNKARRY 0x02A0A // Linked Array
#define DOCSTR 0x02A2C // String #define DOCSTR 0x02A2C // String
#define DOHSTR 0x02A4E // Binary Integer #define DOHSTR 0x02A4E // Binary Integer
#define DOLIST 0x02A74 // List #define DOLIST 0x02A74 // List
#define DORRP 0x02A96 // Directory #define DORRP 0x02A96 // Directory
#define DOSYMB 0x02AB8 // Algebraic #define DOSYMB 0x02AB8 // Algebraic
#define DOEXT 0x02ADA // Unit #define DOEXT 0x02ADA // Unit
#define DOTAG 0x02AFC // Tagged #define DOTAG 0x02AFC // Tagged
#define DOGROB 0x02B1E // Graphic #define DOGROB 0x02B1E // Graphic
#define DOLIB 0x02B40 // Library #define DOLIB 0x02B40 // Library
#define DOBAK 0x02B62 // Backup #define DOBAK 0x02B62 // Backup
#define DOEXT0 0x02B88 // Library Data #define DOEXT0 0x02B88 // Library Data
#define DOEXT1 0x02BAA // Reserved 1, ACcess PoinTeR (HP48GX and later) #define DOEXT1 0x02BAA // Reserved 1, ACcess PoinTeR (HP48GX and later)
#define DOEXT2 0x02BCC // Reserved 2, Font (HP49G) #define DOEXT2 0x02BCC // Reserved 2, Font (HP49G)
#define DOEXT3 0x02BEE // Reserved 3 #define DOEXT3 0x02BEE // Reserved 3
#define DOEXT4 0x02C10 // Reserved 4 #define DOEXT4 0x02C10 // Reserved 4
#define DOCOL 0x02D9D // Program #define DOCOL 0x02D9D // Program
#define DOCODE 0x02DCC // Code #define DOCODE 0x02DCC // Code
#define DOIDNT 0x02E48 // Global Name #define DOIDNT 0x02E48 // Global Name
#define DOLAM 0x02E6D // Local Name #define DOLAM 0x02E6D // Local Name
#define DOROMP 0x02E92 // XLIB Name #define DOROMP 0x02E92 // XLIB Name
#define SEMI 0x0312B // ; #define SEMI 0x0312B // ;
#define GARBAGECOL 0x0613E // =GARBAGECOL entry for HP48S/G and HP49G #define GARBAGECOL 0x0613E // =GARBAGECOL entry for HP48S/G and HP49G
// check for Metakernel version // check for Metakernel version
#define METAKERNEL Metakernel() #define METAKERNEL Metakernel()
// search for "MDGKER:MK2.30" or "MDGKER:PREVIE" in port1 of a HP48GX // search for "MDGKER:MK2.30" or "MDGKER:PREVIE" in port1 of a HP48GX
static BOOL Metakernel(VOID) static BOOL Metakernel(VOID)
{ {
BOOL bMkDetect = FALSE; BOOL bMkDetect = FALSE;
// card in slot1 of a HP48GX enabled // card in slot1 of a HP48GX enabled
if (cCurrentRomType=='G' && Port1 && Chipset.cards_status & PORT1_PRESENT) if (cCurrentRomType=='G' && Port1 && Chipset.cards_status & PORT1_PRESENT)
{ {
// check for Metakernel string "MDGKER:" // check for Metakernel string "MDGKER:"
if (!strncmp((LPCSTR) &Port1[12],"\xD\x4\x4\x4\x7\x4\xB\x4\x5\x4\x2\x5\xA\x3",14)) if (!strncmp((LPCSTR) &Port1[12],"\xD\x4\x4\x4\x7\x4\xB\x4\x5\x4\x2\x5\xA\x3",14))
{ {
bMkDetect = TRUE; // Metakernel detected bMkDetect = TRUE; // Metakernel detected
// check for "MK" // check for "MK"
if (!strncmp((LPCSTR) &Port1[26],"\xD\x4\xB\x4",4)) if (!strncmp((LPCSTR) &Port1[26],"\xD\x4\xB\x4",4))
{ {
// get version number // get version number
WORD wVersion = ((Port1[30] * 10) + Port1[34]) * 10 WORD wVersion = ((Port1[30] * 10) + Port1[34]) * 10
+ Port1[36]; + Port1[36];
// version newer then V2.30, then compatible with HP OS // version newer then V2.30, then compatible with HP OS
bMkDetect = (wVersion <= 230); bMkDetect = (wVersion <= 230);
} }
} }
} }
return bMkDetect; return bMkDetect;
} }
static DWORD RPL_GarbageCol(VOID) // RPL variables must be in system RAM static DWORD RPL_GarbageCol(VOID) // RPL variables must be in system RAM
{ {
CHIPSET OrgChipset; CHIPSET OrgChipset;
DWORD dwAVMEM; DWORD dwAVMEM;
// only for HP48SX, HP48GX and HP49G // only for HP48SX, HP48GX and HP49G
_ASSERT(cCurrentRomType == 'S' || cCurrentRomType == 'G' || cCurrentRomType == 'X'); _ASSERT(cCurrentRomType == 'S' || cCurrentRomType == 'G' || cCurrentRomType == 'X');
OrgChipset = Chipset; // save original chipset OrgChipset = Chipset; // save original chipset
// entry for =GARBAGECOL // entry for =GARBAGECOL
Chipset.P = 0; // P=0 Chipset.P = 0; // P=0
Chipset.mode_dec = FALSE; // hex mode Chipset.mode_dec = FALSE; // hex mode
Chipset.pc = GARBAGECOL; // =GARBAGECOL entry Chipset.pc = GARBAGECOL; // =GARBAGECOL entry
rstkpush(0xFFFFF); // return address for stopping rstkpush(0xFFFFF); // return address for stopping
while (Chipset.pc != 0xFFFFF) // wait for stop address while (Chipset.pc != 0xFFFFF) // wait for stop address
{ {
EvalOpcode(FASTPTR(Chipset.pc)); // execute opcode EvalOpcode(FASTPTR(Chipset.pc)); // execute opcode
} }
dwAVMEM = Npack(Chipset.C,5); // available AVMEM dwAVMEM = Npack(Chipset.C,5); // available AVMEM
Chipset = OrgChipset; // restore original chipset Chipset = OrgChipset; // restore original chipset
return dwAVMEM; return dwAVMEM;
} }
BOOL RPL_GetSystemFlag(INT nFlag) BOOL RPL_GetSystemFlag(INT nFlag)
{ {
DWORD dwAddr; DWORD dwAddr;
BYTE byMask,byFlag; BYTE byMask,byFlag;
_ASSERT(nFlag > 0); // first flag is 1 _ASSERT(nFlag > 0); // first flag is 1
// calculate memory address and bit mask // calculate memory address and bit mask
dwAddr = SYSTEMFLAGS + (nFlag - 1) / 4; dwAddr = SYSTEMFLAGS + (nFlag - 1) / 4;
byMask = 1 << ((nFlag - 1) & 0x3); byMask = 1 << ((nFlag - 1) & 0x3);
Npeek(&byFlag,dwAddr,sizeof(byFlag)); Npeek(&byFlag,dwAddr,sizeof(byFlag));
return (byFlag & byMask) != 0; return (byFlag & byMask) != 0;
} }
DWORD RPL_SkipOb(DWORD d) DWORD RPL_SkipOb(DWORD d)
{ {
BYTE X[8]; BYTE X[8];
DWORD n, l; DWORD n, l;
Npeek(X,d,5); Npeek(X,d,5);
n = Npack(X, 5); // read prolog n = Npack(X, 5); // read prolog
switch (n) switch (n)
{ {
case DOFLASHP: l = (cCurrentRomType!='X') ? 5 : 12; break; // Flash PTR (HP49G) case DOFLASHP: l = (cCurrentRomType!='X') ? 5 : 12; break; // Flash PTR (HP49G)
case DOBINT: l = 10; break; // System Binary case DOBINT: l = 10; break; // System Binary
case DOREAL: l = 21; break; // Real case DOREAL: l = 21; break; // Real
case DOEREL: l = 26; break; // Long Real case DOEREL: l = 26; break; // Long Real
case DOCMP: l = 37; break; // Complex case DOCMP: l = 37; break; // Complex
case DOECMP: l = 47; break; // Long Complex case DOECMP: l = 47; break; // Long Complex
case DOCHAR: l = 7; break; // Character case DOCHAR: l = 7; break; // Character
case DOROMP: l = 11; break; // XLIB Name case DOROMP: l = 11; break; // XLIB Name
case DOMATRIX: // Symbolic matrix (HP49G) case DOMATRIX: // Symbolic matrix (HP49G)
if (cCurrentRomType!='X') if (cCurrentRomType!='X')
{ {
l = 5; l = 5;
break; break;
} }
case DOLIST: // List case DOLIST: // List
case DOSYMB: // Algebraic case DOSYMB: // Algebraic
case DOEXT: // Unit case DOEXT: // Unit
case DOCOL: // Program case DOCOL: // Program
n=d+5; n=d+5;
do do
{ {
d=n; n=RPL_SkipOb(d); d=n; n=RPL_SkipOb(d);
} while (d!=n); } while (d!=n);
return n+5; return n+5;
case SEMI: return d; // SEMI case SEMI: return d; // SEMI
case DOIDNT: // Global Name case DOIDNT: // Global Name
case DOLAM: // Local Name case DOLAM: // Local Name
case DOTAG: // Tagged case DOTAG: // Tagged
Npeek(X,d+5,2); n = 7 + Npack(X,2)*2; Npeek(X,d+5,2); n = 7 + Npack(X,2)*2;
return RPL_SkipOb(d+n); return RPL_SkipOb(d+n);
case DORRP: // Directory case DORRP: // Directory
d+=8; d+=8;
n = Read5(d); n = Read5(d);
if (n==0) if (n==0)
{ {
return d+5; return d+5;
} }
else else
{ {
d+=n; d+=n;
Npeek(X,d,2); Npeek(X,d,2);
n = Npack(X,2)*2 + 4; n = Npack(X,2)*2 + 4;
return RPL_SkipOb(d+n); return RPL_SkipOb(d+n);
} }
case DOINT: // Precision Integer (HP49G) case DOINT: // Precision Integer (HP49G)
case DOAPLET: // Aplet (HP49G) case DOAPLET: // Aplet (HP49G)
case DOMINIFONT: // Mini Font (HP49G) case DOMINIFONT: // Mini Font (HP49G)
if (cCurrentRomType!='X') if (cCurrentRomType!='X')
{ {
l = 5; l = 5;
break; break;
} }
case DOARRY: // Array case DOARRY: // Array
case DOLNKARRY: // Linked Array case DOLNKARRY: // Linked Array
case DOCSTR: // String case DOCSTR: // String
case DOHSTR: // Binary Integer case DOHSTR: // Binary Integer
case DOGROB: // Graphic case DOGROB: // Graphic
case DOLIB: // Library case DOLIB: // Library
case DOBAK: // Backup case DOBAK: // Backup
case DOEXT0: // Library Data case DOEXT0: // Library Data
case DOEXT1: // Reserved 1 case DOEXT1: // Reserved 1
if (n == DOEXT1 && cCurrentRomType != 'S') if (n == DOEXT1 && cCurrentRomType != 'S')
{ {
// on HP48G series and later interpreted as DOACPTR // on HP48G series and later interpreted as DOACPTR
l = 15; break; // ACcess PoinTeR l = 15; break; // ACcess PoinTeR
break; break;
} }
case DOEXT2: // Reserved 2, Font (HP49G) case DOEXT2: // Reserved 2, Font (HP49G)
case DOEXT3: // Reserved 3 case DOEXT3: // Reserved 3
case DOEXT4: // Reserved 4 case DOEXT4: // Reserved 4
case DOCODE: // Code case DOCODE: // Code
l = 5+Read5(d+5); l = 5+Read5(d+5);
break; break;
case DOLNGREAL: // Precision Real (HP49G) case DOLNGREAL: // Precision Real (HP49G)
l = 5; l = 5;
if (cCurrentRomType=='X') if (cCurrentRomType=='X')
{ {
l += Read5(d+l); l += Read5(d+l);
l += Read5(d+l); l += Read5(d+l);
} }
break; break;
case DOLNGCMP: // Precision Complex (HP49G) case DOLNGCMP: // Precision Complex (HP49G)
l = 5; l = 5;
if (cCurrentRomType=='X') if (cCurrentRomType=='X')
{ {
l += Read5(d+l); l += Read5(d+l);
l += Read5(d+l); l += Read5(d+l);
l += Read5(d+l); l += Read5(d+l);
l += Read5(d+l); l += Read5(d+l);
} }
break; break;
default: return d+5; default: return d+5;
} }
return d+l; return d+l;
} }
DWORD RPL_ObjectSize(BYTE *o,DWORD s) DWORD RPL_ObjectSize(BYTE *o,DWORD s)
{ {
DWORD n, l = 0; DWORD n, l = 0;
if (s < 5) return BAD_OB; // size too small for prolog if (s < 5) return BAD_OB; // size too small for prolog
n = Npack(o,5); // read prolog n = Npack(o,5); // read prolog
switch (n) switch (n)
{ {
case DOFLASHP: l = (cCurrentRomType!='X') ? 5 : 12; break; // Flash PTR (HP49G) case DOFLASHP: l = (cCurrentRomType!='X') ? 5 : 12; break; // Flash PTR (HP49G)
case DOBINT: l = 10; break; // System Binary case DOBINT: l = 10; break; // System Binary
case DOREAL: l = 21; break; // Real case DOREAL: l = 21; break; // Real
case DOEREL: l = 26; break; // Long Real case DOEREL: l = 26; break; // Long Real
case DOCMP: l = 37; break; // Complex case DOCMP: l = 37; break; // Complex
case DOECMP: l = 47; break; // Long Complex case DOECMP: l = 47; break; // Long Complex
case DOCHAR: l = 7; break; // Character case DOCHAR: l = 7; break; // Character
case DOROMP: l = 11; break; // XLIB Name case DOROMP: l = 11; break; // XLIB Name
case DOMATRIX: // Symbolic matrix (HP49G) case DOMATRIX: // Symbolic matrix (HP49G)
if (cCurrentRomType!='X') if (cCurrentRomType!='X')
{ {
l = 5; l = 5;
break; break;
} }
case DOLIST: // List case DOLIST: // List
case DOSYMB: // Algebraic case DOSYMB: // Algebraic
case DOEXT: // Unit case DOEXT: // Unit
case DOCOL: // Program case DOCOL: // Program
n = 5; // prolog length n = 5; // prolog length
do do
{ {
l += n; l += n;
if (l > s) return BAD_OB; // prevent negative size argument if (l > s) return BAD_OB; // prevent negative size argument
n = RPL_ObjectSize(o+l,s-l); // get new object n = RPL_ObjectSize(o+l,s-l); // get new object
if (n == BAD_OB) return BAD_OB; // buffer overflow if (n == BAD_OB) return BAD_OB; // buffer overflow
} }
while (n); while (n);
l += 5; l += 5;
break; break;
case SEMI: l = 0; break; // SEMI case SEMI: l = 0; break; // SEMI
case DOIDNT: // Global Name case DOIDNT: // Global Name
case DOLAM: // Local Name case DOLAM: // Local Name
case DOTAG: // Tagged case DOTAG: // Tagged
if (s < 5 + 2) return BAD_OB; if (s < 5 + 2) return BAD_OB;
l = 7 + Npack(o+5,2) * 2; // prolog + name length l = 7 + Npack(o+5,2) * 2; // prolog + name length
if (l > s) return BAD_OB; // prevent negative size argument if (l > s) return BAD_OB; // prevent negative size argument
n = RPL_ObjectSize(o+l,s-l); // get new object n = RPL_ObjectSize(o+l,s-l); // get new object
if (n == BAD_OB) return BAD_OB; // buffer overflow if (n == BAD_OB) return BAD_OB; // buffer overflow
l += n; l += n;
break; break;
case DORRP: // Directory case DORRP: // Directory
if (s < 8 + 5) return BAD_OB; if (s < 8 + 5) return BAD_OB;
n = Npack(o+8,5); n = Npack(o+8,5);
if (n == 0) // empty dir if (n == 0) // empty dir
{ {
l = 13; l = 13;
} }
else else
{ {
l = 8 + n; l = 8 + n;
if (s < l + 2) return BAD_OB; if (s < l + 2) return BAD_OB;
n = Npack(o+l,2) * 2 + 4; n = Npack(o+l,2) * 2 + 4;
l += n; l += n;
if (l > s) return BAD_OB; // prevent negative size argument if (l > s) return BAD_OB; // prevent negative size argument
n = RPL_ObjectSize(o+l,s-l); // next rrp n = RPL_ObjectSize(o+l,s-l); // next rrp
if (n == BAD_OB) return BAD_OB; // buffer overflow if (n == BAD_OB) return BAD_OB; // buffer overflow
l += n; l += n;
} }
break; break;
case DOINT: // Precision Integer (HP49G) case DOINT: // Precision Integer (HP49G)
case DOAPLET: // Aplet (HP49G) case DOAPLET: // Aplet (HP49G)
case DOMINIFONT: // Mini Font (HP49G) case DOMINIFONT: // Mini Font (HP49G)
if (cCurrentRomType!='X') if (cCurrentRomType!='X')
{ {
l = 5; l = 5;
break; break;
} }
case DOARRY: // Array case DOARRY: // Array
case DOLNKARRY: // Linked Array case DOLNKARRY: // Linked Array
case DOCSTR: // String case DOCSTR: // String
case DOHSTR: // Binary Integer case DOHSTR: // Binary Integer
case DOGROB: // Graphic case DOGROB: // Graphic
case DOLIB: // Library case DOLIB: // Library
case DOBAK: // Backup case DOBAK: // Backup
case DOEXT0: // Library Data case DOEXT0: // Library Data
case DOEXT1: // Reserved 1 case DOEXT1: // Reserved 1
if (n == DOEXT1 && cCurrentRomType != 'S') if (n == DOEXT1 && cCurrentRomType != 'S')
{ {
// on HP48G series and later interpreted as DOACPTR // on HP48G series and later interpreted as DOACPTR
l = 15; break; // ACcess PoinTeR l = 15; break; // ACcess PoinTeR
break; break;
} }
case DOEXT2: // Reserved 2, Font (HP49G) case DOEXT2: // Reserved 2, Font (HP49G)
case DOEXT3: // Reserved 3 case DOEXT3: // Reserved 3
case DOEXT4: // Reserved 4 case DOEXT4: // Reserved 4
case DOCODE: // Code case DOCODE: // Code
if (s < 5 + 5) return BAD_OB; if (s < 5 + 5) return BAD_OB;
l = 5 + Npack(o+5,5); l = 5 + Npack(o+5,5);
break; break;
case DOLNGREAL: // Precision Real (HP49G) case DOLNGREAL: // Precision Real (HP49G)
l = 5; l = 5;
if (cCurrentRomType=='X') if (cCurrentRomType=='X')
{ {
if (s < l + 5) return BAD_OB; if (s < l + 5) return BAD_OB;
l += Npack(o+l,5); l += Npack(o+l,5);
if (s < l + 5) return BAD_OB; if (s < l + 5) return BAD_OB;
l += Npack(o+l,5); l += Npack(o+l,5);
} }
break; break;
case DOLNGCMP: // Precision Complex (HP49G) case DOLNGCMP: // Precision Complex (HP49G)
l = 5; l = 5;
if (cCurrentRomType=='X') if (cCurrentRomType=='X')
{ {
if (s < l + 5) return BAD_OB; if (s < l + 5) return BAD_OB;
l += Npack(o+l,5); l += Npack(o+l,5);
if (s < l + 5) return BAD_OB; if (s < l + 5) return BAD_OB;
l += Npack(o+l,5); l += Npack(o+l,5);
if (s < l + 5) return BAD_OB; if (s < l + 5) return BAD_OB;
l += Npack(o+l,5); l += Npack(o+l,5);
if (s < l + 5) return BAD_OB; if (s < l + 5) return BAD_OB;
l += Npack(o+l,5); l += Npack(o+l,5);
} }
break; break;
default: l = 5; default: l = 5;
} }
return (s >= l) ? l : BAD_OB; return (s >= l) ? l : BAD_OB;
} }
DWORD RPL_CreateTemp(DWORD l) DWORD RPL_CreateTemp(DWORD l)
{ {
DWORD a, b, c; DWORD a, b, c;
BYTE *p; BYTE *p;
l += 6; // memory for link field (5) + marker (1) and end l += 6; // memory for link field (5) + marker (1) and end
b = Read5(RSKTOP); // tail address of rtn stack b = Read5(RSKTOP); // tail address of rtn stack
c = Read5(DSKTOP); // top of data stack c = Read5(DSKTOP); // top of data stack
if ((b+l)>c) // there's not enough memory to move DSKTOP if ((b+l)>c) // there's not enough memory to move DSKTOP
{ {
RPL_GarbageCol(); // do a garbage collection RPL_GarbageCol(); // do a garbage collection
b = Read5(RSKTOP); // reload tail address of rtn stack b = Read5(RSKTOP); // reload tail address of rtn stack
c = Read5(DSKTOP); // reload top of data stack c = Read5(DSKTOP); // reload top of data stack
} }
if ((b+l)>c) return 0; // check if now there's enough memory to move DSKTOP if ((b+l)>c) return 0; // check if now there's enough memory to move DSKTOP
a = Read5(TEMPTOP); // tail address of top object a = Read5(TEMPTOP); // tail address of top object
Write5(TEMPTOP, a+l); // adjust new end of top object Write5(TEMPTOP, a+l); // adjust new end of top object
Write5(RSKTOP, b+l); // adjust new end of rtn stack Write5(RSKTOP, b+l); // adjust new end of rtn stack
Write5(AVMEM, (c-b-l)/5); // calculate free memory (*5 nibbles) Write5(AVMEM, (c-b-l)/5); // calculate free memory (*5 nibbles)
p = (LPBYTE) malloc(b-a); // move down rtn stack p = (LPBYTE) malloc(b-a); // move down rtn stack
Npeek(p,a,b-a); Npeek(p,a,b-a);
Nwrite(p,a+l,b-a); Nwrite(p,a+l,b-a);
free(p); free(p);
Write5(a+l-5,l); // set object length field Write5(a+l-5,l); // set object length field
return (a+1); // return base address of new object return (a+1); // return base address of new object
} }
UINT RPL_Depth(VOID) UINT RPL_Depth(VOID)
{ {
return (Read5(EDITLINE) - Read5(DSKTOP)) / 5 - 1; return (Read5(EDITLINE) - Read5(DSKTOP)) / 5 - 1;
} }
DWORD RPL_Pick(UINT l) DWORD RPL_Pick(UINT l)
{ {
DWORD stkp; DWORD stkp;
_ASSERT(l > 0); // first stack element is one _ASSERT(l > 0); // first stack element is one
if (l == 0) return 0; if (l == 0) return 0;
if (METAKERNEL) ++l; // Metakernel support if (METAKERNEL) ++l; // Metakernel support
if (RPL_Depth() < l) return 0; // not enough elements on stack if (RPL_Depth() < l) return 0; // not enough elements on stack
stkp = Read5(DSKTOP) + (l-1)*5; stkp = Read5(DSKTOP) + (l-1)*5;
return Read5(stkp); // return object address return Read5(stkp); // return object address
} }
VOID RPL_Replace(DWORD n) VOID RPL_Replace(DWORD n)
{ {
DWORD stkp; DWORD stkp;
stkp = Read5(DSKTOP); stkp = Read5(DSKTOP);
if (METAKERNEL) stkp+=5; // Metakernel support if (METAKERNEL) stkp+=5; // Metakernel support
Write5(stkp,n); Write5(stkp,n);
return; return;
} }
VOID RPL_Push(UINT l,DWORD n) VOID RPL_Push(UINT l,DWORD n)
{ {
UINT i; UINT i;
DWORD stkp, avmem; DWORD stkp, avmem;
if (l > RPL_Depth() + 1) return; // invalid stack level if (l > RPL_Depth() + 1) return; // invalid stack level
avmem = Read5(AVMEM); // amount of free memory avmem = Read5(AVMEM); // amount of free memory
if (avmem == 0) return; // no memory free if (avmem == 0) return; // no memory free
avmem--; // fetch memory avmem--; // fetch memory
Write5(AVMEM,avmem); // save new amount of free memory Write5(AVMEM,avmem); // save new amount of free memory
if (METAKERNEL) ++l; // Metakernel, save MK object on stack level 1 if (METAKERNEL) ++l; // Metakernel, save MK object on stack level 1
stkp = Read5(DSKTOP) - 5; // get pointer of new stack level 1 stkp = Read5(DSKTOP) - 5; // get pointer of new stack level 1
Write5(DSKTOP,stkp); // save it Write5(DSKTOP,stkp); // save it
for (i = 1; i < l; ++i) // move down stack level entries before insert pos for (i = 1; i < l; ++i) // move down stack level entries before insert pos
{ {
Write5(stkp,Read5(stkp+5)); // move down stack level entry Write5(stkp,Read5(stkp+5)); // move down stack level entry
stkp += 5; // next stack entry stkp += 5; // next stack entry
} }
Write5(stkp,n); // save pointer of new object on given stack level Write5(stkp,n); // save pointer of new object on given stack level
return; return;
} }

View file

@ -1,401 +1,400 @@
/* /*
* Serial.c * Serial.c
* *
* This file is part of Emu48 * This file is part of Emu48
* *
* Copyright (C) 1998 Christoph Gießelink * Copyright (C) 1998 Christoph Gießelink
* *
*/ */
#include "pch.h" #include "pch.h"
#include "emu48.h" #include "Emu48.h"
#include "io.h" #include "io.h"
#define INTERRUPT ((void)(Chipset.SoftInt=TRUE,bInterrupt=TRUE)) #define INTERRUPT ((void)(Chipset.SoftInt=TRUE,bInterrupt=TRUE))
// state of USRQ // state of USRQ
#define NINT2ERBZ ((Chipset.IORam[IOC] & (SON | ERBZ)) == (SON | ERBZ) && (Chipset.IORam[RCS] & RBZ) != 0) #define NINT2ERBZ ((Chipset.IORam[IOC] & (SON | ERBZ)) == (SON | ERBZ) && (Chipset.IORam[RCS] & RBZ) != 0)
#define NINT2ERBF ((Chipset.IORam[IOC] & (SON | ERBF)) == (SON | ERBF) && (Chipset.IORam[RCS] & RBF) != 0) #define NINT2ERBF ((Chipset.IORam[IOC] & (SON | ERBF)) == (SON | ERBF) && (Chipset.IORam[RCS] & RBF) != 0)
#define NINT2ETBE ((Chipset.IORam[IOC] & (SON | ETBE)) == (SON | ETBE) && (Chipset.IORam[TCS] & TBF) == 0) #define NINT2ETBE ((Chipset.IORam[IOC] & (SON | ETBE)) == (SON | ETBE) && (Chipset.IORam[TCS] & TBF) == 0)
#define NINT2USRQ (NINT2ERBZ || NINT2ERBF || NINT2ETBE) #define NINT2USRQ (NINT2ERBZ || NINT2ERBF || NINT2ETBE)
static HANDLE hComm = NULL; static HANDLE hComm = NULL;
static HANDLE hCThreadTxd; static HANDLE hCThreadTxd;
static HANDLE hCThreadEv; static HANDLE hCThreadEv;
static HANDLE hEventTxd; static HANDLE hEventTxd;
static BOOL bWriting; static BOOL bWriting;
static BYTE tbr; static BYTE tbr;
static BOOL bReading; static BOOL bReading;
static BYTE cBuffer[32]; static BYTE cBuffer[32];
static WORD nRp; static WORD nRp;
static DWORD dwBytesRead; static DWORD dwBytesRead;
static DWORD WINAPI TransmitThread(LPVOID pParam) static DWORD WINAPI TransmitThread(LPVOID pParam)
{ {
OVERLAPPED osWr = { 0 }; OVERLAPPED osWr = { 0 };
osWr.hEvent = CreateEvent(NULL,TRUE,FALSE,NULL); osWr.hEvent = CreateEvent(NULL,TRUE,FALSE,NULL);
while (bWriting) while (bWriting)
{ {
WaitForSingleObject(hEventTxd,INFINITE); WaitForSingleObject(hEventTxd,INFINITE);
if (bWriting) if (bWriting)
{ {
DWORD dwWritten; DWORD dwWritten;
if (!WriteFile(hComm,(LPCVOID) &tbr,1,&dwWritten,&osWr)) if (!WriteFile(hComm,(LPCVOID) &tbr,1,&dwWritten,&osWr))
if (GetLastError() == ERROR_IO_PENDING) if (GetLastError() == ERROR_IO_PENDING)
GetOverlappedResult(hComm,&osWr,&dwWritten,TRUE); GetOverlappedResult(hComm,&osWr,&dwWritten,TRUE);
} }
} }
CloseHandle(osWr.hEvent); // close write event handle CloseHandle(osWr.hEvent); // close write event handle
return 0; return 0;
UNREFERENCED_PARAMETER(pParam); UNREFERENCED_PARAMETER(pParam);
} }
static DWORD WINAPI EventThread(LPVOID pParam) static DWORD WINAPI EventThread(LPVOID pParam)
{ {
DWORD dwEvent; DWORD dwEvent;
bReading = TRUE; // flag for SerialThread started bReading = TRUE; // flag for SerialThread started
while (bReading) while (bReading)
{ {
_ASSERT(hComm != NULL); _ASSERT(hComm != NULL);
WaitCommEvent(hComm,&dwEvent,NULL); // wait for serial event WaitCommEvent(hComm,&dwEvent,NULL); // wait for serial event
if (dwEvent & EV_RXCHAR) // signal char received if (dwEvent & EV_RXCHAR) // signal char received
{ {
CommReceive(); // get data CommReceive(); // get data
// interrupt request and emulation thread down // interrupt request and emulation thread down
if (Chipset.SoftInt && Chipset.Shutdn) if (Chipset.SoftInt && Chipset.Shutdn)
{ {
Chipset.bShutdnWake = TRUE; // wake up from SHUTDN mode Chipset.bShutdnWake = TRUE; // wake up from SHUTDN mode
SetEvent(hEventShutdn); // wake up emulation thread SetEvent(hEventShutdn); // wake up emulation thread
} }
} }
if (dwEvent & EV_TXEMPTY) // signal transmit buffer empty if (dwEvent & EV_TXEMPTY) // signal transmit buffer empty
{ {
IOBit(TCS,TBZ,FALSE); // clear transmitter busy bit IOBit(TCS,TBZ,FALSE); // clear transmitter busy bit
CommTransmit(); // check for new char to transmit CommTransmit(); // check for new char to transmit
} }
if (dwEvent & EV_ERR) // signal error received if (dwEvent & EV_ERR) // signal error received
{ {
DWORD dwError; DWORD dwError;
ClearCommError(hComm,&dwError,NULL); ClearCommError(hComm,&dwError,NULL);
if (dwError & (CE_FRAME | CE_OVERRUN | CE_BREAK)) if (dwError & (CE_FRAME | CE_OVERRUN | CE_BREAK))
IOBit(RCS,RER,TRUE); // receiver error IOBit(RCS,RER,TRUE); // receiver error
} }
} }
return 0; return 0;
UNREFERENCED_PARAMETER(pParam); UNREFERENCED_PARAMETER(pParam);
} }
BOOL CommIsOpen(VOID) BOOL CommIsOpen(VOID)
{ {
return hComm != NULL; // have COM port handle return hComm != NULL; // have COM port handle
} }
BOOL CommOpen(LPTSTR strWirePort,LPTSTR strIrPort) BOOL CommOpen(LPTSTR strWirePort,LPTSTR strIrPort)
{ {
COMMTIMEOUTS CommTimeouts = { MAXDWORD, 0L, 0L, 0L, 0L }; COMMTIMEOUTS CommTimeouts = { MAXDWORD, 0L, 0L, 0L, 0L };
LPCTSTR strPort = (Chipset.IORam[IR_CTRL] & EIRU) ? strIrPort : strWirePort; LPCTSTR strPort = (Chipset.IORam[IR_CTRL] & EIRU) ? strIrPort : strWirePort;
_ASSERT(Chipset.IORam[IOC] & SON); // UART on CommClose(); // close port if already open
CommClose(); // close port if already open
dwBytesRead = 0L; // no bytes received
dwBytesRead = 0L; // no bytes received
if (lstrcmp(strPort, _T(NO_SERIAL))) // port defined
if (lstrcmp(strPort, _T(NO_SERIAL))) // port defined {
{ TCHAR szDevice[256] = _T("\\\\.\\");
TCHAR szDevice[256] = _T("\\\\.\\");
// check if device buffer is big enough
// check if device buffer is big enough _ASSERT(lstrlen(szDevice) + lstrlen(strPort) < (INT) ARRAYSIZEOF(szDevice));
_ASSERT(lstrlen(szDevice) + lstrlen(strPort) < (INT) ARRAYSIZEOF(szDevice)); if (lstrlen(szDevice) + lstrlen(strPort) >= (INT) ARRAYSIZEOF(szDevice))
if (lstrlen(szDevice) + lstrlen(strPort) >= (INT) ARRAYSIZEOF(szDevice)) return hComm != NULL;
return hComm != NULL;
_tcscat(szDevice,strPort); // device name
_tcscat(szDevice,strPort); // device name hComm = CreateFile(szDevice,
hComm = CreateFile(szDevice, GENERIC_READ | GENERIC_WRITE,
GENERIC_READ | GENERIC_WRITE, 0,
0, NULL,
NULL, OPEN_EXISTING,
OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL | FILE_FLAG_OVERLAPPED,
FILE_ATTRIBUTE_NORMAL | FILE_FLAG_OVERLAPPED, NULL);
NULL);
if (hComm != INVALID_HANDLE_VALUE)
if (hComm != INVALID_HANDLE_VALUE) {
{ DWORD dwThreadId;
DWORD dwThreadId;
nRp = 0; // reset receiver state
nRp = 0; // reset receiver state
SetCommTimeouts(hComm,&CommTimeouts);
SetCommTimeouts(hComm,&CommTimeouts); CommSetBaud();
CommSetBaud();
CommTxBRK(); // update BRK condition
CommTxBRK(); // update BRK condition
// event to transmit character
// event to transmit character hEventTxd = CreateEvent(NULL,FALSE,FALSE,NULL);
hEventTxd = CreateEvent(NULL,FALSE,FALSE,NULL);
// create char transmit handler
// create char transmit handler bWriting = TRUE;
bWriting = TRUE; hCThreadTxd = CreateThread(NULL,0,&TransmitThread,NULL,CREATE_SUSPENDED,&dwThreadId);
hCThreadTxd = CreateThread(NULL,0,&TransmitThread,NULL,CREATE_SUSPENDED,&dwThreadId); _ASSERT(hCThreadTxd);
_ASSERT(hCThreadTxd); SetThreadPriority(hCThreadTxd,THREAD_PRIORITY_ABOVE_NORMAL);
SetThreadPriority(hCThreadTxd,THREAD_PRIORITY_ABOVE_NORMAL); ResumeThread(hCThreadTxd); // start thread
ResumeThread(hCThreadTxd); // start thread
// create Comm event handler
// create Comm event handler bReading = FALSE;
bReading = FALSE; SetCommMask(hComm,EV_RXCHAR | EV_TXEMPTY | EV_ERR); // event on RX, TX, error
SetCommMask(hComm,EV_RXCHAR | EV_TXEMPTY | EV_ERR); // event on RX, TX, error hCThreadEv = CreateThread(NULL,0,&EventThread,NULL,CREATE_SUSPENDED,&dwThreadId);
hCThreadEv = CreateThread(NULL,0,&EventThread,NULL,CREATE_SUSPENDED,&dwThreadId); _ASSERT(hCThreadEv);
_ASSERT(hCThreadEv); SetThreadPriority(hCThreadEv,THREAD_PRIORITY_ABOVE_NORMAL);
SetThreadPriority(hCThreadEv,THREAD_PRIORITY_ABOVE_NORMAL); ResumeThread(hCThreadEv); // start thread
ResumeThread(hCThreadEv); // start thread while (!bReading) Sleep(0); // wait for SerialThread started
while (!bReading) Sleep(0); // wait for SerialThread started }
} else
else {
{ hComm = NULL;
hComm = NULL; }
} }
}
#if defined DEBUG_SERIAL
#if defined DEBUG_SERIAL {
{ TCHAR buffer[256];
TCHAR buffer[256]; wsprintf(buffer,_T("COM port %s.\n"),hComm ? _T("opened"): _T("open error"));
wsprintf(buffer,_T("COM port %s.\n"),hComm ? _T("opened"): _T("open error")); OutputDebugString(buffer);
OutputDebugString(buffer); }
} #endif
#endif return hComm != NULL;
return hComm != NULL; }
}
VOID CommClose(VOID)
VOID CommClose(VOID) {
{ if (hComm != NULL) // port open
if (hComm != NULL) // port open {
{ // workaround to fix problems with some Kermit server programs
// workaround to fix problems with some Kermit server programs // reason: on one hand we have the character transmitting time base on the
// reason: on one hand we have the character transmitting time base on the // selected baudrate, on the other hand the time between sending the last
// selected baudrate, on the other hand the time between sending the last // character and closing the port. The last time is much longer on the real
// character and closing the port. The last time is much longer on the real // calculator than on the emulator running at full speed, therefore the
// calculator than on the emulator running at full speed, therefore the // slow down time on the emulator
// slow down time on the emulator Sleep(25); // slow down time
Sleep(25); // slow down time
bReading = FALSE; // kill event thread
bReading = FALSE; // kill event thread SetCommMask(hComm,0L); // clear all events and force WaitCommEvent to return
SetCommMask(hComm,0L); // clear all events and force WaitCommEvent to return WaitForSingleObject(hCThreadEv,INFINITE);
WaitForSingleObject(hCThreadEv,INFINITE); CloseHandle(hCThreadEv);
CloseHandle(hCThreadEv);
bWriting = FALSE; // kill write thread
bWriting = FALSE; // kill write thread SetEvent(hEventTxd); // continue write thread
SetEvent(hEventTxd); // continue write thread WaitForSingleObject(hCThreadTxd,INFINITE);
WaitForSingleObject(hCThreadTxd,INFINITE); CloseHandle(hCThreadTxd);
CloseHandle(hCThreadTxd);
CloseHandle(hEventTxd); // close Txd event
CloseHandle(hEventTxd); // close Txd event CloseHandle(hComm); // close port
CloseHandle(hComm); // close port hComm = NULL;
hComm = NULL; #if defined DEBUG_SERIAL
#if defined DEBUG_SERIAL OutputDebugString(_T("COM port closed.\n"));
OutputDebugString(_T("COM port closed.\n")); #endif
#endif }
} return;
return; }
}
VOID CommSetBaud(VOID)
VOID CommSetBaud(VOID) {
{ if (hComm != NULL)
if (hComm != NULL) {
{ const DWORD dwBaudrates[] = { 1200, 1920, 2400, 3840, 4800, 7680, 9600, 15360 };
const DWORD dwBaudrates[] = { 1200, 1920, 2400, 3840, 4800, 7680, 9600, 15360 };
DCB dcb;
DCB dcb;
ZeroMemory(&dcb,sizeof(dcb));
ZeroMemory(&dcb,sizeof(dcb)); dcb.DCBlength = sizeof(dcb);
dcb.DCBlength = sizeof(dcb); dcb.BaudRate = dwBaudrates[Chipset.IORam[BAUD] & 0x7];
dcb.BaudRate = dwBaudrates[Chipset.IORam[BAUD] & 0x7]; dcb.fBinary = TRUE;
dcb.fBinary = TRUE; dcb.fParity = TRUE;
dcb.fParity = TRUE; dcb.fOutxCtsFlow = FALSE;
dcb.fOutxCtsFlow = FALSE; dcb.fOutxDsrFlow = FALSE;
dcb.fOutxDsrFlow = FALSE; dcb.fDtrControl = DTR_CONTROL_DISABLE;
dcb.fDtrControl = DTR_CONTROL_DISABLE; dcb.fDsrSensitivity = FALSE;
dcb.fDsrSensitivity = FALSE; dcb.fOutX = FALSE;
dcb.fOutX = FALSE; dcb.fErrorChar = FALSE;
dcb.fErrorChar = FALSE; dcb.fNull = FALSE;
dcb.fNull = FALSE; dcb.fRtsControl = RTS_CONTROL_DISABLE;
dcb.fRtsControl = RTS_CONTROL_DISABLE; dcb.fAbortOnError = FALSE; // may changed in further implementations
dcb.fAbortOnError = FALSE; // may changed in further implementations dcb.ByteSize = 8;
dcb.ByteSize = 8; dcb.Parity = NOPARITY; // no parity check, emulated by software
dcb.Parity = NOPARITY; // no parity check, emulated by software dcb.StopBits = TWOSTOPBITS;
dcb.StopBits = TWOSTOPBITS;
#if defined DEBUG_SERIAL
#if defined DEBUG_SERIAL {
{ TCHAR buffer[256];
TCHAR buffer[256]; wsprintf(buffer,_T("CommsetBaud: %ld\n"),dcb.BaudRate);
wsprintf(buffer,_T("CommsetBaud: %ld\n"),dcb.BaudRate); OutputDebugString(buffer);
OutputDebugString(buffer); }
} #endif
#endif
SetCommState(hComm,&dcb);
SetCommState(hComm,&dcb); }
} return;
return; }
}
BOOL UpdateUSRQ(VOID) // USRQ handling
BOOL UpdateUSRQ(VOID) // USRQ handling {
{ BOOL bUSRQ = NINT2USRQ;
BOOL bUSRQ = NINT2USRQ; IOBit(SRQ1,USRQ,bUSRQ); // update USRQ bit
IOBit(SRQ1,USRQ,bUSRQ); // update USRQ bit return bUSRQ;
return bUSRQ; }
}
VOID CommTxBRK(VOID)
VOID CommTxBRK(VOID) {
{ if (Chipset.IORam[TCS] & BRK) // BRK condition
if (Chipset.IORam[TCS] & BRK) // BRK condition {
{ if (hComm != NULL) // com port open
if (hComm != NULL) // com port open {
{ // abort data transfer
// abort data transfer PurgeComm(hComm,PURGE_TXABORT | PURGE_TXCLEAR);
PurgeComm(hComm,PURGE_TXABORT | PURGE_TXCLEAR); SetCommBreak(hComm); // set into BRK state
SetCommBreak(hComm); // set into BRK state }
}
// TBF and TBZ bits of TCS are undefined
// TBF and TBZ bits of TCS are undefined
if (Chipset.IORam[TCS] & LPB) // is loopback bit set
if (Chipset.IORam[TCS] & LPB) // is loopback bit set {
{ dwBytesRead = nRp = 0; // clear receive buffer
dwBytesRead = nRp = 0; // clear receive buffer cBuffer[dwBytesRead++] = 0; // save character in receive buffer
cBuffer[dwBytesRead++] = 0; // save character in receive buffer
CommReceive(); // receive available byte
CommReceive(); // receive available byte IOBit(RCS,RER,TRUE); // receiver error (no stop bit)
IOBit(RCS,RER,TRUE); // receiver error (no stop bit) }
} }
} else
else {
{ if (hComm != NULL) // com port open
if (hComm != NULL) // com port open {
{ ClearCommBreak(hComm); // clear BRK state
ClearCommBreak(hComm); // clear BRK state }
} }
} return;
return; }
}
VOID CommTransmit(VOID)
VOID CommTransmit(VOID) {
{ BOOL bTxChar = FALSE;
BOOL bTxChar = FALSE;
EnterCriticalSection(&csTxdLock);
EnterCriticalSection(&csTxdLock); if ( (Chipset.IORam[TCS] & TBZ) == 0 // transmitter not busy
if ( (Chipset.IORam[TCS] & TBZ) == 0 // transmitter not busy && (Chipset.IORam[TCS] & TBF) != 0) // transmit buffer full
&& (Chipset.IORam[TCS] & TBF) != 0) // transmit buffer full {
{ tbr = (Chipset.IORam[TBR_MSB] << 4) | Chipset.IORam[TBR_LSB];
tbr = (Chipset.IORam[TBR_MSB] << 4) | Chipset.IORam[TBR_LSB];
IOBit(TCS,TBF,FALSE); // clear transmit buffer full bit
IOBit(TCS,TBF,FALSE); // clear transmit buffer full bit IOBit(TCS,TBZ,TRUE); // set transmitter busy bit
IOBit(TCS,TBZ,TRUE); // set transmitter busy bit
bTxChar = TRUE;
bTxChar = TRUE; }
} LeaveCriticalSection(&csTxdLock);
LeaveCriticalSection(&csTxdLock);
if (bTxChar) // character to transmit
if (bTxChar) // character to transmit {
{ #if defined DEBUG_SERIAL
#if defined DEBUG_SERIAL {
{ TCHAR buffer[256];
TCHAR buffer[256]; if (isprint(tbr))
if (isprint(tbr)) wsprintf(buffer,_T("-> '%c'\n"),tbr);
wsprintf(buffer,_T("-> '%c'\n"),tbr); else
else wsprintf(buffer,_T("-> %02X\n"),tbr);
wsprintf(buffer,_T("-> %02X\n"),tbr); OutputDebugString(buffer);
OutputDebugString(buffer); }
} #endif
#endif
if (Chipset.IORam[TCS] & LPB) // is loopback bit set
if (Chipset.IORam[TCS] & LPB) // is loopback bit set {
{ if (dwBytesRead == 0) nRp = 0; // no character received, reset read pointer
if (dwBytesRead == 0) nRp = 0; // no character received, reset read pointer cBuffer[nRp+dwBytesRead] = tbr; // save character in receive buffer
cBuffer[nRp+dwBytesRead] = tbr; // save character in receive buffer ++dwBytesRead;
++dwBytesRead;
CommReceive(); // receive available byte
CommReceive(); // receive available byte }
}
if (hComm != NULL) // com port open
if (hComm != NULL) // com port open {
{ SetEvent(hEventTxd); // write TBR byte
SetEvent(hEventTxd); // write TBR byte }
} else
else {
{ IOBit(TCS,TBZ,FALSE); // clear transmitter busy bit
IOBit(TCS,TBZ,FALSE); // clear transmitter busy bit }
} }
} if (UpdateUSRQ()) // update USRQ bit
if (UpdateUSRQ()) // update USRQ bit INTERRUPT;
INTERRUPT; return;
return; }
}
VOID CommReceive(VOID)
VOID CommReceive(VOID) {
{ OVERLAPPED os = { 0 };
OVERLAPPED os = { 0 };
if (!(Chipset.IORam[IOC] & SON)) // UART off
if (!(Chipset.IORam[IOC] & SON)) // UART off {
{ dwBytesRead = 0L; // no bytes received
dwBytesRead = 0L; // no bytes received return;
return; }
}
EnterCriticalSection(&csRecvLock);
EnterCriticalSection(&csRecvLock); do
do {
{ if (Chipset.IORam[RCS] & RBF) // receive buffer full
if (Chipset.IORam[RCS] & RBF) // receive buffer full break;
break;
// reject reading if com port is closed and not whole operation
// reject reading if com port is closed and not whole operation if (hComm) // com port open
if (hComm) // com port open {
{ UINT uCnt = 0; // retry counter
UINT uCnt = 0; // retry counter
while (dwBytesRead == 0L) // buffer empty
while (dwBytesRead == 0L) // buffer empty {
{ if (ReadFile(hComm,cBuffer,sizeof(cBuffer),&dwBytesRead,&os) == FALSE)
if (ReadFile(hComm,cBuffer,sizeof(cBuffer),&dwBytesRead,&os) == FALSE) dwBytesRead = 0L;
dwBytesRead = 0L; else // bytes received
else // bytes received nRp = 0; // reset read pointer
nRp = 0; // reset read pointer
// something received or passed 1st retry
// something received or passed 1st retry if (dwBytesRead != 0L || ++uCnt > 1)
if (dwBytesRead != 0L || ++uCnt > 1) break; // quit
break; // quit
Sleep(1); // workaround, retry 1ms later
Sleep(1); // workaround, retry 1ms later }
} }
}
if (dwBytesRead == 0L) // receive buffer empty
if (dwBytesRead == 0L) // receive buffer empty break;
break;
#if defined DEBUG_SERIAL
#if defined DEBUG_SERIAL {
{ TCHAR buffer[256];
TCHAR buffer[256]; if (isprint(cBuffer[nRp]))
if (isprint(cBuffer[nRp])) wsprintf(buffer,_T("<- '%c'\n"),cBuffer[nRp]);
wsprintf(buffer,_T("<- '%c'\n"),cBuffer[nRp]); else
else wsprintf(buffer,_T("<- %02X\n"),cBuffer[nRp]);
wsprintf(buffer,_T("<- %02X\n"),cBuffer[nRp]); OutputDebugString(buffer);
OutputDebugString(buffer); }
} #endif
#endif
Chipset.IORam[RBR_MSB] = (cBuffer[nRp] >> 4);
Chipset.IORam[RBR_MSB] = (cBuffer[nRp] >> 4); Chipset.IORam[RBR_LSB] = (cBuffer[nRp] & 0x0f);
Chipset.IORam[RBR_LSB] = (cBuffer[nRp] & 0x0f); ++nRp;
++nRp; --dwBytesRead;
--dwBytesRead;
Chipset.IORam[RCS] |= RBF; // receive buffer full
Chipset.IORam[RCS] |= RBF; // receive buffer full if (UpdateUSRQ()) // update USRQ bit
if (UpdateUSRQ()) // update USRQ bit INTERRUPT;
INTERRUPT; }
} while (FALSE);
while (FALSE); LeaveCriticalSection(&csRecvLock);
LeaveCriticalSection(&csRecvLock); return;
return; }
}

View file

@ -1,308 +1,310 @@
/* /*
* settings.c * settings.c
* *
* This file is part of Emu48 * This file is part of Emu48
* *
* Copyright (C) 2000 Christoph Gießelink * Copyright (C) 2000 Christoph Gießelink
* *
*/ */
#include "pch.h" #include "pch.h"
#include "emu48.h" #include "Emu48.h"
#include "i28f160.h" #include "i28f160.h"
// #define REGISTRY // use registry instead of *.ini file // #define REGISTRY // use registry instead of *.ini file
//################ //################
//# //#
//# Low level subroutines //# Low level subroutines
//# //#
//################ //################
#if !defined REGISTRY #if !defined REGISTRY
// INI-file handling // INI-file handling
#if !defined EMU48_INI #if !defined EMU48_INI
#define EMU48_INI "Emu48.ini" #define EMU48_INI "Emu48.ini"
#endif #endif
#define ReadString(sec,key,dv,v,sv) GetPrivateProfileString(sec,key,dv,v,sv,_T(EMU48_INI)) #define ReadString(sec,key,dv,v,sv) GetPrivateProfileString(sec,key,dv,v,sv,_T(EMU48_INI))
#define ReadInt(sec,key,dv) GetPrivateProfileInt(sec,key,dv,_T(EMU48_INI)); #define ReadInt(sec,key,dv) GetPrivateProfileInt(sec,key,dv,_T(EMU48_INI));
#define WriteString(sec,key,v) WritePrivateProfileString(sec,key,v,_T(EMU48_INI)) #define WriteString(sec,key,v) WritePrivateProfileString(sec,key,v,_T(EMU48_INI))
#define WriteInt(sec,key,v) WritePrivateProfileInt(sec,key,v,_T(EMU48_INI)) #define WriteInt(sec,key,v) WritePrivateProfileInt(sec,key,v,_T(EMU48_INI))
#define DelKey(sec,key) WritePrivateProfileString(sec,key,NULL,_T(EMU48_INI)) #define DelKey(sec,key) WritePrivateProfileString(sec,key,NULL,_T(EMU48_INI))
static BOOL WritePrivateProfileInt(LPCTSTR lpszSection, LPCTSTR lpszEntry, int nValue, LPCTSTR lpszFilename) static BOOL WritePrivateProfileInt(LPCTSTR lpszSection, LPCTSTR lpszEntry, int nValue, LPCTSTR lpszFilename)
{ {
TCHAR s[16]; TCHAR s[16];
wsprintf(s,_T("%i"),nValue); wsprintf(s,_T("%i"),nValue);
return WritePrivateProfileString(lpszSection, lpszEntry, s, lpszFilename); return WritePrivateProfileString(lpszSection, lpszEntry, s, lpszFilename);
} }
#else #else
// registry handling // registry handling
#if !defined REGISTRYKEY #if !defined REGISTRYKEY
#define REGISTRYKEY "Software\\Emu48" #define REGISTRYKEY "Software\\Emu48"
#endif #endif
#define ReadString(sec,key,dv,v,sv) GetRegistryString(sec,key,dv,v,sv) #define ReadString(sec,key,dv,v,sv) GetRegistryString(sec,key,dv,v,sv)
#define ReadInt(sec,key,dv) GetRegistryInt(sec,key,dv) #define ReadInt(sec,key,dv) GetRegistryInt(sec,key,dv)
#define WriteString(sec,key,v) WriteReg(sec,key,REG_SZ,(BYTE *) v,(lstrlen(v)+1) * sizeof(*v)) #define WriteString(sec,key,v) WriteReg(sec,key,REG_SZ,(BYTE *) v,(lstrlen(v)+1) * sizeof(*v))
#define WriteInt(sec,key,v) WriteReg(sec,key,REG_DWORD,(BYTE *) &v,sizeof(int)) #define WriteInt(sec,key,v) WriteReg(sec,key,REG_DWORD,(BYTE *) &v,sizeof(int))
#define DelKey(sec,key) DelReg(sec,key) #define DelKey(sec,key) DelReg(sec,key)
static VOID ReadReg(LPCTSTR lpSubKey, LPCTSTR lpValueName, LPBYTE lpData, DWORD *pdwSize) static VOID ReadReg(LPCTSTR lpSubKey, LPCTSTR lpValueName, LPBYTE lpData, DWORD *pdwSize)
{ {
TCHAR lpKey[256] = _T(REGISTRYKEY) _T("\\"); TCHAR lpKey[256] = _T(REGISTRYKEY) _T("\\");
DWORD retCode,dwType; DWORD retCode,dwType;
HKEY hKey; HKEY hKey;
lstrcat(lpKey, lpSubKey); // full registry key lstrcat(lpKey, lpSubKey); // full registry key
retCode = RegOpenKeyEx(HKEY_CURRENT_USER, retCode = RegOpenKeyEx(HKEY_CURRENT_USER,
lpKey, lpKey,
0, 0,
KEY_QUERY_VALUE, KEY_QUERY_VALUE,
&hKey); &hKey);
if (retCode == ERROR_SUCCESS) if (retCode == ERROR_SUCCESS)
{ {
retCode = RegQueryValueEx(hKey,lpValueName,NULL,&dwType,lpData,pdwSize); retCode = RegQueryValueEx(hKey,lpValueName,NULL,&dwType,lpData,pdwSize);
RegCloseKey(hKey); RegCloseKey(hKey);
} }
if (retCode != ERROR_SUCCESS) // registry entry not found if (retCode != ERROR_SUCCESS) // registry entry not found
*pdwSize = 0; // return zero size *pdwSize = 0; // return zero size
return; return;
} }
static BOOL WriteReg(LPCTSTR lpSubKey, LPCTSTR lpValueName, DWORD dwType, CONST BYTE *lpData, DWORD cbData) static BOOL WriteReg(LPCTSTR lpSubKey, LPCTSTR lpValueName, DWORD dwType, CONST BYTE *lpData, DWORD cbData)
{ {
TCHAR lpKey[256] = _T(REGISTRYKEY) _T("\\"); TCHAR lpKey[256] = _T(REGISTRYKEY) _T("\\");
DWORD retCode; DWORD retCode;
HKEY hKey; HKEY hKey;
DWORD dwDisposition; DWORD dwDisposition;
lstrcat(lpKey, lpSubKey); // full registry key lstrcat(lpKey, lpSubKey); // full registry key
retCode = RegCreateKeyEx(HKEY_CURRENT_USER, retCode = RegCreateKeyEx(HKEY_CURRENT_USER,
lpKey, lpKey,
0,_T(""), 0,_T(""),
REG_OPTION_NON_VOLATILE, REG_OPTION_NON_VOLATILE,
KEY_WRITE, KEY_WRITE,
NULL, NULL,
&hKey, &hKey,
&dwDisposition); &dwDisposition);
_ASSERT(retCode == ERROR_SUCCESS); _ASSERT(retCode == ERROR_SUCCESS);
RegSetValueEx(hKey,lpValueName,0,dwType,lpData,cbData); RegSetValueEx(hKey,lpValueName,0,dwType,lpData,cbData);
RegCloseKey(hKey); RegCloseKey(hKey);
return retCode == ERROR_SUCCESS; return retCode == ERROR_SUCCESS;
} }
static BOOL DelReg(LPCTSTR lpSubKey, LPCTSTR lpValueName) static BOOL DelReg(LPCTSTR lpSubKey, LPCTSTR lpValueName)
{ {
TCHAR lpKey[256] = _T(REGISTRYKEY) _T("\\"); TCHAR lpKey[256] = _T(REGISTRYKEY) _T("\\");
DWORD retCode; DWORD retCode;
HKEY hKey; HKEY hKey;
lstrcat(lpKey, lpSubKey); // full registry key lstrcat(lpKey, lpSubKey); // full registry key
retCode = RegOpenKeyEx(HKEY_CURRENT_USER, retCode = RegOpenKeyEx(HKEY_CURRENT_USER,
lpKey, lpKey,
0, 0,
KEY_SET_VALUE, KEY_SET_VALUE,
&hKey); &hKey);
if (retCode == ERROR_SUCCESS) if (retCode == ERROR_SUCCESS)
{ {
retCode = RegDeleteValue(hKey,lpValueName); retCode = RegDeleteValue(hKey,lpValueName);
RegCloseKey(hKey); RegCloseKey(hKey);
} }
return retCode == ERROR_SUCCESS; return retCode == ERROR_SUCCESS;
} }
static DWORD GetRegistryString(LPCTSTR lpszSection, LPCTSTR lpszEntry, LPCTSTR lpDefault, LPTSTR lpData, DWORD dwSize) static DWORD GetRegistryString(LPCTSTR lpszSection, LPCTSTR lpszEntry, LPCTSTR lpDefault, LPTSTR lpData, DWORD dwSize)
{ {
// buffer size in bytes // buffer size in bytes
DWORD dwBufSize = dwSize * sizeof(*lpData); DWORD dwBufSize = dwSize * sizeof(*lpData);
ReadReg(lpszSection,lpszEntry,(LPBYTE) lpData,&dwBufSize); ReadReg(lpszSection,lpszEntry,(LPBYTE) lpData,&dwBufSize);
if (dwBufSize == 0) if (dwBufSize == 0)
{ {
lstrcpyn(lpData,lpDefault,dwSize); lstrcpyn(lpData,lpDefault,dwSize);
dwSize = lstrlen(lpData); dwSize = lstrlen(lpData);
} }
else else
{ {
dwSize = (dwBufSize / sizeof(*lpData)) - 1; dwSize = (dwBufSize / sizeof(*lpData)) - 1;
} }
return dwSize; return dwSize;
} }
static UINT GetRegistryInt(LPCTSTR lpszSection, LPCTSTR lpszEntry, INT nDefault) static UINT GetRegistryInt(LPCTSTR lpszSection, LPCTSTR lpszEntry, INT nDefault)
{ {
UINT nValue; UINT nValue;
DWORD dwSize = sizeof(nValue); DWORD dwSize = sizeof(nValue);
ReadReg(lpszSection,lpszEntry,(LPBYTE) &nValue,&dwSize); ReadReg(lpszSection,lpszEntry,(LPBYTE) &nValue,&dwSize);
return dwSize ? nValue : nDefault; return dwSize ? nValue : nDefault;
} }
#endif #endif
//################ //################
//# //#
//# Public functions //# Public functions
//# //#
//################ //################
VOID ReadSettings(VOID) VOID ReadSettings(VOID)
{ {
// Files // Files
ReadString(_T("Files"),_T("Emu48Directory"),szCurrentDirectory,szEmuDirectory,ARRAYSIZEOF(szEmuDirectory)); ReadString(_T("Files"),_T("Emu48Directory"),szCurrentDirectory,szEmuDirectory,ARRAYSIZEOF(szEmuDirectory));
bAutoSave = ReadInt(_T("Files"),_T("AutoSave"),bAutoSave); bAutoSave = ReadInt(_T("Files"),_T("AutoSave"),bAutoSave);
bAutoSaveOnExit = ReadInt(_T("Files"),_T("AutoSaveOnExit"),bAutoSaveOnExit); bAutoSaveOnExit = ReadInt(_T("Files"),_T("AutoSaveOnExit"),bAutoSaveOnExit);
bSaveDefConfirm = ReadInt(_T("Files"),_T("SaveDefaultConfirm"),bSaveDefConfirm); bSaveDefConfirm = ReadInt(_T("Files"),_T("SaveDefaultConfirm"),bSaveDefConfirm);
bStartupBackup = ReadInt(_T("Files"),_T("StartupBackup"),bStartupBackup); bStartupBackup = ReadInt(_T("Files"),_T("StartupBackup"),bStartupBackup);
bLoadObjectWarning = ReadInt(_T("Files"),_T("LoadObjectWarning"),bLoadObjectWarning); bLoadObjectWarning = ReadInt(_T("Files"),_T("LoadObjectWarning"),bLoadObjectWarning);
// Port2 // Port2
bPort2IsShared = ReadInt(_T("Port2"),_T("IsShared"),bPort2IsShared); bPort2IsShared = ReadInt(_T("Port2"),_T("IsShared"),bPort2IsShared);
ReadString(_T("Port2"),_T("Filename"),_T("SHARED.BIN"),szPort2Filename,ARRAYSIZEOF(szPort2Filename)); ReadString(_T("Port2"),_T("Filename"),_T("SHARED.BIN"),szPort2Filename,ARRAYSIZEOF(szPort2Filename));
// KML // KML
bAlwaysDisplayLog = ReadInt(_T("KML"),_T("AlwaysDisplayLog"),bAlwaysDisplayLog); bAlwaysDisplayLog = ReadInt(_T("KML"),_T("AlwaysDisplayLog"),bAlwaysDisplayLog);
// Debugger // Debugger
wInstrSize = ReadInt(_T("Debugger"),_T("LastInstrBufSize"),wInstrSize); wInstrSize = ReadInt(_T("Debugger"),_T("LastInstrBufSize"),wInstrSize);
// Disassembler // Disassembler
disassembler_mode = ReadInt(_T("Disassembler"),_T("Mnemonics"),disassembler_mode); disassembler_mode = ReadInt(_T("Disassembler"),_T("Mnemonics"),disassembler_mode);
disassembler_symb = ReadInt(_T("Disassembler"),_T("Symbolic"),disassembler_symb); disassembler_symb = ReadInt(_T("Disassembler"),_T("Symbolic"),disassembler_symb);
// Emulator // Emulator
bShowTitle = ReadInt(_T("Emulator"),_T("ShowTitle"),bShowTitle); bShowTitle = ReadInt(_T("Emulator"),_T("ShowTitle"),bShowTitle);
bShowMenu = ReadInt(_T("Emulator"),_T("ShowMenu"),bShowMenu); bShowMenu = ReadInt(_T("Emulator"),_T("ShowMenu"),bShowMenu);
bAlwaysOnTop = ReadInt(_T("Emulator"),_T("AlwaysOnTop"),bAlwaysOnTop); bAlwaysOnTop = ReadInt(_T("Emulator"),_T("AlwaysOnTop"),bAlwaysOnTop);
bActFollowsMouse = ReadInt(_T("Emulator"),_T("ActivationFollowsMouse"),bActFollowsMouse); bActFollowsMouse = ReadInt(_T("Emulator"),_T("ActivationFollowsMouse"),bActFollowsMouse);
bClientWinMove = ReadInt(_T("Emulator"),_T("ClientWinMove"),bClientWinMove); bClientWinMove = ReadInt(_T("Emulator"),_T("ClientWinMove"),bClientWinMove);
bSingleInstance = ReadInt(_T("Emulator"),_T("SingleInstance"),bSingleInstance); bSingleInstance = ReadInt(_T("Emulator"),_T("SingleInstance"),bSingleInstance);
bRealSpeed = ReadInt(_T("Emulator"),_T("RealSpeed"),bRealSpeed); bRealSpeed = ReadInt(_T("Emulator"),_T("RealSpeed"),bRealSpeed);
dwSXCycles = ReadInt(_T("Emulator"),_T("SXCycles"),dwSXCycles); dwSXCycles = ReadInt(_T("Emulator"),_T("SXCycles"),dwSXCycles);
dwGXCycles = ReadInt(_T("Emulator"),_T("GXCycles"),dwGXCycles); dwGXCycles = ReadInt(_T("Emulator"),_T("GXCycles"),dwGXCycles);
dwKeyMinDelay = ReadInt(_T("Emulator"),_T("KeyMinDelay"),dwKeyMinDelay); dwKeyMinDelay = ReadInt(_T("Emulator"),_T("KeyMinDelay"),dwKeyMinDelay);
dwWakeupDelay = ReadInt(_T("Emulator"),_T("WakeupDelay"),dwWakeupDelay); dwWakeupDelay = ReadInt(_T("Emulator"),_T("WakeupDelay"),dwWakeupDelay);
bGrayscale = ReadInt(_T("Emulator"),_T("Grayscale"),bGrayscale); bGrayscale = ReadInt(_T("Emulator"),_T("Grayscale"),bGrayscale);
uWaveDevId = ReadInt(_T("Emulator"),_T("WaveDeviceId"),uWaveDevId); uWaveDevId = ReadInt(_T("Emulator"),_T("WaveDeviceId"),uWaveDevId);
dwWaveVol = ReadInt(_T("Emulator"),_T("WaveVolume"),dwWaveVol); dwWaveVol = ReadInt(_T("Emulator"),_T("WaveVolume"),dwWaveVol);
dwWaveTime = ReadInt(_T("Emulator"),_T("WaveTime"),dwWaveTime); dwWaveTime = ReadInt(_T("Emulator"),_T("WaveTime"),dwWaveTime);
// LowBat bLocaleDecimalPoint = ReadInt(_T("Emulator"),_T("LocaleDecimalPoint"),bLocaleDecimalPoint);
bLowBatDisable = ReadInt(_T("LowBat"),_T("Disable"),bLowBatDisable); // LowBat
// Macro bLowBatDisable = ReadInt(_T("LowBat"),_T("Disable"),bLowBatDisable);
bMacroRealSpeed = ReadInt(_T("Macro"),_T("RealSpeed"),bMacroRealSpeed); // Macro
nMacroTimeout = ReadInt(_T("Macro"),_T("ReplayTimeout"),nMacroTimeout); bMacroRealSpeed = ReadInt(_T("Macro"),_T("RealSpeed"),bMacroRealSpeed);
dwMacroMinDelay = ReadInt(_T("Macro"),_T("KeyMinDelay"),dwMacroMinDelay); nMacroTimeout = ReadInt(_T("Macro"),_T("ReplayTimeout"),nMacroTimeout);
// IrPrinter dwMacroMinDelay = ReadInt(_T("Macro"),_T("KeyMinDelay"),dwMacroMinDelay);
ReadString(_T("IrPrinter"),_T("Address"),szUdpServer,szUdpServer,ARRAYSIZEOF(szUdpServer)); // IrPrinter
wUdpPort = ReadInt(_T("IrPrinter"),_T("Port"),wUdpPort); ReadString(_T("IrPrinter"),_T("Address"),szUdpServer,szUdpServer,ARRAYSIZEOF(szUdpServer));
// Serial wUdpPort = ReadInt(_T("IrPrinter"),_T("Port"),wUdpPort);
ReadString(_T("Serial"),_T("Wire"),_T(NO_SERIAL),szSerialWire,ARRAYSIZEOF(szSerialWire)); // Serial
ReadString(_T("Serial"),_T("Ir"),_T(NO_SERIAL),szSerialIr,ARRAYSIZEOF(szSerialIr)); ReadString(_T("Serial"),_T("Wire"),_T(NO_SERIAL),szSerialWire,ARRAYSIZEOF(szSerialWire));
// ROM ReadString(_T("Serial"),_T("Ir"),_T(NO_SERIAL),szSerialIr,ARRAYSIZEOF(szSerialIr));
bRomWriteable = ReadInt(_T("ROM"),_T("Writeable"),bRomWriteable); // ROM
bWP = ReadInt(_T("ROM"),_T("WP#"),bWP); bRomWriteable = ReadInt(_T("ROM"),_T("Writeable"),bRomWriteable);
return; bWP = ReadInt(_T("ROM"),_T("WP#"),bWP);
} return;
}
VOID WriteSettings(VOID)
{ VOID WriteSettings(VOID)
// Files {
WriteString(_T("Files"),_T("Emu48Directory"),szEmuDirectory); // Files
WriteInt(_T("Files"),_T("AutoSave"),bAutoSave); WriteString(_T("Files"),_T("Emu48Directory"),szEmuDirectory);
WriteInt(_T("Files"),_T("AutoSaveOnExit"),bAutoSaveOnExit); WriteInt(_T("Files"),_T("AutoSave"),bAutoSave);
WriteInt(_T("Files"),_T("SaveDefaultConfirm"),bSaveDefConfirm); WriteInt(_T("Files"),_T("AutoSaveOnExit"),bAutoSaveOnExit);
WriteInt(_T("Files"),_T("StartupBackup"),bStartupBackup); WriteInt(_T("Files"),_T("SaveDefaultConfirm"),bSaveDefConfirm);
WriteInt(_T("Files"),_T("LoadObjectWarning"),bLoadObjectWarning); WriteInt(_T("Files"),_T("StartupBackup"),bStartupBackup);
// Port2 WriteInt(_T("Files"),_T("LoadObjectWarning"),bLoadObjectWarning);
WriteInt(_T("Port2"),_T("IsShared"),bPort2IsShared); // Port2
WriteString(_T("Port2"),_T("Filename"),szPort2Filename); WriteInt(_T("Port2"),_T("IsShared"),bPort2IsShared);
// KML WriteString(_T("Port2"),_T("Filename"),szPort2Filename);
WriteInt(_T("KML"),_T("AlwaysDisplayLog"),bAlwaysDisplayLog); // KML
// Debugger WriteInt(_T("KML"),_T("AlwaysDisplayLog"),bAlwaysDisplayLog);
WriteInt(_T("Debugger"),_T("LastInstrBufSize"),wInstrSize); // Debugger
// Disassembler WriteInt(_T("Debugger"),_T("LastInstrBufSize"),wInstrSize);
WriteInt(_T("Disassembler"),_T("Mnemonics"),disassembler_mode); // Disassembler
WriteInt(_T("Disassembler"),_T("Symbolic"),disassembler_symb); WriteInt(_T("Disassembler"),_T("Mnemonics"),disassembler_mode);
// Emulator WriteInt(_T("Disassembler"),_T("Symbolic"),disassembler_symb);
WriteInt(_T("Emulator"),_T("ShowTitle"),bShowTitle); // Emulator
WriteInt(_T("Emulator"),_T("ShowMenu"),bShowMenu); WriteInt(_T("Emulator"),_T("ShowTitle"),bShowTitle);
WriteInt(_T("Emulator"),_T("AlwaysOnTop"),bAlwaysOnTop); WriteInt(_T("Emulator"),_T("ShowMenu"),bShowMenu);
WriteInt(_T("Emulator"),_T("ActivationFollowsMouse"),bActFollowsMouse); WriteInt(_T("Emulator"),_T("AlwaysOnTop"),bAlwaysOnTop);
WriteInt(_T("Emulator"),_T("ClientWinMove"),bClientWinMove); WriteInt(_T("Emulator"),_T("ActivationFollowsMouse"),bActFollowsMouse);
WriteInt(_T("Emulator"),_T("SingleInstance"),bSingleInstance); WriteInt(_T("Emulator"),_T("ClientWinMove"),bClientWinMove);
WriteInt(_T("Emulator"),_T("RealSpeed"),bRealSpeed); WriteInt(_T("Emulator"),_T("SingleInstance"),bSingleInstance);
WriteInt(_T("Emulator"),_T("SXCycles"),dwSXCycles); WriteInt(_T("Emulator"),_T("RealSpeed"),bRealSpeed);
WriteInt(_T("Emulator"),_T("GXCycles"),dwGXCycles); WriteInt(_T("Emulator"),_T("SXCycles"),dwSXCycles);
WriteInt(_T("Emulator"),_T("KeyMinDelay"),dwKeyMinDelay); WriteInt(_T("Emulator"),_T("GXCycles"),dwGXCycles);
WriteInt(_T("Emulator"),_T("WakeupDelay"),dwWakeupDelay); WriteInt(_T("Emulator"),_T("KeyMinDelay"),dwKeyMinDelay);
WriteInt(_T("Emulator"),_T("Grayscale"),bGrayscale); WriteInt(_T("Emulator"),_T("WakeupDelay"),dwWakeupDelay);
WriteInt(_T("Emulator"),_T("WaveDeviceId"),uWaveDevId); WriteInt(_T("Emulator"),_T("Grayscale"),bGrayscale);
WriteInt(_T("Emulator"),_T("WaveVolume"),dwWaveVol); WriteInt(_T("Emulator"),_T("WaveDeviceId"),uWaveDevId);
WriteInt(_T("Emulator"),_T("WaveTime"),dwWaveTime); WriteInt(_T("Emulator"),_T("WaveVolume"),dwWaveVol);
// LowBat WriteInt(_T("Emulator"),_T("WaveTime"),dwWaveTime);
WriteInt(_T("LowBat"),_T("Disable"),bLowBatDisable); WriteInt(_T("Emulator"),_T("LocaleDecimalPoint"),bLocaleDecimalPoint);
// Macro // LowBat
WriteInt(_T("Macro"),_T("RealSpeed"),bMacroRealSpeed); WriteInt(_T("LowBat"),_T("Disable"),bLowBatDisable);
WriteInt(_T("Macro"),_T("ReplayTimeout"),nMacroTimeout); // Macro
WriteInt(_T("Macro"),_T("KeyMinDelay"),dwMacroMinDelay); WriteInt(_T("Macro"),_T("RealSpeed"),bMacroRealSpeed);
// IrPrinter WriteInt(_T("Macro"),_T("ReplayTimeout"),nMacroTimeout);
WriteString(_T("IrPrinter"),_T("Address"),szUdpServer); WriteInt(_T("Macro"),_T("KeyMinDelay"),dwMacroMinDelay);
WriteInt(_T("IrPrinter"),_T("Port"),wUdpPort); // IrPrinter
// Serial WriteString(_T("IrPrinter"),_T("Address"),szUdpServer);
WriteString(_T("Serial"),_T("Wire"),szSerialWire); WriteInt(_T("IrPrinter"),_T("Port"),wUdpPort);
WriteString(_T("Serial"),_T("Ir"),szSerialIr); // Serial
// ROM WriteString(_T("Serial"),_T("Wire"),szSerialWire);
WriteInt(_T("ROM"),_T("Writeable"),bRomWriteable); WriteString(_T("Serial"),_T("Ir"),szSerialIr);
return; // ROM
} WriteInt(_T("ROM"),_T("Writeable"),bRomWriteable);
return;
VOID ReadLastDocument(LPTSTR szFilename, DWORD nSize) }
{
ReadString(_T("Files"),_T("LastDocument"),_T(""),szFilename,nSize); VOID ReadLastDocument(LPTSTR szFilename, DWORD nSize)
return; {
} ReadString(_T("Files"),_T("LastDocument"),_T(""),szFilename,nSize);
return;
VOID WriteLastDocument(LPCTSTR szFilename) }
{
WriteString(_T("Files"),_T("LastDocument"),szFilename); VOID WriteLastDocument(LPCTSTR szFilename)
return; {
} WriteString(_T("Files"),_T("LastDocument"),szFilename);
return;
VOID ReadSettingsString(LPCTSTR lpszSection, LPCTSTR lpszEntry, LPCTSTR lpDefault, LPTSTR lpData, DWORD dwSize) }
{
ReadString(lpszSection,lpszEntry,lpDefault,lpData,dwSize); VOID ReadSettingsString(LPCTSTR lpszSection, LPCTSTR lpszEntry, LPCTSTR lpDefault, LPTSTR lpData, DWORD dwSize)
return; {
} ReadString(lpszSection,lpszEntry,lpDefault,lpData,dwSize);
return;
VOID WriteSettingsString(LPCTSTR lpszSection, LPCTSTR lpszEntry, LPTSTR lpData) }
{
WriteString(lpszSection,lpszEntry,lpData); VOID WriteSettingsString(LPCTSTR lpszSection, LPCTSTR lpszEntry, LPTSTR lpData)
return; {
} WriteString(lpszSection,lpszEntry,lpData);
return;
INT ReadSettingsInt(LPCTSTR lpszSection, LPCTSTR lpszEntry, INT nDefault) }
{
return ReadInt(lpszSection,lpszEntry,nDefault); INT ReadSettingsInt(LPCTSTR lpszSection, LPCTSTR lpszEntry, INT nDefault)
} {
return ReadInt(lpszSection,lpszEntry,nDefault);
VOID WriteSettingsInt(LPCTSTR lpszSection, LPCTSTR lpszEntry, INT nValue) }
{
WriteInt(lpszSection,lpszEntry,nValue); VOID WriteSettingsInt(LPCTSTR lpszSection, LPCTSTR lpszEntry, INT nValue)
return; {
} WriteInt(lpszSection,lpszEntry,nValue);
return;
VOID DelSettingsKey(LPCTSTR lpszSection, LPCTSTR lpszEntry) }
{
DelKey(lpszSection,lpszEntry); VOID DelSettingsKey(LPCTSTR lpszSection, LPCTSTR lpszEntry)
return; {
} DelKey(lpszSection,lpszEntry);
return;
}

View file

@ -1,102 +1,102 @@
/* /*
* snddef.h * snddef.h
* *
* This file is part of Emu48 * This file is part of Emu48
* *
* Copyright (C) 2015 Christoph Gießelink * Copyright (C) 2015 Christoph Gießelink
* *
*/ */
#include <initguid.h> #include <initguid.h>
#if _MSC_VER >= 1600 // valid for VS2010 and later #if _MSC_VER >= 1600 // valid for VS2010 and later
#include <DSound.h> #include <DSound.h>
#include <Dsconf.h> #include <Dsconf.h>
#else // create the necessary definitions manually #else // create the necessary definitions manually
// //
// IKsPropertySet // IKsPropertySet
// //
#ifndef _IKsPropertySet_ #ifndef _IKsPropertySet_
#define _IKsPropertySet_ #define _IKsPropertySet_
#ifdef __cplusplus #ifdef __cplusplus
struct IKsPropertySet; struct IKsPropertySet;
#endif // __cplusplus #endif // __cplusplus
typedef struct IKsPropertySet *LPKSPROPERTYSET; typedef struct IKsPropertySet *LPKSPROPERTYSET;
DEFINE_GUID(IID_IKsPropertySet, 0x31efac30, 0x515c, 0x11d0, 0xa9, 0xaa, 0x00, 0xaa, 0x00, 0x61, 0xbe, 0x93); DEFINE_GUID(IID_IKsPropertySet, 0x31efac30, 0x515c, 0x11d0, 0xa9, 0xaa, 0x00, 0xaa, 0x00, 0x61, 0xbe, 0x93);
#undef INTERFACE #undef INTERFACE
#define INTERFACE IKsPropertySet #define INTERFACE IKsPropertySet
DECLARE_INTERFACE_(IKsPropertySet, IUnknown) DECLARE_INTERFACE_(IKsPropertySet, IUnknown)
{ {
// IUnknown methods // IUnknown methods
STDMETHOD(QueryInterface) (THIS_ REFIID, LPVOID*) PURE; STDMETHOD(QueryInterface) (THIS_ REFIID, LPVOID*) PURE;
STDMETHOD_(ULONG,AddRef) (THIS) PURE; STDMETHOD_(ULONG,AddRef) (THIS) PURE;
STDMETHOD_(ULONG,Release) (THIS) PURE; STDMETHOD_(ULONG,Release) (THIS) PURE;
// IKsPropertySet methods // IKsPropertySet methods
STDMETHOD(Get) (THIS_ REFGUID rguidPropSet, ULONG ulId, LPVOID pInstanceData, ULONG ulInstanceLength, STDMETHOD(Get) (THIS_ REFGUID rguidPropSet, ULONG ulId, LPVOID pInstanceData, ULONG ulInstanceLength,
LPVOID pPropertyData, ULONG ulDataLength, PULONG pulBytesReturned) PURE; LPVOID pPropertyData, ULONG ulDataLength, PULONG pulBytesReturned) PURE;
STDMETHOD(Set) (THIS_ REFGUID rguidPropSet, ULONG ulId, LPVOID pInstanceData, ULONG ulInstanceLength, STDMETHOD(Set) (THIS_ REFGUID rguidPropSet, ULONG ulId, LPVOID pInstanceData, ULONG ulInstanceLength,
LPVOID pPropertyData, ULONG ulDataLength) PURE; LPVOID pPropertyData, ULONG ulDataLength) PURE;
STDMETHOD(QuerySupport) (THIS_ REFGUID rguidPropSet, ULONG ulId, PULONG pulTypeSupport) PURE; STDMETHOD(QuerySupport) (THIS_ REFGUID rguidPropSet, ULONG ulId, PULONG pulTypeSupport) PURE;
}; };
#endif // _IKsPropertySet_ #endif // _IKsPropertySet_
// DirectSound Configuration Component GUID {11AB3EC0-25EC-11d1-A4D8-00C04FC28ACA} // DirectSound Configuration Component GUID {11AB3EC0-25EC-11d1-A4D8-00C04FC28ACA}
DEFINE_GUID(CLSID_DirectSoundPrivate, 0x11ab3ec0, 0x25ec, 0x11d1, 0xa4, 0xd8, 0x0, 0xc0, 0x4f, 0xc2, 0x8a, 0xca); DEFINE_GUID(CLSID_DirectSoundPrivate, 0x11ab3ec0, 0x25ec, 0x11d1, 0xa4, 0xd8, 0x0, 0xc0, 0x4f, 0xc2, 0x8a, 0xca);
// DirectSound Device Properties {84624F82-25EC-11d1-A4D8-00C04FC28ACA} // DirectSound Device Properties {84624F82-25EC-11d1-A4D8-00C04FC28ACA}
DEFINE_GUID(DSPROPSETID_DirectSoundDevice, 0x84624f82, 0x25ec, 0x11d1, 0xa4, 0xd8, 0x0, 0xc0, 0x4f, 0xc2, 0x8a, 0xca); DEFINE_GUID(DSPROPSETID_DirectSoundDevice, 0x84624f82, 0x25ec, 0x11d1, 0xa4, 0xd8, 0x0, 0xc0, 0x4f, 0xc2, 0x8a, 0xca);
typedef enum typedef enum
{ {
DSPROPERTY_DIRECTSOUNDDEVICE_WAVEDEVICEMAPPING_A = 1, DSPROPERTY_DIRECTSOUNDDEVICE_WAVEDEVICEMAPPING_A = 1,
DSPROPERTY_DIRECTSOUNDDEVICE_DESCRIPTION_1 = 2, DSPROPERTY_DIRECTSOUNDDEVICE_DESCRIPTION_1 = 2,
DSPROPERTY_DIRECTSOUNDDEVICE_ENUMERATE_1 = 3, DSPROPERTY_DIRECTSOUNDDEVICE_ENUMERATE_1 = 3,
DSPROPERTY_DIRECTSOUNDDEVICE_WAVEDEVICEMAPPING_W = 4, DSPROPERTY_DIRECTSOUNDDEVICE_WAVEDEVICEMAPPING_W = 4,
DSPROPERTY_DIRECTSOUNDDEVICE_DESCRIPTION_A = 5, DSPROPERTY_DIRECTSOUNDDEVICE_DESCRIPTION_A = 5,
DSPROPERTY_DIRECTSOUNDDEVICE_DESCRIPTION_W = 6, DSPROPERTY_DIRECTSOUNDDEVICE_DESCRIPTION_W = 6,
DSPROPERTY_DIRECTSOUNDDEVICE_ENUMERATE_A = 7, DSPROPERTY_DIRECTSOUNDDEVICE_ENUMERATE_A = 7,
DSPROPERTY_DIRECTSOUNDDEVICE_ENUMERATE_W = 8, DSPROPERTY_DIRECTSOUNDDEVICE_ENUMERATE_W = 8,
} DSPROPERTY_DIRECTSOUNDDEVICE; } DSPROPERTY_DIRECTSOUNDDEVICE;
#ifdef UNICODE #ifdef UNICODE
#define DSPROPERTY_DIRECTSOUNDDEVICE_DESCRIPTION DSPROPERTY_DIRECTSOUNDDEVICE_DESCRIPTION_W #define DSPROPERTY_DIRECTSOUNDDEVICE_DESCRIPTION DSPROPERTY_DIRECTSOUNDDEVICE_DESCRIPTION_W
#else // UNICODE #else // UNICODE
#define DSPROPERTY_DIRECTSOUNDDEVICE_DESCRIPTION DSPROPERTY_DIRECTSOUNDDEVICE_DESCRIPTION_A #define DSPROPERTY_DIRECTSOUNDDEVICE_DESCRIPTION DSPROPERTY_DIRECTSOUNDDEVICE_DESCRIPTION_A
#endif // UNICODE #endif // UNICODE
typedef enum typedef enum
{ {
DIRECTSOUNDDEVICE_TYPE_EMULATED, DIRECTSOUNDDEVICE_TYPE_EMULATED,
DIRECTSOUNDDEVICE_TYPE_VXD, DIRECTSOUNDDEVICE_TYPE_VXD,
DIRECTSOUNDDEVICE_TYPE_WDM DIRECTSOUNDDEVICE_TYPE_WDM
} DIRECTSOUNDDEVICE_TYPE; } DIRECTSOUNDDEVICE_TYPE;
typedef enum typedef enum
{ {
DIRECTSOUNDDEVICE_DATAFLOW_RENDER, DIRECTSOUNDDEVICE_DATAFLOW_RENDER,
DIRECTSOUNDDEVICE_DATAFLOW_CAPTURE DIRECTSOUNDDEVICE_DATAFLOW_CAPTURE
} DIRECTSOUNDDEVICE_DATAFLOW; } DIRECTSOUNDDEVICE_DATAFLOW;
typedef struct _DSPROPERTY_DIRECTSOUNDDEVICE_DESCRIPTION_DATA typedef struct _DSPROPERTY_DIRECTSOUNDDEVICE_DESCRIPTION_DATA
{ {
DIRECTSOUNDDEVICE_TYPE Type; // Device type DIRECTSOUNDDEVICE_TYPE Type; // Device type
DIRECTSOUNDDEVICE_DATAFLOW DataFlow; // Device dataflow DIRECTSOUNDDEVICE_DATAFLOW DataFlow; // Device dataflow
GUID DeviceId; // DirectSound device id GUID DeviceId; // DirectSound device id
LPTSTR Description; // Device description LPTSTR Description; // Device description
LPTSTR Module; // Device driver module LPTSTR Module; // Device driver module
LPTSTR Interface; // Device interface LPTSTR Interface; // Device interface
ULONG WaveDeviceId; // Wave device id ULONG WaveDeviceId; // Wave device id
} DSPROPERTY_DIRECTSOUNDDEVICE_DESCRIPTION_DATA, *PDSPROPERTY_DIRECTSOUNDDEVICE_DESCRIPTION_DATA; } DSPROPERTY_DIRECTSOUNDDEVICE_DESCRIPTION_DATA, *PDSPROPERTY_DIRECTSOUNDDEVICE_DESCRIPTION_DATA;
#endif #endif

View file

@ -1,256 +1,256 @@
/* /*
* SndEnum.c * SndEnum.c
* *
* This file is part of Emu48 * This file is part of Emu48
* *
* Copyright (C) 2015 Christoph Gießelink * Copyright (C) 2015 Christoph Gießelink
* *
*/ */
#include "pch.h" #include "pch.h"
#include "emu48.h" #include "Emu48.h"
#include "snddef.h" #include "snddef.h"
typedef HRESULT (WINAPI *LPFNDLLGETCLASSOBJECT)(REFCLSID,REFIID,LPVOID *); typedef HRESULT (WINAPI *LPFNDLLGETCLASSOBJECT)(REFCLSID,REFIID,LPVOID *);
static LPFNDLLGETCLASSOBJECT pfnDllGetClassObject = NULL; static LPFNDLLGETCLASSOBJECT pfnDllGetClassObject = NULL;
// //
// create a IKsPropertySet interface // create a IKsPropertySet interface
// //
static __inline HRESULT DirectSoundPrivateCreate(LPKSPROPERTYSET *ppKsPropertySet) static __inline HRESULT DirectSoundPrivateCreate(LPKSPROPERTYSET *ppKsPropertySet)
{ {
LPCLASSFACTORY pClassFactory = NULL; LPCLASSFACTORY pClassFactory = NULL;
HRESULT hr; HRESULT hr;
// create a class factory object // create a class factory object
#if defined __cplusplus #if defined __cplusplus
hr = pfnDllGetClassObject(CLSID_DirectSoundPrivate,IID_IClassFactory,(LPVOID *) &pClassFactory); hr = pfnDllGetClassObject(CLSID_DirectSoundPrivate,IID_IClassFactory,(LPVOID *) &pClassFactory);
#else #else
hr = pfnDllGetClassObject(&CLSID_DirectSoundPrivate,&IID_IClassFactory,(LPVOID *) &pClassFactory); hr = pfnDllGetClassObject(&CLSID_DirectSoundPrivate,&IID_IClassFactory,(LPVOID *) &pClassFactory);
#endif #endif
// create the DirectSoundPrivate object and query for an IKsPropertySet interface // create the DirectSoundPrivate object and query for an IKsPropertySet interface
if (SUCCEEDED(hr)) if (SUCCEEDED(hr))
{ {
#if defined __cplusplus #if defined __cplusplus
hr = pClassFactory->CreateInstance(NULL,IID_IKsPropertySet,(LPVOID *) ppKsPropertySet); hr = pClassFactory->CreateInstance(NULL,IID_IKsPropertySet,(LPVOID *) ppKsPropertySet);
#else #else
hr = pClassFactory->lpVtbl->CreateInstance(pClassFactory,NULL,&IID_IKsPropertySet,(LPVOID *) ppKsPropertySet); hr = pClassFactory->lpVtbl->CreateInstance(pClassFactory,NULL,&IID_IKsPropertySet,(LPVOID *) ppKsPropertySet);
#endif #endif
} }
if (pClassFactory) // release the class factory object if (pClassFactory) // release the class factory object
{ {
#if defined __cplusplus #if defined __cplusplus
pClassFactory->Release(); pClassFactory->Release();
#else #else
pClassFactory->lpVtbl->Release(pClassFactory); pClassFactory->lpVtbl->Release(pClassFactory);
#endif #endif
} }
if (FAILED(hr) && *ppKsPropertySet) // handle failure if (FAILED(hr) && *ppKsPropertySet) // handle failure
{ {
#if defined __cplusplus #if defined __cplusplus
(*ppKsPropertySet)->Release(); (*ppKsPropertySet)->Release();
#else #else
(*ppKsPropertySet)->lpVtbl->Release(*ppKsPropertySet); (*ppKsPropertySet)->lpVtbl->Release(*ppKsPropertySet);
#endif #endif
} }
return hr; return hr;
} }
// //
// get the device information about a DirectSound GUID. // get the device information about a DirectSound GUID.
// //
static BOOL GetInfoFromDSoundGUID(CONST GUID *lpGUID, UINT *puWaveDeviceID) static BOOL GetInfoFromDSoundGUID(CONST GUID *lpGUID, UINT *puWaveDeviceID)
{ {
LPKSPROPERTYSET pKsPropertySet = NULL; LPKSPROPERTYSET pKsPropertySet = NULL;
HRESULT hr; HRESULT hr;
BOOL bSuccess = FALSE; BOOL bSuccess = FALSE;
hr = DirectSoundPrivateCreate(&pKsPropertySet); hr = DirectSoundPrivateCreate(&pKsPropertySet);
if (SUCCEEDED(hr)) if (SUCCEEDED(hr))
{ {
ULONG ulBytesReturned = 0; ULONG ulBytesReturned = 0;
DSPROPERTY_DIRECTSOUNDDEVICE_DESCRIPTION_DATA sDirectSoundDeviceDescription; DSPROPERTY_DIRECTSOUNDDEVICE_DESCRIPTION_DATA sDirectSoundDeviceDescription;
ZeroMemory(&sDirectSoundDeviceDescription,sizeof(sDirectSoundDeviceDescription)); ZeroMemory(&sDirectSoundDeviceDescription,sizeof(sDirectSoundDeviceDescription));
sDirectSoundDeviceDescription.DeviceId = *lpGUID; sDirectSoundDeviceDescription.DeviceId = *lpGUID;
// get the size of the direct sound device description // get the size of the direct sound device description
#if defined __cplusplus #if defined __cplusplus
hr = pKsPropertySet->Get( hr = pKsPropertySet->Get(
DSPROPSETID_DirectSoundDevice, DSPROPSETID_DirectSoundDevice,
DSPROPERTY_DIRECTSOUNDDEVICE_DESCRIPTION, DSPROPERTY_DIRECTSOUNDDEVICE_DESCRIPTION,
NULL, NULL,
0, 0,
&sDirectSoundDeviceDescription, &sDirectSoundDeviceDescription,
sizeof(sDirectSoundDeviceDescription), sizeof(sDirectSoundDeviceDescription),
&ulBytesReturned &ulBytesReturned
); );
#else #else
hr = pKsPropertySet->lpVtbl->Get(pKsPropertySet, hr = pKsPropertySet->lpVtbl->Get(pKsPropertySet,
&DSPROPSETID_DirectSoundDevice, &DSPROPSETID_DirectSoundDevice,
DSPROPERTY_DIRECTSOUNDDEVICE_DESCRIPTION, DSPROPERTY_DIRECTSOUNDDEVICE_DESCRIPTION,
NULL, NULL,
0, 0,
&sDirectSoundDeviceDescription, &sDirectSoundDeviceDescription,
sizeof(sDirectSoundDeviceDescription), sizeof(sDirectSoundDeviceDescription),
&ulBytesReturned &ulBytesReturned
); );
#endif #endif
if (SUCCEEDED(hr) && ulBytesReturned) if (SUCCEEDED(hr) && ulBytesReturned)
{ {
PDSPROPERTY_DIRECTSOUNDDEVICE_DESCRIPTION_DATA psDirectSoundDeviceDescription = NULL; PDSPROPERTY_DIRECTSOUNDDEVICE_DESCRIPTION_DATA psDirectSoundDeviceDescription = NULL;
// fetch the direct sound device description // fetch the direct sound device description
psDirectSoundDeviceDescription = (PDSPROPERTY_DIRECTSOUNDDEVICE_DESCRIPTION_DATA) malloc(ulBytesReturned); psDirectSoundDeviceDescription = (PDSPROPERTY_DIRECTSOUNDDEVICE_DESCRIPTION_DATA) malloc(ulBytesReturned);
if (psDirectSoundDeviceDescription != NULL) if (psDirectSoundDeviceDescription != NULL)
{ {
// init structure with data from length request // init structure with data from length request
*psDirectSoundDeviceDescription = sDirectSoundDeviceDescription; *psDirectSoundDeviceDescription = sDirectSoundDeviceDescription;
#if defined __cplusplus #if defined __cplusplus
hr = pKsPropertySet->Get( hr = pKsPropertySet->Get(
DSPROPSETID_DirectSoundDevice, DSPROPSETID_DirectSoundDevice,
DSPROPERTY_DIRECTSOUNDDEVICE_DESCRIPTION, DSPROPERTY_DIRECTSOUNDDEVICE_DESCRIPTION,
NULL, NULL,
0, 0,
psDirectSoundDeviceDescription, psDirectSoundDeviceDescription,
ulBytesReturned, ulBytesReturned,
&ulBytesReturned &ulBytesReturned
); );
#else #else
hr = pKsPropertySet->lpVtbl->Get(pKsPropertySet, hr = pKsPropertySet->lpVtbl->Get(pKsPropertySet,
&DSPROPSETID_DirectSoundDevice, &DSPROPSETID_DirectSoundDevice,
DSPROPERTY_DIRECTSOUNDDEVICE_DESCRIPTION, DSPROPERTY_DIRECTSOUNDDEVICE_DESCRIPTION,
NULL, NULL,
0, 0,
psDirectSoundDeviceDescription, psDirectSoundDeviceDescription,
ulBytesReturned, ulBytesReturned,
&ulBytesReturned &ulBytesReturned
); );
#endif #endif
if ((bSuccess = SUCCEEDED(hr))) if ((bSuccess = SUCCEEDED(hr)))
{ {
// the requested device ID // the requested device ID
*puWaveDeviceID = psDirectSoundDeviceDescription->WaveDeviceId; *puWaveDeviceID = psDirectSoundDeviceDescription->WaveDeviceId;
} }
free(psDirectSoundDeviceDescription); free(psDirectSoundDeviceDescription);
} }
} }
#if defined __cplusplus #if defined __cplusplus
pKsPropertySet->Release(); pKsPropertySet->Release();
#else #else
pKsPropertySet->lpVtbl->Release(pKsPropertySet); pKsPropertySet->lpVtbl->Release(pKsPropertySet);
#endif #endif
} }
return bSuccess; return bSuccess;
} }
// //
// callback function for DirectSoundEnumerate() // callback function for DirectSoundEnumerate()
// //
static BOOL CALLBACK DSEnumProc(LPGUID lpGUID,LPCTSTR lpszDesc,LPCTSTR lpszDrvName,LPVOID lpContext) static BOOL CALLBACK DSEnumProc(LPGUID lpGUID,LPCTSTR lpszDesc,LPCTSTR lpszDrvName,LPVOID lpContext)
{ {
HWND hWnd = (HWND) lpContext; // window handle of the combo box HWND hWnd = (HWND) lpContext; // window handle of the combo box
if (lpGUID != NULL) // NULL only for "Primary Sound Driver" if (lpGUID != NULL) // NULL only for "Primary Sound Driver"
{ {
UINT uDevID; UINT uDevID;
if (GetInfoFromDSoundGUID(lpGUID,&uDevID)) if (GetInfoFromDSoundGUID(lpGUID,&uDevID))
{ {
WAVEOUTCAPS woc; WAVEOUTCAPS woc;
// has device the necessary capabilities? // has device the necessary capabilities?
if ( waveOutGetDevCaps(uDevID,&woc,sizeof(woc)) == MMSYSERR_NOERROR if ( waveOutGetDevCaps(uDevID,&woc,sizeof(woc)) == MMSYSERR_NOERROR
&& (woc.dwFormats & WAVE_FORMAT_4M08) != 0) && (woc.dwFormats & WAVE_FORMAT_4M08) != 0)
{ {
// copy product name and wave device ID to combo box // copy product name and wave device ID to combo box
LONG i = (LONG) SendMessage(hWnd,CB_ADDSTRING,0,(LPARAM) lpszDesc); LONG i = (LONG) SendMessage(hWnd,CB_ADDSTRING,0,(LPARAM) lpszDesc);
SendMessage(hWnd,CB_SETITEMDATA,i,uDevID); SendMessage(hWnd,CB_SETITEMDATA,i,uDevID);
} }
} }
} }
return TRUE; return TRUE;
UNREFERENCED_PARAMETER(lpszDrvName); UNREFERENCED_PARAMETER(lpszDrvName);
} }
// set listfield for sound device combo box // set listfield for sound device combo box
VOID SetSoundDeviceList(HWND hWnd,UINT uDeviceID) VOID SetSoundDeviceList(HWND hWnd,UINT uDeviceID)
{ {
typedef BOOL (CALLBACK *LPDSENUMCALLBACK)(LPGUID, LPCTSTR, LPCTSTR, LPVOID); typedef BOOL (CALLBACK *LPDSENUMCALLBACK)(LPGUID, LPCTSTR, LPCTSTR, LPVOID);
typedef HRESULT (WINAPI *LPFN_SDE)(LPDSENUMCALLBACK lpDSEnumCallback,LPVOID lpContext); typedef HRESULT (WINAPI *LPFN_SDE)(LPDSENUMCALLBACK lpDSEnumCallback,LPVOID lpContext);
LPFN_SDE pfnDirectSoundEnumerate = NULL; LPFN_SDE pfnDirectSoundEnumerate = NULL;
UINT uSelectDevice,uDevID,uDevNo; UINT uSelectDevice,uDevID,uDevNo;
HMODULE hDSound = LoadLibrary(_T("dsound.dll")); HMODULE hDSound = LoadLibrary(_T("dsound.dll"));
if (hDSound != NULL) // direct sound dll found if (hDSound != NULL) // direct sound dll found
{ {
#if defined _UNICODE #if defined _UNICODE
pfnDirectSoundEnumerate = (LPFN_SDE) GetProcAddress(hDSound,"DirectSoundEnumerateW"); pfnDirectSoundEnumerate = (LPFN_SDE) GetProcAddress(hDSound,"DirectSoundEnumerateW");
#else #else
pfnDirectSoundEnumerate = (LPFN_SDE) GetProcAddress(hDSound,"DirectSoundEnumerateA"); pfnDirectSoundEnumerate = (LPFN_SDE) GetProcAddress(hDSound,"DirectSoundEnumerateA");
#endif #endif
pfnDllGetClassObject = (LPFNDLLGETCLASSOBJECT) GetProcAddress(hDSound,"DllGetClassObject"); pfnDllGetClassObject = (LPFNDLLGETCLASSOBJECT) GetProcAddress(hDSound,"DllGetClassObject");
} }
SendMessage(hWnd,CB_RESETCONTENT,0,0); SendMessage(hWnd,CB_RESETCONTENT,0,0);
// preset selector // preset selector
uSelectDevice = (UINT) SendMessage(hWnd,CB_ADDSTRING,0,(LPARAM) _T("Standard Audio")); uSelectDevice = (UINT) SendMessage(hWnd,CB_ADDSTRING,0,(LPARAM) _T("Standard Audio"));
SendMessage(hWnd,CB_SETITEMDATA,uSelectDevice,WAVE_MAPPER); SendMessage(hWnd,CB_SETITEMDATA,uSelectDevice,WAVE_MAPPER);
// check for direct sound interface functions // check for direct sound interface functions
if (pfnDirectSoundEnumerate != NULL && pfnDllGetClassObject != NULL) if (pfnDirectSoundEnumerate != NULL && pfnDllGetClassObject != NULL)
{ {
// copy product name and wave device ID to combo box // copy product name and wave device ID to combo box
if (SUCCEEDED(pfnDirectSoundEnumerate((LPDSENUMCALLBACK) DSEnumProc,hWnd))) if (SUCCEEDED(pfnDirectSoundEnumerate((LPDSENUMCALLBACK) DSEnumProc,hWnd)))
{ {
UINT i; UINT i;
uDevNo = (UINT) SendMessage(hWnd,CB_GETCOUNT,0,0); uDevNo = (UINT) SendMessage(hWnd,CB_GETCOUNT,0,0);
for (i = 0; i < uDevNo; ++i) for (i = 0; i < uDevNo; ++i)
{ {
// translate device ID to combo box position // translate device ID to combo box position
uDevID = (UINT) SendMessage(hWnd,CB_GETITEMDATA,i,0); uDevID = (UINT) SendMessage(hWnd,CB_GETITEMDATA,i,0);
if (uDevID == uDeviceID) uSelectDevice = i; if (uDevID == uDeviceID) uSelectDevice = i;
} }
} }
} }
else // direct sound not available, detect over wave capabilities else // direct sound not available, detect over wave capabilities
{ {
WAVEOUTCAPS woc; WAVEOUTCAPS woc;
uDevNo = waveOutGetNumDevs(); uDevNo = waveOutGetNumDevs();
for (uDevID = 0; uDevID < uDevNo; ++uDevID) for (uDevID = 0; uDevID < uDevNo; ++uDevID)
{ {
if ( waveOutGetDevCaps(uDevID,&woc,sizeof(woc)) == MMSYSERR_NOERROR if ( waveOutGetDevCaps(uDevID,&woc,sizeof(woc)) == MMSYSERR_NOERROR
&& (woc.dwFormats & WAVE_FORMAT_4M08) != 0) && (woc.dwFormats & WAVE_FORMAT_4M08) != 0)
{ {
// copy product name and wave device ID to combo box // copy product name and wave device ID to combo box
LONG i = (LONG) SendMessage(hWnd,CB_ADDSTRING,0,(LPARAM) woc.szPname); LONG i = (LONG) SendMessage(hWnd,CB_ADDSTRING,0,(LPARAM) woc.szPname);
SendMessage(hWnd,CB_SETITEMDATA,i,uDevID); SendMessage(hWnd,CB_SETITEMDATA,i,uDevID);
if (uDevID == uDeviceID) uSelectDevice = i; if (uDevID == uDeviceID) uSelectDevice = i;
} }
} }
} }
// activate last selected combo box item // activate last selected combo box item
SendMessage(hWnd,CB_SETCURSEL,uSelectDevice,0L); SendMessage(hWnd,CB_SETCURSEL,uSelectDevice,0L);
if (hDSound != NULL) // direct sound dll loaded if (hDSound != NULL) // direct sound dll loaded
{ {
pfnDllGetClassObject = NULL; pfnDllGetClassObject = NULL;
VERIFY(FreeLibrary(hDSound)); VERIFY(FreeLibrary(hDSound));
} }
return; return;
} }

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -1,257 +1,257 @@
/* /*
* symbfile.c * symbfile.c
* *
* This file is part of Emu48 * This file is part of Emu48
* *
* Copyright (C) 2008 Christoph Gießelink * Copyright (C) 2008 Christoph Gießelink
* *
*/ */
#include "pch.h" #include "pch.h"
#include "emu48.h" #include "Emu48.h"
//################ //################
//# //#
//# Saturn Object File Reading //# Saturn Object File Reading
//# //#
//################ //################
#define RECORD_BLOCK 256 // block size #define RECORD_BLOCK 256 // block size
#define OS_RESOLVED 0x8000 // resolved symbol #define OS_RESOLVED 0x8000 // resolved symbol
#define OS_RELOCATABLE 0x4000 // relocatable symbol #define OS_RELOCATABLE 0x4000 // relocatable symbol
#define SAT_ID "Saturn3" // saturn block header #define SAT_ID "Saturn3" // saturn block header
#define SYMB_ID "Symb" // symbol block header #define SYMB_ID "Symb" // symbol block header
#define HASHENTRIES 199 // size of hash table #define HASHENTRIES 199 // size of hash table
typedef struct _REFDATA typedef struct _REFDATA
{ {
LPTSTR lpszName; // symbol name LPTSTR lpszName; // symbol name
DWORD dwAddr; // resolved address DWORD dwAddr; // resolved address
struct _REFDATA* pNext; struct _REFDATA* pNext;
} REFDATA, *PREFDATA; } REFDATA, *PREFDATA;
static PREFDATA ppsBase[HASHENTRIES]; // base of symbol references (initialized with NULL) static PREFDATA ppsBase[HASHENTRIES]; // base of symbol references (initialized with NULL)
static __inline DWORD GetHash(DWORD dwVal) static __inline DWORD GetHash(DWORD dwVal)
{ {
return dwVal % HASHENTRIES; // hash function return dwVal % HASHENTRIES; // hash function
} }
static DWORD GetBigEndian(LPBYTE pbyData, INT nSize) static DWORD GetBigEndian(LPBYTE pbyData, INT nSize)
{ {
DWORD dwVal = 0; DWORD dwVal = 0;
while (nSize-- > 0) while (nSize-- > 0)
{ {
dwVal <<= 8; dwVal <<= 8;
dwVal += *pbyData++; dwVal += *pbyData++;
} }
return dwVal; return dwVal;
} }
// //
// check if entry table is empty // check if entry table is empty
// //
BOOL RplTableEmpty(VOID) BOOL RplTableEmpty(VOID)
{ {
DWORD i; DWORD i;
BOOL bEmpty = TRUE; BOOL bEmpty = TRUE;
// check if hash table is empty // check if hash table is empty
for (i = 0; bEmpty && i < ARRAYSIZEOF(ppsBase); ++i) for (i = 0; bEmpty && i < ARRAYSIZEOF(ppsBase); ++i)
{ {
bEmpty = (ppsBase[i] == NULL); // check if empty bEmpty = (ppsBase[i] == NULL); // check if empty
} }
return bEmpty; return bEmpty;
} }
// //
// load entry table // load entry table
// //
BOOL RplLoadTable(LPCTSTR lpszFilename) BOOL RplLoadTable(LPCTSTR lpszFilename)
{ {
BYTE byPage[RECORD_BLOCK]; // record page size BYTE byPage[RECORD_BLOCK]; // record page size
HANDLE hFile; HANDLE hFile;
DWORD dwFileLength,dwCodeLength,dwNoSymbols,dwNoReferences; DWORD dwFileLength,dwCodeLength,dwNoSymbols,dwNoReferences;
DWORD dwFilePos,dwBytesRead,dwSymb,dwPageIndex,dwResolvedSymb; DWORD dwFilePos,dwBytesRead,dwSymb,dwPageIndex,dwResolvedSymb;
BOOL bSymbol,bSucc; BOOL bSymbol,bSucc;
bSucc = FALSE; bSucc = FALSE;
hFile = CreateFile(lpszFilename,GENERIC_READ,FILE_SHARE_READ,NULL,OPEN_EXISTING,FILE_FLAG_SEQUENTIAL_SCAN,NULL); hFile = CreateFile(lpszFilename,GENERIC_READ,FILE_SHARE_READ,NULL,OPEN_EXISTING,FILE_FLAG_SEQUENTIAL_SCAN,NULL);
if (hFile != INVALID_HANDLE_VALUE) if (hFile != INVALID_HANDLE_VALUE)
{ {
dwResolvedSymb = 0; // no resolved symbols added dwResolvedSymb = 0; // no resolved symbols added
bSymbol = TRUE; // next set is a symbol bSymbol = TRUE; // next set is a symbol
// read first page // read first page
ReadFile(hFile,byPage,sizeof(byPage),&dwBytesRead,NULL); ReadFile(hFile,byPage,sizeof(byPage),&dwBytesRead,NULL);
if (dwBytesRead == sizeof(byPage) && memcmp(byPage,SAT_ID,7) == 0) if (dwBytesRead == sizeof(byPage) && memcmp(byPage,SAT_ID,7) == 0)
{ {
// file length in bytes // file length in bytes
dwFileLength = GetBigEndian(byPage+7,sizeof(WORD)) * sizeof(byPage); dwFileLength = GetBigEndian(byPage+7,sizeof(WORD)) * sizeof(byPage);
// code area in nibbles // code area in nibbles
dwCodeLength = GetBigEndian(byPage+9,sizeof(DWORD)); dwCodeLength = GetBigEndian(byPage+9,sizeof(DWORD));
// no. of symbols & references // no. of symbols & references
dwNoSymbols = GetBigEndian(byPage+13,sizeof(WORD)); dwNoSymbols = GetBigEndian(byPage+13,sizeof(WORD));
// no. of references // no. of references
dwNoReferences = GetBigEndian(byPage+15,sizeof(WORD)); dwNoReferences = GetBigEndian(byPage+15,sizeof(WORD));
// convert code area length into no. of pages // convert code area length into no. of pages
dwPageIndex = (dwCodeLength + (2 * sizeof(byPage) - 1)) / (2 * sizeof(byPage)); dwPageIndex = (dwCodeLength + (2 * sizeof(byPage) - 1)) / (2 * sizeof(byPage));
// calculate no. of code pages // calculate no. of code pages
dwFilePos = dwPageIndex * sizeof(byPage); dwFilePos = dwPageIndex * sizeof(byPage);
// jump to begin of symbols by skipping no. of code pages // jump to begin of symbols by skipping no. of code pages
bSucc = SetFilePointer(hFile,dwFilePos,NULL,FILE_CURRENT) != INVALID_SET_FILE_POINTER; bSucc = SetFilePointer(hFile,dwFilePos,NULL,FILE_CURRENT) != INVALID_SET_FILE_POINTER;
dwFilePos += sizeof(byPage); // actual file position dwFilePos += sizeof(byPage); // actual file position
} }
// read all symbol pages // read all symbol pages
for (dwPageIndex = 256, dwSymb = 0; bSucc && dwSymb < dwNoSymbols; dwPageIndex += 42) for (dwPageIndex = 256, dwSymb = 0; bSucc && dwSymb < dwNoSymbols; dwPageIndex += 42)
{ {
if (dwPageIndex >= 256) // read complete page if (dwPageIndex >= 256) // read complete page
{ {
// read new symbol page // read new symbol page
ReadFile(hFile,byPage,sizeof(byPage),&dwBytesRead,NULL); ReadFile(hFile,byPage,sizeof(byPage),&dwBytesRead,NULL);
dwFilePos += dwBytesRead; // update file position dwFilePos += dwBytesRead; // update file position
if ( dwFilePos > dwFileLength if ( dwFilePos > dwFileLength
|| dwBytesRead != sizeof(byPage) || dwBytesRead != sizeof(byPage)
|| memcmp(byPage,SYMB_ID,4) != 0) || memcmp(byPage,SYMB_ID,4) != 0)
{ {
bSucc = FALSE; bSucc = FALSE;
break; break;
} }
dwPageIndex = 4; // begin of new symbol dwPageIndex = 4; // begin of new symbol
} }
if (bSymbol) // this is the 42 byte symbol set if (bSymbol) // this is the 42 byte symbol set
{ {
WORD wSymbolType = (WORD) GetBigEndian(byPage+dwPageIndex+36,sizeof(WORD)); WORD wSymbolType = (WORD) GetBigEndian(byPage+dwPageIndex+36,sizeof(WORD));
// check if it's a resolved or relocatable symbol // check if it's a resolved or relocatable symbol
bSymbol = (wSymbolType & OS_RESOLVED) != 0; bSymbol = (wSymbolType & OS_RESOLVED) != 0;
if (bSymbol) ++dwResolvedSymb; // added resolved symbol if (bSymbol) ++dwResolvedSymb; // added resolved symbol
if (wSymbolType == OS_RESOLVED) // resolved symbol type if (wSymbolType == OS_RESOLVED) // resolved symbol type
{ {
TCHAR szSymbolName[36+1],*pcPtr; TCHAR szSymbolName[36+1],*pcPtr;
PREFDATA pData; PREFDATA pData;
DWORD dwHash; DWORD dwHash;
#if defined _UNICODE #if defined _UNICODE
{ {
MultiByteToWideChar(CP_ACP, MB_PRECOMPOSED,(LPCSTR)byPage+dwPageIndex,36, MultiByteToWideChar(CP_ACP, MB_PRECOMPOSED,(LPCSTR)byPage+dwPageIndex,36,
szSymbolName,ARRAYSIZEOF(szSymbolName)); szSymbolName,ARRAYSIZEOF(szSymbolName));
szSymbolName[36] = 0; // set EOS szSymbolName[36] = 0; // set EOS
} }
#else #else
{ {
lstrcpyn(szSymbolName,(LPCSTR)byPage+dwPageIndex,ARRAYSIZEOF(szSymbolName)); lstrcpyn(szSymbolName,(LPCSTR)byPage+dwPageIndex,ARRAYSIZEOF(szSymbolName));
} }
#endif #endif
// cut symbol name at first space character // cut symbol name at first space character
if ((pcPtr = _tcschr(szSymbolName,_T(' '))) != NULL) if ((pcPtr = _tcschr(szSymbolName,_T(' '))) != NULL)
*pcPtr = 0; // set EOS *pcPtr = 0; // set EOS
// allocate symbol memory // allocate symbol memory
VERIFY(pData = (PREFDATA) malloc(sizeof(*pData))); VERIFY(pData = (PREFDATA) malloc(sizeof(*pData)));
pData->lpszName = DuplicateString(szSymbolName); pData->lpszName = DuplicateString(szSymbolName);
pData->dwAddr = GetBigEndian(byPage+dwPageIndex+38,sizeof(DWORD)); pData->dwAddr = GetBigEndian(byPage+dwPageIndex+38,sizeof(DWORD));
// add to hash table // add to hash table
dwHash = GetHash(pData->dwAddr); dwHash = GetHash(pData->dwAddr);
pData->pNext = ppsBase[dwHash]; pData->pNext = ppsBase[dwHash];
ppsBase[dwHash] = pData; ppsBase[dwHash] = pData;
} }
++dwSymb; // got symbol ++dwSymb; // got symbol
} }
else // 42 byte fill reference else // 42 byte fill reference
{ {
bSymbol = TRUE; // nothing to do, next is a symbol set bSymbol = TRUE; // nothing to do, next is a symbol set
} }
} }
bSucc = bSucc && (dwFilePos <= dwFileLength) bSucc = bSucc && (dwFilePos <= dwFileLength)
&& (dwNoSymbols == (dwResolvedSymb + dwNoReferences)); && (dwNoSymbols == (dwResolvedSymb + dwNoReferences));
CloseHandle(hFile); CloseHandle(hFile);
} }
if (!bSucc) RplDeleteTable(); // delete current table if (!bSucc) RplDeleteTable(); // delete current table
return bSucc; return bSucc;
} }
// //
// delete entry table // delete entry table
// //
VOID RplDeleteTable(VOID) VOID RplDeleteTable(VOID)
{ {
PREFDATA pData; PREFDATA pData;
DWORD i; DWORD i;
// clear hash entries // clear hash entries
for (i = 0; i < ARRAYSIZEOF(ppsBase); ++i) for (i = 0; i < ARRAYSIZEOF(ppsBase); ++i)
{ {
while (ppsBase[i] != NULL) // walk through all datasets while (ppsBase[i] != NULL) // walk through all datasets
{ {
pData = ppsBase[i]->pNext; pData = ppsBase[i]->pNext;
free(ppsBase[i]->lpszName); free(ppsBase[i]->lpszName);
free(ppsBase[i]); free(ppsBase[i]);
ppsBase[i] = pData; ppsBase[i] = pData;
} }
} }
return; return;
} }
// //
// return name for given entry address // return name for given entry address
// //
LPCTSTR RplGetName(DWORD dwAddr) LPCTSTR RplGetName(DWORD dwAddr)
{ {
PREFDATA pData = ppsBase[GetHash(dwAddr)]; PREFDATA pData = ppsBase[GetHash(dwAddr)];
// walk through all datasets of hash entry // walk through all datasets of hash entry
for (; pData != NULL; pData = pData->pNext) for (; pData != NULL; pData = pData->pNext)
{ {
if (pData->dwAddr == dwAddr) // found address if (pData->dwAddr == dwAddr) // found address
return pData->lpszName; // return symbol name return pData->lpszName; // return symbol name
} }
return NULL; return NULL;
} }
// //
// return entry address for given name // return entry address for given name
// //
BOOL RplGetAddr(LPCTSTR lpszName, DWORD *pdwAddr) BOOL RplGetAddr(LPCTSTR lpszName, DWORD *pdwAddr)
{ {
PREFDATA pData; PREFDATA pData;
DWORD i; DWORD i;
// check for every dataset in hash table // check for every dataset in hash table
for (i = 0; i < ARRAYSIZEOF(ppsBase); ++i) for (i = 0; i < ARRAYSIZEOF(ppsBase); ++i)
{ {
// walk through all datasets of hash entry // walk through all datasets of hash entry
for (pData = ppsBase[i]; pData != NULL; pData = pData->pNext) for (pData = ppsBase[i]; pData != NULL; pData = pData->pNext)
{ {
// found symbol name // found symbol name
if (lstrcmp(lpszName,pData->lpszName) == 0) if (lstrcmp(lpszName,pData->lpszName) == 0)
{ {
*pdwAddr = pData->dwAddr; // return address *pdwAddr = pData->dwAddr; // return address
return FALSE; // found return FALSE; // found
} }
} }
} }
return TRUE; // not found return TRUE; // not found
} }

View file

@ -1,435 +1,429 @@
/* /*
* timer.c * timer.c
* *
* This file is part of Emu48 * This file is part of Emu48
* *
* Copyright (C) 1995 Sebastien Carlier * Copyright (C) 1995 Sebastien Carlier
* *
*/ */
#include "pch.h" #include "pch.h"
#include "emu48.h" #include "Emu48.h"
#include "ops.h" #include "ops.h"
#include "io.h" // I/O definitions #include "io.h" // I/O definitions
#define AUTO_OFF 10 // Time in minutes for 'auto off' #define AUTO_OFF 10 // Time in minutes for 'auto off'
// Ticks for 'auto off' // Ticks for 'auto off'
#define OFF_TIME ((ULONGLONG) (AUTO_OFF * 60) << 13) #define OFF_TIME ((ULONGLONG) (AUTO_OFF * 60) << 13)
// memory address for clock and auto off // memory address for clock and auto off
// S(X) = 0x70052-0x70070, G(X) = 0x80058-0x80076, 49G = 0x80058-0x80076 // S(X) = 0x70052-0x70070, G(X) = 0x80058-0x80076, 49G = 0x80058-0x80076
#define RPLTIME ((cCurrentRomType=='S')?0x52:0x58) #define RPLTIME ((cCurrentRomType=='S')?0x52:0x58)
#define T1_FREQ 62 // Timer1 1/frequency in ms #define T1_FREQ 62 // Timer1 1/frequency in ms
#define T2_FREQ 8192 // Timer2 frequency #define T2_FREQ 8192 // Timer2 frequency
static BOOL bStarted = FALSE; static BOOL bStarted = FALSE;
static BOOL bOutRange = FALSE; // flag if timer value out of range static BOOL bOutRange = FALSE; // flag if timer value out of range
static UINT uT1TimerId = 0; static UINT uT1TimerId = 0;
static UINT uT2TimerId = 0; static UINT uT2TimerId = 0;
static BOOL bNINT2T1 = FALSE; // state of NINT2 affected from timer1 static BOOL bNINT2T1 = FALSE; // state of NINT2 affected from timer1
static BOOL bNINT2T2 = FALSE; // state of NINT2 affected from timer2 static BOOL bNINT2T2 = FALSE; // state of NINT2 affected from timer2
static BOOL bAccurateTimer; // flag if accurate timer is used static BOOL bAccurateTimer; // flag if accurate timer is used
static LARGE_INTEGER lT2Ref; // counter value at timer2 start static LARGE_INTEGER lT2Ref; // counter value at timer2 start
static TIMECAPS tc; // timer information static TIMECAPS tc; // timer information
static UINT uT2MaxTicks; // max. timer2 ticks handled by one timer event static UINT uT2MaxTicks; // max. timer2 ticks handled by one timer event
static DWORD dwT2Ref; // timer2 value at last timer2 access static DWORD dwT2Ref; // timer2 value at last timer2 access
static DWORD dwT2Cyc; // cpu cycle counter at last timer2 access static DWORD dwT2Cyc; // cpu cycle counter at last timer2 access
static void CALLBACK TimeProc(UINT uEventId, UINT uMsg, DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2); static void CALLBACK TimeProc(UINT uEventId, UINT uMsg, DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2);
static DWORD CalcT2(VOID) // calculate timer2 value static DWORD CalcT2(VOID) // calculate timer2 value
{ {
DWORD dwT2 = Chipset.t2; // get value from chipset DWORD dwT2 = Chipset.t2; // get value from chipset
if (bStarted) // timer2 running if (bStarted) // timer2 running
{ {
LARGE_INTEGER lT2Act; LARGE_INTEGER lT2Act;
DWORD dwT2Dif; DWORD dwT2Dif;
// timer should run a little bit faster (10%) than maschine in authentic speed mode // timer should run a little bit faster (10%) than maschine in authentic speed mode
DWORD dwCycPerTick = (9 * T2CYCLES) / 5; DWORD dwCycPerTick = (9 * T2CYCLES) / 5;
QueryPerformanceCounter(&lT2Act); // actual time QueryPerformanceCounter(&lT2Act); // actual time
// calculate realtime timer2 ticks since reference point // calculate realtime timer2 ticks since reference point
dwT2 -= (DWORD) dwT2 -= (DWORD)
(((lT2Act.QuadPart - lT2Ref.QuadPart) * T2_FREQ) (((lT2Act.QuadPart - lT2Ref.QuadPart) * T2_FREQ)
/ lFreq.QuadPart); / lFreq.QuadPart);
dwT2Dif = dwT2Ref - dwT2; // timer2 ticks since last request dwT2Dif = dwT2Ref - dwT2; // timer2 ticks since last request
// checking if the MSB of dwT2Dif can be used as sign flag // checking if the MSB of dwT2Dif can be used as sign flag
_ASSERT((DWORD) tc.wPeriodMax < ((1<<(sizeof(dwT2Dif)*8-1))/8192)*1000); _ASSERT((DWORD) tc.wPeriodMax < ((1<<(sizeof(dwT2Dif)*8-1))/8192)*1000);
// 2nd timer call in a 32ms time frame or elapsed time is negative (Win2k bug) // 2nd timer call in a 32ms time frame or elapsed time is negative (Win2k bug)
if (!Chipset.Shutdn && ((dwT2Dif > 0x01 && dwT2Dif <= 0x100) || (dwT2Dif & 0x80000000) != 0)) if (!Chipset.Shutdn && ((dwT2Dif > 0x01 && dwT2Dif <= 0x100) || (dwT2Dif & 0x80000000) != 0))
{ {
DWORD dwT2Ticks = ((DWORD) (Chipset.cycles & 0xFFFFFFFF) - dwT2Cyc) / dwCycPerTick; DWORD dwT2Ticks = ((DWORD) (Chipset.cycles & 0xFFFFFFFF) - dwT2Cyc) / dwCycPerTick;
// estimated < real elapsed timer2 ticks or negative time // estimated < real elapsed timer2 ticks or negative time
if (dwT2Ticks < dwT2Dif || (dwT2Dif & 0x80000000) != 0) if (dwT2Ticks < dwT2Dif || (dwT2Dif & 0x80000000) != 0)
{ {
// real time too long or got negative time elapsed // real time too long or got negative time elapsed
dwT2 = dwT2Ref - dwT2Ticks; // estimated timer2 value from CPU cycles dwT2 = dwT2Ref - dwT2Ticks; // estimated timer2 value from CPU cycles
dwT2Cyc += dwT2Ticks * dwCycPerTick; // estimated CPU cycles for the timer2 ticks dwT2Cyc += dwT2Ticks * dwCycPerTick; // estimated CPU cycles for the timer2 ticks
} }
else else
{ {
// reached actual time -> new synchronizing // reached actual time -> new synchronizing
dwT2Cyc = (DWORD) (Chipset.cycles & 0xFFFFFFFF) - dwCycPerTick; dwT2Cyc = (DWORD) (Chipset.cycles & 0xFFFFFFFF) - dwCycPerTick;
} }
} }
else else
{ {
// valid actual time -> new synchronizing // valid actual time -> new synchronizing
dwT2Cyc = (DWORD) (Chipset.cycles & 0xFFFFFFFF) - dwCycPerTick; dwT2Cyc = (DWORD) (Chipset.cycles & 0xFFFFFFFF) - dwCycPerTick;
} }
// check if timer2 interrupt is active -> no timer2 value below 0xFFFFFFFF // check if timer2 interrupt is active -> no timer2 value below 0xFFFFFFFF
if ( Chipset.inte if ( Chipset.inte
&& (dwT2 & 0x80000000) != 0 && (dwT2 & 0x80000000) != 0
&& (!Chipset.Shutdn || (Chipset.IORam[TIMER2_CTRL]&WKE)) && (!Chipset.Shutdn || (Chipset.IORam[TIMER2_CTRL]&WKE))
&& (Chipset.IORam[TIMER2_CTRL]&INTR) && (Chipset.IORam[TIMER2_CTRL]&INTR)
) )
{ {
dwT2 = 0xFFFFFFFF; dwT2 = 0xFFFFFFFF;
dwT2Cyc = (DWORD) (Chipset.cycles & 0xFFFFFFFF) - dwCycPerTick; dwT2Cyc = (DWORD) (Chipset.cycles & 0xFFFFFFFF) - dwCycPerTick;
} }
dwT2Ref = dwT2; // new reference time dwT2Ref = dwT2; // new reference time
} }
return dwT2; return dwT2;
} }
static VOID CheckT1(BYTE nT1) static VOID CheckT1(BYTE nT1)
{ {
// implementation of TSRQ // implementation of TSRQ
bNINT2T1 = (Chipset.IORam[TIMER1_CTRL]&INTR) != 0 && (nT1&8) != 0; bNINT2T1 = (Chipset.IORam[TIMER1_CTRL]&INTR) != 0 && (nT1&8) != 0;
IOBit(SRQ1,TSRQ,bNINT2T1 || bNINT2T2); IOBit(SRQ1,TSRQ,bNINT2T1 || bNINT2T2);
if ((nT1&8) == 0) // timer1 MSB not set if ((nT1&8) == 0) // timer1 MSB not set
{ {
Chipset.IORam[TIMER1_CTRL] &= ~SRQ; // clear SRQ bit Chipset.IORam[TIMER1_CTRL] &= ~SRQ; // clear SRQ bit
return; return;
} }
_ASSERT((nT1&8) != 0); // timer1 MSB set _ASSERT((nT1&8) != 0); // timer1 MSB set
// timer MSB and INT or WAKE bit is set // timer MSB and INT or WAKE bit is set
if ((Chipset.IORam[TIMER1_CTRL]&(WKE|INTR)) != 0) if ((Chipset.IORam[TIMER1_CTRL]&(WKE|INTR)) != 0)
Chipset.IORam[TIMER1_CTRL] |= SRQ; // set SRQ Chipset.IORam[TIMER1_CTRL] |= SRQ; // set SRQ
// cpu not sleeping and T1 -> Interrupt // cpu not sleeping and T1 -> Interrupt
if ( (!Chipset.Shutdn || (Chipset.IORam[TIMER1_CTRL]&WKE)) if ( (!Chipset.Shutdn || (Chipset.IORam[TIMER1_CTRL]&WKE))
&& (Chipset.IORam[TIMER1_CTRL]&INTR)) && (Chipset.IORam[TIMER1_CTRL]&INTR))
{ {
Chipset.SoftInt = TRUE; Chipset.SoftInt = TRUE;
bInterrupt = TRUE; bInterrupt = TRUE;
} }
// cpu sleeping and T1 -> Wake Up // cpu sleeping and T1 -> Wake Up
if (Chipset.Shutdn && (Chipset.IORam[TIMER1_CTRL]&WKE)) if (Chipset.Shutdn && (Chipset.IORam[TIMER1_CTRL]&WKE))
{ {
Chipset.IORam[TIMER1_CTRL] &= ~WKE; // clear WKE bit Chipset.IORam[TIMER1_CTRL] &= ~WKE; // clear WKE bit
Chipset.bShutdnWake = TRUE; // wake up from SHUTDN mode Chipset.bShutdnWake = TRUE; // wake up from SHUTDN mode
SetEvent(hEventShutdn); // wake up emulation thread SetEvent(hEventShutdn); // wake up emulation thread
} }
return; return;
} }
static VOID CheckT2(DWORD dwT2) static VOID CheckT2(DWORD dwT2)
{ {
// implementation of TSRQ // implementation of TSRQ
bNINT2T2 = (Chipset.IORam[TIMER2_CTRL]&INTR) != 0 && (dwT2&0x80000000) != 0; bNINT2T2 = (Chipset.IORam[TIMER2_CTRL]&INTR) != 0 && (dwT2&0x80000000) != 0;
IOBit(SRQ1,TSRQ,bNINT2T1 || bNINT2T2); IOBit(SRQ1,TSRQ,bNINT2T1 || bNINT2T2);
if ((dwT2&0x80000000) == 0) // timer2 MSB not set if ((dwT2&0x80000000) == 0) // timer2 MSB not set
{ {
Chipset.IORam[TIMER2_CTRL] &= ~SRQ; // clear SRQ bit Chipset.IORam[TIMER2_CTRL] &= ~SRQ; // clear SRQ bit
return; return;
} }
_ASSERT((dwT2&0x80000000) != 0); // timer2 MSB set _ASSERT((dwT2&0x80000000) != 0); // timer2 MSB set
// timer MSB and INT or WAKE bit is set // timer MSB and INT or WAKE bit is set
if ((Chipset.IORam[TIMER2_CTRL]&(WKE|INTR)) != 0) if ((Chipset.IORam[TIMER2_CTRL]&(WKE|INTR)) != 0)
Chipset.IORam[TIMER2_CTRL] |= SRQ; // set SRQ Chipset.IORam[TIMER2_CTRL] |= SRQ; // set SRQ
// cpu not sleeping and T2 -> Interrupt // cpu not sleeping and T2 -> Interrupt
if ( (!Chipset.Shutdn || (Chipset.IORam[TIMER2_CTRL]&WKE)) if ( (!Chipset.Shutdn || (Chipset.IORam[TIMER2_CTRL]&WKE))
&& (Chipset.IORam[TIMER2_CTRL]&INTR)) && (Chipset.IORam[TIMER2_CTRL]&INTR))
{ {
Chipset.SoftInt = TRUE; Chipset.SoftInt = TRUE;
bInterrupt = TRUE; bInterrupt = TRUE;
} }
// cpu sleeping and T2 -> Wake Up // cpu sleeping and T2 -> Wake Up
if (Chipset.Shutdn && (Chipset.IORam[TIMER2_CTRL]&WKE)) if (Chipset.Shutdn && (Chipset.IORam[TIMER2_CTRL]&WKE))
{ {
Chipset.IORam[TIMER2_CTRL] &= ~WKE; // clear WKE bit Chipset.IORam[TIMER2_CTRL] &= ~WKE; // clear WKE bit
Chipset.bShutdnWake = TRUE; // wake up from SHUTDN mode Chipset.bShutdnWake = TRUE; // wake up from SHUTDN mode
SetEvent(hEventShutdn); // wake up emulation thread SetEvent(hEventShutdn); // wake up emulation thread
} }
return; return;
} }
static VOID RescheduleT2(BOOL bRefPoint) static VOID RescheduleT2(BOOL bRefPoint)
{ {
UINT uDelay; UINT uDelay;
_ASSERT(uT2TimerId == 0); // timer2 must stopped _ASSERT(uT2TimerId == 0); // timer2 must stopped
if (bRefPoint) // save reference time if (bRefPoint) // save reference time
{ {
dwT2Ref = Chipset.t2; // timer2 value at last timer2 access dwT2Ref = Chipset.t2; // timer2 value at last timer2 access
dwT2Cyc = (DWORD) (Chipset.cycles & 0xFFFFFFFF); // cpu cycle counter at last timer2 access dwT2Cyc = (DWORD) (Chipset.cycles & 0xFFFFFFFF); // cpu cycle counter at last timer2 access
QueryPerformanceCounter(&lT2Ref); // time of corresponding Chipset.t2 value QueryPerformanceCounter(&lT2Ref); // time of corresponding Chipset.t2 value
uDelay = Chipset.t2; // timer value for delay uDelay = Chipset.t2; // timer value for delay
} }
else // called without new refpoint, restart t2 with actual value else // called without new refpoint, restart t2 with actual value
{ {
uDelay = CalcT2(); // actual timer value for delay uDelay = CalcT2(); // actual timer value for delay
} }
if ((bOutRange = uDelay > uT2MaxTicks)) // delay greater maximum delay if ((bOutRange = uDelay > uT2MaxTicks)) // delay greater maximum delay
uDelay = uT2MaxTicks; // wait maximum delay time uDelay = uT2MaxTicks; // wait maximum delay time
uDelay = (uDelay * 125 + 1023) / 1024; // timer delay in ms (1000/8192 = 125/1024) uDelay = (uDelay * 125 + 1023) / 1024; // timer delay in ms (1000/8192 = 125/1024)
uDelay = __max(tc.wPeriodMin,uDelay); // wait minimum delay of timer uDelay = __max(tc.wPeriodMin,uDelay); // wait minimum delay of timer
_ASSERT(uDelay <= tc.wPeriodMax); // inside maximum event delay _ASSERT(uDelay <= tc.wPeriodMax); // inside maximum event delay
// start timer2; schedule event, when Chipset.t2 will be zero // start timer2; schedule event, when Chipset.t2 will be zero
VERIFY(uT2TimerId = timeSetEvent(uDelay,0,&TimeProc,2,TIME_ONESHOT)); VERIFY(uT2TimerId = timeSetEvent(uDelay,0,&TimeProc,2,TIME_ONESHOT));
return; return;
} }
static VOID AbortT2(VOID) static VOID AbortT2(VOID)
{ {
_ASSERT(uT2TimerId); _ASSERT(uT2TimerId);
timeKillEvent(uT2TimerId); // kill event timeKillEvent(uT2TimerId); // kill event
uT2TimerId = 0; // then reset var uT2TimerId = 0; // then reset var
return; return;
} }
static void CALLBACK TimeProc(UINT uEventId, UINT uMsg, DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2) static void CALLBACK TimeProc(UINT uEventId, UINT uMsg, DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
{ {
if (uEventId == 0) return; // illegal EventId if (uEventId == 0) return; // illegal EventId
if (uEventId == uT1TimerId) // called from timer1 event (default period 16 Hz) if (uEventId == uT1TimerId) // called from timer1 event (default period 16 Hz)
{ {
EnterCriticalSection(&csT1Lock); EnterCriticalSection(&csT1Lock);
{ {
Chipset.t1 = (Chipset.t1-1)&0xF;// decrement timer value Chipset.t1 = (Chipset.t1-1)&0xF;// decrement timer value
CheckT1(Chipset.t1); // test timer1 control bits CheckT1(Chipset.t1); // test timer1 control bits
} }
LeaveCriticalSection(&csT1Lock); LeaveCriticalSection(&csT1Lock);
return; return;
} }
if (uEventId == uT2TimerId) // called from timer2 event, Chipset.t2 should be zero if (uEventId == uT2TimerId) // called from timer2 event, Chipset.t2 should be zero
{ {
EnterCriticalSection(&csT2Lock); EnterCriticalSection(&csT2Lock);
{ {
uT2TimerId = 0; // single shot timer timer2 stopped uT2TimerId = 0; // single shot timer timer2 stopped
if (!bOutRange) // timer event elapsed if (!bOutRange) // timer event elapsed
{ {
// timer2 overrun, test timer2 control bits else restart timer2 // timer2 overrun, test timer2 control bits else restart timer2
Chipset.t2 = CalcT2(); // calculate new timer2 value Chipset.t2 = CalcT2(); // calculate new timer2 value
CheckT2(Chipset.t2); // test timer2 control bits CheckT2(Chipset.t2); // test timer2 control bits
} }
RescheduleT2(!bOutRange); // restart timer2 RescheduleT2(!bOutRange); // restart timer2
} }
LeaveCriticalSection(&csT2Lock); LeaveCriticalSection(&csT2Lock);
return; return;
} }
return; return;
UNREFERENCED_PARAMETER(uMsg); UNREFERENCED_PARAMETER(uMsg);
UNREFERENCED_PARAMETER(dwUser); UNREFERENCED_PARAMETER(dwUser);
UNREFERENCED_PARAMETER(dw1); UNREFERENCED_PARAMETER(dw1);
UNREFERENCED_PARAMETER(dw2); UNREFERENCED_PARAMETER(dw2);
} }
VOID SetHP48Time(VOID) // set date and time VOID SetHP48Time(VOID) // set date and time
{ {
SYSTEMTIME ts; SYSTEMTIME ts;
ULONGLONG ticks, time; ULONGLONG ticks, time;
DWORD dw; DWORD dw;
WORD crc, i; WORD crc, i;
BYTE p[4]; LPBYTE pbyTime;
_ASSERT(sizeof(ULONGLONG) == 8); // check size of datatype _ASSERT(sizeof(ULONGLONG) == 8); // check size of datatype
GetLocalTime(&ts); // local time, _ftime() cause memory/resource leaks GetLocalTime(&ts); // local time, _ftime() cause memory/resource leaks
// calculate days until 01.01.0000 (Erlang BIF localtime/0) // calculate days until 01.01.0000 (Erlang BIF localtime/0)
dw = (DWORD) ts.wMonth; dw = (DWORD) ts.wMonth;
if (dw > 2) if (dw > 2)
dw -= 3L; dw -= 3L;
else else
{ {
dw += 9L; dw += 9L;
--ts.wYear; --ts.wYear;
} }
dw = (DWORD) ts.wDay + (153L * dw + 2L) / 5L; dw = (DWORD) ts.wDay + (153L * dw + 2L) / 5L;
dw += (146097L * (((DWORD) ts.wYear) / 100L)) / 4L; dw += (146097L * (((DWORD) ts.wYear) / 100L)) / 4L;
dw += (1461L * (((DWORD) ts.wYear) % 100L)) / 4L; dw += (1461L * (((DWORD) ts.wYear) % 100L)) / 4L;
dw += (-719469L + 719528L); // days from year 0 dw += (-719469L + 719528L); // days from year 0
ticks = (ULONGLONG) dw; // convert to 64 bit ticks = (ULONGLONG) dw; // convert to 64 bit
// convert into seconds and add time // convert into seconds and add time
ticks = ticks * 24L + (ULONGLONG) ts.wHour; ticks = ticks * 24L + (ULONGLONG) ts.wHour;
ticks = ticks * 60L + (ULONGLONG) ts.wMinute; ticks = ticks * 60L + (ULONGLONG) ts.wMinute;
ticks = ticks * 60L + (ULONGLONG) ts.wSecond; ticks = ticks * 60L + (ULONGLONG) ts.wSecond;
// create timerticks = (s + ms) * 8192 // create timerticks = (s + ms) * 8192
ticks = (ticks << 13) | (((ULONGLONG) ts.wMilliseconds << 10) / 125); ticks = (ticks << 13) | (((ULONGLONG) ts.wMilliseconds << 10) / 125);
ticks += Chipset.t2; // add actual timer2 value ticks += Chipset.t2; // add actual timer2 value
time = ticks; // save for calc. timeout time = ticks; // save for calc. timeout
time += OFF_TIME; // add 10 min for auto off time += OFF_TIME; // add 10 min for auto off
dw = RPLTIME; // HP addresses for clock in port0 pbyTime = Port0 + RPLTIME; // HP addresses for clock in port0
crc = 0x0; // reset crc value crc = 0x0; // reset crc value
for (i = 0; i < 13; ++i, ++dw) // write date and time for (i = 0; i < 13; ++i) // write date and time
{ {
*p = (BYTE) ticks & 0xf; *pbyTime = (BYTE) ticks & 0xf; // time
crc = (crc >> 4) ^ (((crc ^ ((WORD) *p)) & 0xf) * 0x1081); crc = UpCRC(crc,*pbyTime);
Port0[dw] = *p; // always store in port0 ticks >>= 4;
ticks >>= 4;
} pbyTime[13+4] = (BYTE) time & 0xf; // auto off
time >>= 4;
Nunpack(p,crc,4); // write crc ++pbyTime;
memcpy(Port0+dw,p,4); // always store in port0 }
dw += 4; // HP addresses for timeout Nunpack(pbyTime,crc,4); // write crc
for (i = 0; i < 13; ++i, ++dw) // write time for auto off pbyTime[13+4] = 0xf;
{ return;
Port0[dw] = (BYTE) time & 0xf; // always store in port0 }
time >>= 4;
} VOID StartTimers(VOID)
{
Port0[dw] = 0xf; // always store in port0 if (bStarted) // timer running
return; return; // -> quit
} if (Chipset.IORam[TIMER2_CTRL]&RUN) // start timer1 and timer2 ?
{
VOID StartTimers(VOID) bStarted = TRUE; // flag timer running
{ // initialisation of NINT2 lines
if (bStarted) // timer running bNINT2T1 = (Chipset.IORam[TIMER1_CTRL]&INTR) != 0 && (Chipset.t1 & 8) != 0;
return; // -> quit bNINT2T2 = (Chipset.IORam[TIMER2_CTRL]&INTR) != 0 && (Chipset.t2 & 0x80000000) != 0;
if (Chipset.IORam[TIMER2_CTRL]&RUN) // start timer1 and timer2 ? timeGetDevCaps(&tc,sizeof(tc)); // get timer resolution
{
bStarted = TRUE; // flag timer running // max. timer2 ticks that can be handled by one timer event
// initialisation of NINT2 lines uT2MaxTicks = __min((0xFFFFFFFF / 1024),tc.wPeriodMax);
bNINT2T1 = (Chipset.IORam[TIMER1_CTRL]&INTR) != 0 && (Chipset.t1 & 8) != 0; uT2MaxTicks = __min((0xFFFFFFFF - 1023) / 125,uT2MaxTicks * 1024 / 125);
bNINT2T2 = (Chipset.IORam[TIMER2_CTRL]&INTR) != 0 && (Chipset.t2 & 0x80000000) != 0;
timeGetDevCaps(&tc,sizeof(tc)); // get timer resolution CheckT1(Chipset.t1); // check for timer1 interrupts
CheckT2(Chipset.t2); // check for timer2 interrupts
// max. timer2 ticks that can be handled by one timer event // set timer resolution to greatest possible one
uT2MaxTicks = __min((0xFFFFFFFF / 1024),tc.wPeriodMax); bAccurateTimer = (timeBeginPeriod(tc.wPeriodMin) == TIMERR_NOERROR);
uT2MaxTicks = __min((0xFFFFFFFF - 1023) / 125,uT2MaxTicks * 1024 / 125); // set timer1 with given period
VERIFY(uT1TimerId = timeSetEvent(T1_FREQ,0,&TimeProc,1,TIME_PERIODIC));
CheckT1(Chipset.t1); // check for timer1 interrupts RescheduleT2(TRUE); // start timer2
CheckT2(Chipset.t2); // check for timer2 interrupts }
// set timer resolution to greatest possible one return;
bAccurateTimer = (timeBeginPeriod(tc.wPeriodMin) == TIMERR_NOERROR); }
// set timer1 with given period
VERIFY(uT1TimerId = timeSetEvent(T1_FREQ,0,&TimeProc,1,TIME_PERIODIC)); VOID StopTimers(VOID)
RescheduleT2(TRUE); // start timer2 {
} if (!bStarted) // timer stopped
return; return; // -> quit
} if (uT1TimerId != 0) // timer1 running
{
VOID StopTimers(VOID) // Critical Section handler may cause a dead lock
{ timeKillEvent(uT1TimerId); // stop timer1
if (!bStarted) // timer stopped uT1TimerId = 0; // set flag timer1 stopped
return; // -> quit }
if (uT1TimerId != 0) // timer1 running if (uT2TimerId != 0) // timer2 running
{ {
// Critical Section handler may cause a dead lock EnterCriticalSection(&csT2Lock);
timeKillEvent(uT1TimerId); // stop timer1 {
uT1TimerId = 0; // set flag timer1 stopped Chipset.t2 = CalcT2(); // update chipset timer2 value
} }
if (uT2TimerId != 0) // timer2 running LeaveCriticalSection(&csT2Lock);
{ AbortT2(); // stop timer2 outside critical section
EnterCriticalSection(&csT2Lock); }
{ bStarted = FALSE;
Chipset.t2 = CalcT2(); // update chipset timer2 value if (bAccurateTimer) // "Accurate timer" running
} {
LeaveCriticalSection(&csT2Lock); timeEndPeriod(tc.wPeriodMin); // finish service
AbortT2(); // stop timer2 outside critical section }
} return;
bStarted = FALSE; }
if (bAccurateTimer) // "Accurate timer" running
{ DWORD ReadT2(VOID)
timeEndPeriod(tc.wPeriodMin); // finish service {
} DWORD dwT2;
return; EnterCriticalSection(&csT2Lock);
} {
dwT2 = CalcT2(); // calculate timer2 value or if stopped last timer value
DWORD ReadT2(VOID) CheckT2(dwT2); // update timer2 control bits
{ }
DWORD dwT2; LeaveCriticalSection(&csT2Lock);
EnterCriticalSection(&csT2Lock); return dwT2;
{ }
dwT2 = CalcT2(); // calculate timer2 value or if stopped last timer value
CheckT2(dwT2); // update timer2 control bits VOID SetT2(DWORD dwValue)
} {
LeaveCriticalSection(&csT2Lock); // calling AbortT2() inside Critical Section handler may cause a dead lock
return dwT2; if (uT2TimerId != 0) // timer2 running
} AbortT2(); // stop timer2
EnterCriticalSection(&csT2Lock);
VOID SetT2(DWORD dwValue) {
{ Chipset.t2 = dwValue; // set new value
// calling AbortT2() inside Critical Section handler may cause a dead lock CheckT2(Chipset.t2); // test timer2 control bits
if (uT2TimerId != 0) // timer2 running if (bStarted) // timer running
AbortT2(); // stop timer2 RescheduleT2(TRUE); // restart timer2
EnterCriticalSection(&csT2Lock); }
{ LeaveCriticalSection(&csT2Lock);
Chipset.t2 = dwValue; // set new value return;
CheckT2(Chipset.t2); // test timer2 control bits }
if (bStarted) // timer running
RescheduleT2(TRUE); // restart timer2 BYTE ReadT1(VOID)
} {
LeaveCriticalSection(&csT2Lock); BYTE nT1;
return; EnterCriticalSection(&csT1Lock);
} {
nT1 = Chipset.t1; // read timer1 value
BYTE ReadT1(VOID) CheckT1(nT1); // update timer1 control bits
{ }
BYTE nT1; LeaveCriticalSection(&csT1Lock);
EnterCriticalSection(&csT1Lock); return nT1;
{ }
nT1 = Chipset.t1; // read timer1 value
CheckT1(nT1); // update timer1 control bits VOID SetT1(BYTE byValue)
} {
LeaveCriticalSection(&csT1Lock); BOOL bEqual;
return nT1;
} _ASSERT(byValue < 0x10); // timer1 is only a 4bit counter
VOID SetT1(BYTE byValue) EnterCriticalSection(&csT1Lock);
{ {
BOOL bEqual; bEqual = (Chipset.t1 == byValue); // check for same value
}
_ASSERT(byValue < 0x10); // timer1 is only a 4bit counter LeaveCriticalSection(&csT1Lock);
if (bEqual) return; // same value doesn't restart timer period
EnterCriticalSection(&csT1Lock);
{ if (uT1TimerId != 0) // timer1 running
bEqual = (Chipset.t1 == byValue); // check for same value {
} timeKillEvent(uT1TimerId); // stop timer1
LeaveCriticalSection(&csT1Lock); uT1TimerId = 0; // set flag timer1 stopped
if (bEqual) return; // same value doesn't restart timer period }
EnterCriticalSection(&csT1Lock);
if (uT1TimerId != 0) // timer1 running {
{ Chipset.t1 = byValue; // set new timer1 value
timeKillEvent(uT1TimerId); // stop timer1 CheckT1(Chipset.t1); // test timer1 control bits
uT1TimerId = 0; // set flag timer1 stopped }
} LeaveCriticalSection(&csT1Lock);
EnterCriticalSection(&csT1Lock); if (bStarted) // timer running
{ {
Chipset.t1 = byValue; // set new timer1 value // restart timer1 to get full period of frequency
CheckT1(Chipset.t1); // test timer1 control bits VERIFY(uT1TimerId = timeSetEvent(T1_FREQ,0,&TimeProc,1,TIME_PERIODIC));
} }
LeaveCriticalSection(&csT1Lock); return;
if (bStarted) // timer running }
{
// restart timer1 to get full period of frequency
VERIFY(uT1TimerId = timeSetEvent(T1_FREQ,0,&TimeProc,1,TIME_PERIODIC));
}
return;
}

View file

@ -1,103 +1,103 @@
/* /*
* types.h * types.h
* *
* This file is part of Emu48 * This file is part of Emu48
* *
* Copyright (C) 1995 Sebastien Carlier * Copyright (C) 1995 Sebastien Carlier
* *
*/ */
// HST bits // HST bits
#define XM 1 #define XM 1
#define SB 2 #define SB 2
#define SR 4 #define SR 4
#define MP 8 #define MP 8
#define SWORD SHORT // signed 16 Bit variable #define SWORD SHORT // signed 16 Bit variable
#define QWORD ULONGLONG // unsigned 64 Bit variable #define QWORD ULONGLONG // unsigned 64 Bit variable
#define CHIPSET Chipset_t #define CHIPSET Chipset_t
typedef struct typedef struct
{ {
SWORD nPosX; // position of window SWORD nPosX; // position of window
SWORD nPosY; SWORD nPosY;
BYTE type; // calculator type BYTE type; // calculator type
DWORD Port0Size; // real size of module in KB DWORD Port0Size; // real size of module in KB
DWORD Port1Size; // real size of module in KB DWORD Port1Size; // real size of module in KB
DWORD Port2Size; // real size of module in KB (HP49G only) DWORD Port2Size; // real size of module in KB (HP49G only)
DWORD dwUnused0; // not used, was memory pointer Port0 DWORD dwUnused0; // not used, was memory pointer Port0
DWORD dwUnused1; // not used, was memory pointer Port1 DWORD dwUnused1; // not used, was memory pointer Port1
DWORD dwUnused2; // not used, was memory pointer Port2 DWORD dwUnused2; // not used, was memory pointer Port2
DWORD pc; DWORD pc;
DWORD d0; DWORD d0;
DWORD d1; DWORD d1;
DWORD rstkp; DWORD rstkp;
DWORD rstk[8]; DWORD rstk[8];
BYTE A[16]; BYTE A[16];
BYTE B[16]; BYTE B[16];
BYTE C[16]; BYTE C[16];
BYTE D[16]; BYTE D[16];
BYTE R0[16]; BYTE R0[16];
BYTE R1[16]; BYTE R1[16];
BYTE R2[16]; BYTE R2[16];
BYTE R3[16]; BYTE R3[16];
BYTE R4[16]; BYTE R4[16];
BYTE ST[4]; BYTE ST[4];
BYTE HST; BYTE HST;
BYTE P; BYTE P;
WORD out; WORD out;
WORD in; WORD in;
BOOL SoftInt; BOOL SoftInt;
BOOL Shutdn; BOOL Shutdn;
BOOL mode_dec; BOOL mode_dec;
BOOL inte; // interrupt status flag (FALSE = int in service) BOOL inte; // interrupt status flag (FALSE = int in service)
BOOL intk; // 1 ms keyboard scan flag (TRUE = enable) BOOL intk; // 1 ms keyboard scan flag (TRUE = enable)
BOOL intd; // keyboard interrupt pending (TRUE = int pending) BOOL intd; // keyboard interrupt pending (TRUE = int pending)
BOOL carry; BOOL carry;
WORD crc; WORD crc;
WORD wPort2Crc; // fingerprint of port2 WORD wPort2Crc; // fingerprint of port2
WORD wRomCrc; // fingerprint of ROM WORD wRomCrc; // fingerprint of ROM
#if defined _USRDLL // DLL version #if defined _USRDLL // DLL version
QWORD cycles; // oscillator cycles QWORD cycles; // oscillator cycles
#else // EXE version #else // EXE version
DWORD cycles; // oscillator cycles DWORD cycles; // oscillator cycles
DWORD cycles_reserved; // reserved for MSB of oscillator cycles DWORD cycles_reserved; // reserved for MSB of oscillator cycles
#endif #endif
DWORD dwKdnCycles; // cpu cycles at start of 1ms key handler DWORD dwKdnCycles; // cpu cycles at start of 1ms key handler
UINT Bank_FF; // save state of HP48GX port2 or state of HP49G ROM FF UINT Bank_FF; // save state of HP48GX port2 or state of HP49G ROM FF
UINT FlashRomState; // WSM state of flash memory (unused) UINT FlashRomState; // WSM state of flash memory (unused)
BYTE cards_status; BYTE cards_status;
BYTE IORam[64]; // I/O hardware register BYTE IORam[64]; // I/O hardware register
UINT IOBase; // address of I/O modules page UINT IOBase; // address of I/O modules page
BOOL IOCfig; // I/O module configuration flag BOOL IOCfig; // I/O module configuration flag
BYTE P0Base, BSBase, P1Base, P2Base; // address of modules first 2KB page BYTE P0Base, BSBase, P1Base, P2Base; // address of modules first 2KB page
BYTE P0Size, BSSize, P1Size, P2Size; // mapped size of module in 2KB BYTE P0Size, BSSize, P1Size, P2Size; // mapped size of module in 2KB
BYTE P0End, BSEnd, P1End, P2End; // address of modules last 2KB page BYTE P0End, BSEnd, P1End, P2End; // address of modules last 2KB page
BOOL P0Cfig, BSCfig, P1Cfig, P2Cfig; // module address configuration flag BOOL P0Cfig, BSCfig, P1Cfig, P2Cfig; // module address configuration flag
BOOL P0Cfg2, BSCfg2, P1Cfg2, P2Cfg2; // module size configuration flag BOOL P0Cfg2, BSCfg2, P1Cfg2, P2Cfg2; // module size configuration flag
BYTE t1; BYTE t1;
DWORD t2; DWORD t2;
BOOL bShutdnWake; // flag for wake up from SHUTDN mode BOOL bShutdnWake; // flag for wake up from SHUTDN mode
BYTE Keyboard_Row[9]; BYTE Keyboard_Row[9];
WORD IR15X; WORD IR15X;
UINT Keyboard_State; // not used UINT Keyboard_State; // not used
signed short loffset; signed short loffset;
signed int width; signed int width;
UINT boffset; UINT boffset;
UINT lcounter; UINT lcounter;
UINT sync; // not used UINT sync; // not used
BYTE contrast; BYTE contrast;
BOOL dispon; // not used BOOL dispon; // not used
DWORD start1; DWORD start1;
DWORD start12; DWORD start12;
DWORD end1; DWORD end1;
DWORD start2, end2; DWORD start2, end2;
} Chipset_t; } Chipset_t;

View file

@ -1,78 +1,73 @@
/* /*
* udp.c * udp.c
* *
* This file is part of Emu48 * This file is part of Emu48
* *
* Copyright (C) 2011 Christoph Gießelink * Copyright (C) 2011 Christoph Gießelink
* *
*/ */
#include "pch.h" #include "pch.h"
#include "emu48.h" #include "Emu48.h"
TCHAR szUdpServer[1024] = _T("localhost"); TCHAR szUdpServer[1024] = _T("localhost");
WORD wUdpPort = 5025; // scpi-raw WORD wUdpPort = 5025; // scpi-raw
static SOCKADDR_IN sServer = { AF_INET, 0, { 255, 255, 255, 255 } }; static SOCKADDR_IN sServer = { AF_INET, 0, { 255, 255, 255, 255 } };
VOID ResetUdp(VOID) VOID ResetUdp(VOID)
{ {
sServer.sin_addr.s_addr = INADDR_NONE; // invalidate saved UDP address sServer.sin_addr.s_addr = INADDR_NONE; // invalidate saved UDP address
return; return;
} }
BOOL SendByteUdp(BYTE byData) BOOL SendByteUdp(BYTE byData)
{ {
WSADATA wsd; SOCKET sClient;
SOCKET sClient;
BOOL bErr = TRUE;
BOOL bErr = TRUE;
// IP address not specified
VERIFY(WSAStartup(MAKEWORD(1,1),&wsd) == 0); if (sServer.sin_addr.s_addr == INADDR_NONE)
{
// IP address not specified LPSTR lpszIpAddr;
if (sServer.sin_addr.s_addr == INADDR_NONE)
{ #if defined _UNICODE
LPSTR lpszIpAddr; DWORD dwLength = lstrlen(szUdpServer) + 1;
#if defined _UNICODE if ((lpszIpAddr = (LPSTR) _alloca(dwLength)) == NULL)
DWORD dwLength = lstrlen(szUdpServer) + 1; return TRUE; // server ip address not found
if ((lpszIpAddr = (LPSTR) _alloca(dwLength)) == NULL) WideCharToMultiByte(CP_ACP, WC_COMPOSITECHECK,
return TRUE; // server ip address not found szUdpServer, dwLength,
lpszIpAddr, dwLength, NULL, NULL);
WideCharToMultiByte(CP_ACP, WC_COMPOSITECHECK, #else
szUdpServer, dwLength, lpszIpAddr = szUdpServer;
lpszIpAddr, dwLength, NULL, NULL); #endif
#else
lpszIpAddr = szUdpServer; // try to interpret string as IPv4 address
#endif sServer.sin_addr.s_addr = inet_addr(lpszIpAddr);
// try to interpret string as IPv4 address // not a valid ip address -> try to get ip address from name server
sServer.sin_addr.s_addr = inet_addr(lpszIpAddr); if (sServer.sin_addr.s_addr == INADDR_NONE)
{
// not a valid ip address -> try to get ip address from name server PHOSTENT host = gethostbyname(lpszIpAddr);
if (sServer.sin_addr.s_addr == INADDR_NONE) if (host == NULL)
{ {
PHOSTENT host = gethostbyname(lpszIpAddr); return TRUE; // server ip address not found
if (host == NULL) }
{
return TRUE; // server ip address not found sServer.sin_addr.s_addr = ((PIN_ADDR) host->h_addr_list[0])->s_addr;
} }
}
sServer.sin_addr.s_addr = ((PIN_ADDR) host->h_addr_list[0])->s_addr;
} // create UDP socket
} if ((sClient = socket(AF_INET, SOCK_DGRAM, 0)) != INVALID_SOCKET)
{
// create UDP socket sServer.sin_port = htons(wUdpPort);
if ((sClient = socket(AF_INET, SOCK_DGRAM, 0)) != INVALID_SOCKET)
{ // transmit data byte
sServer.sin_port = htons(wUdpPort); bErr = sendto(sClient, (LPCCH) &byData, sizeof(byData), 0, (LPSOCKADDR) &sServer, sizeof(sServer)) == SOCKET_ERROR;
closesocket(sClient);
// transmit data byte }
bErr = sendto(sClient, (LPCCH) &byData, sizeof(byData), 0, (LPSOCKADDR) &sServer, sizeof(sServer)) == SOCKET_ERROR; return bErr;
closesocket(sClient); }
}
WSACleanup(); // cleanup network stack
return bErr;
}

View file

@ -1,778 +0,0 @@
/*
* fetch.c
*
* This file is part of Emu48
*
* Copyright (C) 1999 Christoph Gießelink
*
*/
#include "pch.h"
#include "opcodes.h"
#define F 0xFF // F = function
typedef const struct
{
LPCVOID pLnk;
const DWORD dwTyp;
} JMPTAB, *PJMPTAB;
// jump tables
static JMPTAB oF_[] =
{
(LPCVOID) oF0, F,
(LPCVOID) oF1, F,
(LPCVOID) oF2, F,
(LPCVOID) oF3, F,
(LPCVOID) oF4, F,
(LPCVOID) oF5, F,
(LPCVOID) oF6, F,
(LPCVOID) oF7, F,
(LPCVOID) oF8, F,
(LPCVOID) oF9, F,
(LPCVOID) oFA, F,
(LPCVOID) oFB, F,
(LPCVOID) oFC, F,
(LPCVOID) oFD, F,
(LPCVOID) oFE, F,
(LPCVOID) oFF, F
};
static JMPTAB oE_[] =
{
(LPCVOID) oE0, F,
(LPCVOID) oE1, F,
(LPCVOID) oE2, F,
(LPCVOID) oE3, F,
(LPCVOID) oE4, F,
(LPCVOID) oE5, F,
(LPCVOID) oE6, F,
(LPCVOID) oE7, F,
(LPCVOID) oE8, F,
(LPCVOID) oE9, F,
(LPCVOID) oEA, F,
(LPCVOID) oEB, F,
(LPCVOID) oEC, F,
(LPCVOID) oED, F,
(LPCVOID) oEE, F,
(LPCVOID) oEF, F
};
static JMPTAB oD_[] =
{
(LPCVOID) oD0, F,
(LPCVOID) oD1, F,
(LPCVOID) oD2, F,
(LPCVOID) oD3, F,
(LPCVOID) oD4, F,
(LPCVOID) oD5, F,
(LPCVOID) oD6, F,
(LPCVOID) oD7, F,
(LPCVOID) oD8, F,
(LPCVOID) oD9, F,
(LPCVOID) oDA, F,
(LPCVOID) oDB, F,
(LPCVOID) oDC, F,
(LPCVOID) oDD, F,
(LPCVOID) oDE, F,
(LPCVOID) oDF, F
};
static JMPTAB oC_[] =
{
(LPCVOID) oC0, F,
(LPCVOID) oC1, F,
(LPCVOID) oC2, F,
(LPCVOID) oC3, F,
(LPCVOID) oC4, F,
(LPCVOID) oC5, F,
(LPCVOID) oC6, F,
(LPCVOID) oC7, F,
(LPCVOID) oC8, F,
(LPCVOID) oC9, F,
(LPCVOID) oCA, F,
(LPCVOID) oCB, F,
(LPCVOID) oCC, F,
(LPCVOID) oCD, F,
(LPCVOID) oCE, F,
(LPCVOID) oCF, F
};
static JMPTAB oBb_[] =
{
(LPCVOID) oBb0, F,
(LPCVOID) oBb1, F,
(LPCVOID) oBb2, F,
(LPCVOID) oBb3, F,
(LPCVOID) oBb4, F,
(LPCVOID) oBb5, F,
(LPCVOID) oBb6, F,
(LPCVOID) oBb7, F,
(LPCVOID) oBb8, F,
(LPCVOID) oBb9, F,
(LPCVOID) oBbA, F,
(LPCVOID) oBbB, F,
(LPCVOID) oBbC, F,
(LPCVOID) oBbD, F,
(LPCVOID) oBbE, F,
(LPCVOID) oBbF, F
};
static JMPTAB oBa_[] =
{
(LPCVOID) oBa0, F,
(LPCVOID) oBa1, F,
(LPCVOID) oBa2, F,
(LPCVOID) oBa3, F,
(LPCVOID) oBa4, F,
(LPCVOID) oBa5, F,
(LPCVOID) oBa6, F,
(LPCVOID) oBa7, F,
(LPCVOID) oBa8, F,
(LPCVOID) oBa9, F,
(LPCVOID) oBaA, F,
(LPCVOID) oBaB, F,
(LPCVOID) oBaC, F,
(LPCVOID) oBaD, F,
(LPCVOID) oBaE, F,
(LPCVOID) oBaF, F
};
static JMPTAB oB_[] =
{
(LPCVOID) oBa_, 2,
(LPCVOID) oBa_, 2,
(LPCVOID) oBa_, 2,
(LPCVOID) oBa_, 2,
(LPCVOID) oBa_, 2,
(LPCVOID) oBa_, 2,
(LPCVOID) oBa_, 2,
(LPCVOID) oBa_, 2,
(LPCVOID) oBb_, 2,
(LPCVOID) oBb_, 2,
(LPCVOID) oBb_, 2,
(LPCVOID) oBb_, 2,
(LPCVOID) oBb_, 2,
(LPCVOID) oBb_, 2,
(LPCVOID) oBb_, 2,
(LPCVOID) oBb_, 2
};
static JMPTAB oAb_[] =
{
(LPCVOID) oAb0, F,
(LPCVOID) oAb1, F,
(LPCVOID) oAb2, F,
(LPCVOID) oAb3, F,
(LPCVOID) oAb4, F,
(LPCVOID) oAb5, F,
(LPCVOID) oAb6, F,
(LPCVOID) oAb7, F,
(LPCVOID) oAb8, F,
(LPCVOID) oAb9, F,
(LPCVOID) oAbA, F,
(LPCVOID) oAbB, F,
(LPCVOID) oAbC, F,
(LPCVOID) oAbD, F,
(LPCVOID) oAbE, F,
(LPCVOID) oAbF, F
};
static JMPTAB oAa_[] =
{
(LPCVOID) oAa0, F,
(LPCVOID) oAa1, F,
(LPCVOID) oAa2, F,
(LPCVOID) oAa3, F,
(LPCVOID) oAa4, F,
(LPCVOID) oAa5, F,
(LPCVOID) oAa6, F,
(LPCVOID) oAa7, F,
(LPCVOID) oAa8, F,
(LPCVOID) oAa9, F,
(LPCVOID) oAaA, F,
(LPCVOID) oAaB, F,
(LPCVOID) oAaC, F,
(LPCVOID) oAaD, F,
(LPCVOID) oAaE, F,
(LPCVOID) oAaF, F
};
static JMPTAB oA_[] =
{
(LPCVOID) oAa_, 2,
(LPCVOID) oAa_, 2,
(LPCVOID) oAa_, 2,
(LPCVOID) oAa_, 2,
(LPCVOID) oAa_, 2,
(LPCVOID) oAa_, 2,
(LPCVOID) oAa_, 2,
(LPCVOID) oAa_, 2,
(LPCVOID) oAb_, 2,
(LPCVOID) oAb_, 2,
(LPCVOID) oAb_, 2,
(LPCVOID) oAb_, 2,
(LPCVOID) oAb_, 2,
(LPCVOID) oAb_, 2,
(LPCVOID) oAb_, 2,
(LPCVOID) oAb_, 2
};
static JMPTAB o9b_[] =
{
(LPCVOID) o9b0, F,
(LPCVOID) o9b1, F,
(LPCVOID) o9b2, F,
(LPCVOID) o9b3, F,
(LPCVOID) o9b4, F,
(LPCVOID) o9b5, F,
(LPCVOID) o9b6, F,
(LPCVOID) o9b7, F,
(LPCVOID) o9b8, F,
(LPCVOID) o9b9, F,
(LPCVOID) o9bA, F,
(LPCVOID) o9bB, F,
(LPCVOID) o9bC, F,
(LPCVOID) o9bD, F,
(LPCVOID) o9bE, F,
(LPCVOID) o9bF, F
};
static JMPTAB o9a_[] =
{
(LPCVOID) o9a0, F,
(LPCVOID) o9a1, F,
(LPCVOID) o9a2, F,
(LPCVOID) o9a3, F,
(LPCVOID) o9a4, F,
(LPCVOID) o9a5, F,
(LPCVOID) o9a6, F,
(LPCVOID) o9a7, F,
(LPCVOID) o9a8, F,
(LPCVOID) o9a9, F,
(LPCVOID) o9aA, F,
(LPCVOID) o9aB, F,
(LPCVOID) o9aC, F,
(LPCVOID) o9aD, F,
(LPCVOID) o9aE, F,
(LPCVOID) o9aF, F
};
static JMPTAB o9_[] =
{
(LPCVOID) o9a_, 2,
(LPCVOID) o9a_, 2,
(LPCVOID) o9a_, 2,
(LPCVOID) o9a_, 2,
(LPCVOID) o9a_, 2,
(LPCVOID) o9a_, 2,
(LPCVOID) o9a_, 2,
(LPCVOID) o9a_, 2,
(LPCVOID) o9b_, 2,
(LPCVOID) o9b_, 2,
(LPCVOID) o9b_, 2,
(LPCVOID) o9b_, 2,
(LPCVOID) o9b_, 2,
(LPCVOID) o9b_, 2,
(LPCVOID) o9b_, 2,
(LPCVOID) o9b_, 2
};
static JMPTAB o8B_[] =
{
(LPCVOID) o8B0, F,
(LPCVOID) o8B1, F,
(LPCVOID) o8B2, F,
(LPCVOID) o8B3, F,
(LPCVOID) o8B4, F,
(LPCVOID) o8B5, F,
(LPCVOID) o8B6, F,
(LPCVOID) o8B7, F,
(LPCVOID) o8B8, F,
(LPCVOID) o8B9, F,
(LPCVOID) o8BA, F,
(LPCVOID) o8BB, F,
(LPCVOID) o8BC, F,
(LPCVOID) o8BD, F,
(LPCVOID) o8BE, F,
(LPCVOID) o8BF, F
};
static JMPTAB o8A_[] =
{
(LPCVOID) o8A0, F,
(LPCVOID) o8A1, F,
(LPCVOID) o8A2, F,
(LPCVOID) o8A3, F,
(LPCVOID) o8A4, F,
(LPCVOID) o8A5, F,
(LPCVOID) o8A6, F,
(LPCVOID) o8A7, F,
(LPCVOID) o8A8, F,
(LPCVOID) o8A9, F,
(LPCVOID) o8AA, F,
(LPCVOID) o8AB, F,
(LPCVOID) o8AC, F,
(LPCVOID) o8AD, F,
(LPCVOID) o8AE, F,
(LPCVOID) o8AF, F
};
static JMPTAB o81B_[] =
{
(LPCVOID) o_invalid4, F,
(LPCVOID) o_invalid4, F,
(LPCVOID) o81B2, F,
(LPCVOID) o81B3, F,
(LPCVOID) o81B4, F,
(LPCVOID) o81B5, F,
(LPCVOID) o81B6, F,
(LPCVOID) o81B7, F,
(LPCVOID) o_invalid4, F,
(LPCVOID) o_invalid4, F,
(LPCVOID) o_invalid4, F,
(LPCVOID) o_invalid4, F,
(LPCVOID) o_invalid4, F,
(LPCVOID) o_invalid4, F,
(LPCVOID) o_invalid4, F,
(LPCVOID) o_invalid4, F
};
static JMPTAB o81Af2_[] =
{
(LPCVOID) o81Af20, F,
(LPCVOID) o81Af21, F,
(LPCVOID) o81Af22, F,
(LPCVOID) o81Af23, F,
(LPCVOID) o81Af24, F,
(LPCVOID) o81Af21, F,
(LPCVOID) o81Af22, F,
(LPCVOID) o81Af23, F,
(LPCVOID) o81Af28, F,
(LPCVOID) o81Af29, F,
(LPCVOID) o81Af2A, F,
(LPCVOID) o81Af2B, F,
(LPCVOID) o81Af2C, F,
(LPCVOID) o81Af29, F,
(LPCVOID) o81Af2A, F,
(LPCVOID) o81Af2B, F
};
static JMPTAB o81Af1_[] =
{
(LPCVOID) o81Af10, F,
(LPCVOID) o81Af11, F,
(LPCVOID) o81Af12, F,
(LPCVOID) o81Af13, F,
(LPCVOID) o81Af14, F,
(LPCVOID) o81Af11, F,
(LPCVOID) o81Af12, F,
(LPCVOID) o81Af13, F,
(LPCVOID) o81Af18, F,
(LPCVOID) o81Af19, F,
(LPCVOID) o81Af1A, F,
(LPCVOID) o81Af1B, F,
(LPCVOID) o81Af1C, F,
(LPCVOID) o81Af19, F,
(LPCVOID) o81Af1A, F,
(LPCVOID) o81Af1B, F
};
static JMPTAB o81Af0_[] =
{
(LPCVOID) o81Af00, F,
(LPCVOID) o81Af01, F,
(LPCVOID) o81Af02, F,
(LPCVOID) o81Af03, F,
(LPCVOID) o81Af04, F,
(LPCVOID) o81Af01, F,
(LPCVOID) o81Af02, F,
(LPCVOID) o81Af03, F,
(LPCVOID) o81Af08, F,
(LPCVOID) o81Af09, F,
(LPCVOID) o81Af0A, F,
(LPCVOID) o81Af0B, F,
(LPCVOID) o81Af0C, F,
(LPCVOID) o81Af09, F,
(LPCVOID) o81Af0A, F,
(LPCVOID) o81Af0B, F
};
static JMPTAB o81A_[] =
{
(LPCVOID) o81Af0_, 5,
(LPCVOID) o81Af1_, 5,
(LPCVOID) o81Af2_, 5,
(LPCVOID) o_invalid6, F,
(LPCVOID) o_invalid6, F,
(LPCVOID) o_invalid6, F,
(LPCVOID) o_invalid6, F,
(LPCVOID) o_invalid6, F,
(LPCVOID) o_invalid6, F,
(LPCVOID) o_invalid6, F,
(LPCVOID) o_invalid6, F,
(LPCVOID) o_invalid6, F,
(LPCVOID) o_invalid6, F,
(LPCVOID) o_invalid6, F,
(LPCVOID) o_invalid6, F,
(LPCVOID) o_invalid6, F
};
static JMPTAB o819_[] =
{
(LPCVOID) o819f0, F,
(LPCVOID) o819f1, F,
(LPCVOID) o819f2, F,
(LPCVOID) o819f3, F,
(LPCVOID) o_invalid5, F,
(LPCVOID) o_invalid5, F,
(LPCVOID) o_invalid5, F,
(LPCVOID) o_invalid5, F,
(LPCVOID) o_invalid5, F,
(LPCVOID) o_invalid5, F,
(LPCVOID) o_invalid5, F,
(LPCVOID) o_invalid5, F,
(LPCVOID) o_invalid5, F,
(LPCVOID) o_invalid5, F,
(LPCVOID) o_invalid5, F,
(LPCVOID) o_invalid5, F
};
static JMPTAB o818_[] =
{
(LPCVOID) o818f0x, F,
(LPCVOID) o818f1x, F,
(LPCVOID) o818f2x, F,
(LPCVOID) o818f3x, F,
(LPCVOID) o_invalid6, F,
(LPCVOID) o_invalid6, F,
(LPCVOID) o_invalid6, F,
(LPCVOID) o_invalid6, F,
(LPCVOID) o818f8x, F,
(LPCVOID) o818f9x, F,
(LPCVOID) o818fAx, F,
(LPCVOID) o818fBx, F,
(LPCVOID) o_invalid6, F,
(LPCVOID) o_invalid6, F,
(LPCVOID) o_invalid6, F,
(LPCVOID) o_invalid6, F
};
static JMPTAB o81_[] =
{
(LPCVOID) o810, F,
(LPCVOID) o811, F,
(LPCVOID) o812, F,
(LPCVOID) o813, F,
(LPCVOID) o814, F,
(LPCVOID) o815, F,
(LPCVOID) o816, F,
(LPCVOID) o817, F,
(LPCVOID) o818_, 4,
(LPCVOID) o819_, 4,
(LPCVOID) o81A_, 4,
(LPCVOID) o81B_, 3,
(LPCVOID) o81C, F,
(LPCVOID) o81D, F,
(LPCVOID) o81E, F,
(LPCVOID) o81F, F
};
static JMPTAB o8081_[] =
{
(LPCVOID) o80810, F,
(LPCVOID) o_invalid5, F,
(LPCVOID) o_invalid5, F,
(LPCVOID) o_invalid5, F,
(LPCVOID) o_invalid5, F,
(LPCVOID) o_invalid5, F,
(LPCVOID) o_invalid5, F,
(LPCVOID) o_invalid5, F,
(LPCVOID) o_invalid5, F,
(LPCVOID) o_invalid5, F,
(LPCVOID) o_invalid5, F,
(LPCVOID) o_invalid5, F,
(LPCVOID) o_invalid5, F,
(LPCVOID) o_invalid5, F,
(LPCVOID) o_invalid5, F,
(LPCVOID) o_invalid5, F
};
static JMPTAB o808_[] =
{
(LPCVOID) o8080, F,
(LPCVOID) o8081_, 4,
(LPCVOID) o8082X, F,
(LPCVOID) o8083, F,
(LPCVOID) o8084n, F,
(LPCVOID) o8085n, F,
(LPCVOID) o8086n, F,
(LPCVOID) o8087n, F,
(LPCVOID) o8088n, F,
(LPCVOID) o8089n, F,
(LPCVOID) o808An, F,
(LPCVOID) o808Bn, F,
(LPCVOID) o808C, F,
(LPCVOID) o808D, F,
(LPCVOID) o808E, F,
(LPCVOID) o808F, F
};
static JMPTAB o80_[] =
{
(LPCVOID) o800, F,
(LPCVOID) o801, F,
(LPCVOID) o802, F,
(LPCVOID) o803, F,
(LPCVOID) o804, F,
(LPCVOID) o805, F,
(LPCVOID) o806, F,
(LPCVOID) o807, F,
(LPCVOID) o808_, 3,
(LPCVOID) o809, F,
(LPCVOID) o80A, F,
(LPCVOID) o80B, F,
(LPCVOID) o80Cn, F,
(LPCVOID) o80Dn, F,
(LPCVOID) o80E, F,
(LPCVOID) o80Fn, F
};
static JMPTAB o8_[] =
{
(LPCVOID) o80_, 2,
(LPCVOID) o81_, 2,
(LPCVOID) o82n, F,
(LPCVOID) o83n, F,
(LPCVOID) o84n, F,
(LPCVOID) o85n, F,
(LPCVOID) o86n, F,
(LPCVOID) o87n, F,
(LPCVOID) o88n, F,
(LPCVOID) o89n, F,
(LPCVOID) o8A_, 2,
(LPCVOID) o8B_, 2,
(LPCVOID) o8Cd4, F,
(LPCVOID) o8Dd5, F,
(LPCVOID) o8Ed4, F,
(LPCVOID) o8Fd5, F
};
static JMPTAB o15_[] =
{
(LPCVOID) o150a, F,
(LPCVOID) o151a, F,
(LPCVOID) o152a, F,
(LPCVOID) o153a, F,
(LPCVOID) o154a, F,
(LPCVOID) o155a, F,
(LPCVOID) o156a, F,
(LPCVOID) o157a, F,
(LPCVOID) o158x, F,
(LPCVOID) o159x, F,
(LPCVOID) o15Ax, F,
(LPCVOID) o15Bx, F,
(LPCVOID) o15Cx, F,
(LPCVOID) o15Dx, F,
(LPCVOID) o15Ex, F,
(LPCVOID) o15Fx, F
};
static JMPTAB o14_[] =
{
(LPCVOID) o140, F,
(LPCVOID) o141, F,
(LPCVOID) o142, F,
(LPCVOID) o143, F,
(LPCVOID) o144, F,
(LPCVOID) o145, F,
(LPCVOID) o146, F,
(LPCVOID) o147, F,
(LPCVOID) o148, F,
(LPCVOID) o149, F,
(LPCVOID) o14A, F,
(LPCVOID) o14B, F,
(LPCVOID) o14C, F,
(LPCVOID) o14D, F,
(LPCVOID) o14E, F,
(LPCVOID) o14F, F
};
static JMPTAB o13_[] =
{
(LPCVOID) o130, F,
(LPCVOID) o131, F,
(LPCVOID) o132, F,
(LPCVOID) o133, F,
(LPCVOID) o134, F,
(LPCVOID) o135, F,
(LPCVOID) o136, F,
(LPCVOID) o137, F,
(LPCVOID) o138, F,
(LPCVOID) o139, F,
(LPCVOID) o13A, F,
(LPCVOID) o13B, F,
(LPCVOID) o13C, F,
(LPCVOID) o13D, F,
(LPCVOID) o13E, F,
(LPCVOID) o13F, F
};
static JMPTAB o12_[] =
{
(LPCVOID) o120, F,
(LPCVOID) o121, F,
(LPCVOID) o122, F,
(LPCVOID) o123, F,
(LPCVOID) o124, F,
(LPCVOID) o121, F,
(LPCVOID) o122, F,
(LPCVOID) o123, F,
(LPCVOID) o128, F,
(LPCVOID) o129, F,
(LPCVOID) o12A, F,
(LPCVOID) o12B, F,
(LPCVOID) o12C, F,
(LPCVOID) o129, F,
(LPCVOID) o12A, F,
(LPCVOID) o12B, F
};
static JMPTAB o11_[] =
{
(LPCVOID) o110, F,
(LPCVOID) o111, F,
(LPCVOID) o112, F,
(LPCVOID) o113, F,
(LPCVOID) o114, F,
(LPCVOID) o111, F,
(LPCVOID) o112, F,
(LPCVOID) o113, F,
(LPCVOID) o118, F,
(LPCVOID) o119, F,
(LPCVOID) o11A, F,
(LPCVOID) o11B, F,
(LPCVOID) o11C, F,
(LPCVOID) o119, F,
(LPCVOID) o11A, F,
(LPCVOID) o11B, F
};
static JMPTAB o10_[] =
{
(LPCVOID) o100, F,
(LPCVOID) o101, F,
(LPCVOID) o102, F,
(LPCVOID) o103, F,
(LPCVOID) o104, F,
(LPCVOID) o101, F,
(LPCVOID) o102, F,
(LPCVOID) o103, F,
(LPCVOID) o108, F,
(LPCVOID) o109, F,
(LPCVOID) o10A, F,
(LPCVOID) o10B, F,
(LPCVOID) o10C, F,
(LPCVOID) o109, F,
(LPCVOID) o10A, F,
(LPCVOID) o10B, F
};
static JMPTAB o1_[] =
{
(LPCVOID) o10_, 2,
(LPCVOID) o11_, 2,
(LPCVOID) o12_, 2,
(LPCVOID) o13_, 2,
(LPCVOID) o14_, 2,
(LPCVOID) o15_, 2,
(LPCVOID) o16x, F,
(LPCVOID) o17x, F,
(LPCVOID) o18x, F,
(LPCVOID) o19d2, F,
(LPCVOID) o1Ad4, F,
(LPCVOID) o1Bd5, F,
(LPCVOID) o1Cx, F,
(LPCVOID) o1Dd2, F,
(LPCVOID) o1Ed4, F,
(LPCVOID) o1Fd5, F
};
static JMPTAB o0E_[] =
{
(LPCVOID) o0Ef0, F,
(LPCVOID) o0Ef1, F,
(LPCVOID) o0Ef2, F,
(LPCVOID) o0Ef3, F,
(LPCVOID) o0Ef4, F,
(LPCVOID) o0Ef5, F,
(LPCVOID) o0Ef6, F,
(LPCVOID) o0Ef7, F,
(LPCVOID) o0Ef8, F,
(LPCVOID) o0Ef9, F,
(LPCVOID) o0EfA, F,
(LPCVOID) o0EfB, F,
(LPCVOID) o0EfC, F,
(LPCVOID) o0EfD, F,
(LPCVOID) o0EfE, F,
(LPCVOID) o0EfF, F
};
static JMPTAB o0_[] =
{
(LPCVOID) o00, F,
(LPCVOID) o01, F,
(LPCVOID) o02, F,
(LPCVOID) o03, F,
(LPCVOID) o04, F,
(LPCVOID) o05, F,
(LPCVOID) o06, F,
(LPCVOID) o07, F,
(LPCVOID) o08, F,
(LPCVOID) o09, F,
(LPCVOID) o0A, F,
(LPCVOID) o0B, F,
(LPCVOID) o0C, F,
(LPCVOID) o0D, F,
(LPCVOID) o0E_, 3,
(LPCVOID) o0F, F
};
static JMPTAB o_[] =
{
(LPCVOID) o0_, 1,
(LPCVOID) o1_, 1,
(LPCVOID) o2n, F,
(LPCVOID) o3X, F,
(LPCVOID) o4d2, F,
(LPCVOID) o5d2, F,
(LPCVOID) o6d3, F,
(LPCVOID) o7d3, F,
(LPCVOID) o8_, 1,
(LPCVOID) o9_, 1,
(LPCVOID) oA_, 1,
(LPCVOID) oB_, 1,
(LPCVOID) oC_, 1,
(LPCVOID) oD_, 1,
(LPCVOID) oE_, 1,
(LPCVOID) oF_, 1
};
// opcode dispatcher
VOID EvalOpcode(LPBYTE I)
{
DWORD dwIndex = 0;
PJMPTAB pJmpTab = o_;
do
{
_ASSERT(I[dwIndex] <= 0xf); // found packed data
pJmpTab = &pJmpTab[I[dwIndex]]; // table entry by opcode
dwIndex = pJmpTab->dwTyp; // next pointer type
pJmpTab = (PJMPTAB) pJmpTab->pLnk; // next pointer to table/function
}
while (dwIndex != F); // reference to table? -> again
((VOID (*)(LPBYTE)) pJmpTab)(I); // call function
return;
}

View file

@ -303,7 +303,7 @@ FONT 8, "MS Sans Serif"
BEGIN BEGIN
ICON IDI_EMU48,IDC_STATIC,7,6,20,20,SS_REALSIZEIMAGE ICON IDI_EMU48,IDC_STATIC,7,6,20,20,SS_REALSIZEIMAGE
LTEXT "",IDC_VERSION,29,6,151,8,NOT WS_GROUP LTEXT "",IDC_VERSION,29,6,151,8,NOT WS_GROUP
LTEXT "Copyright © 2023 Christoph Gießelink && Sébastien Carlier", LTEXT "Copyright © 2024 Christoph Gießelink && Sébastien Carlier",
IDC_STATIC,29,18,181,8 IDC_STATIC,29,18,181,8
DEFPUSHBUTTON "OK",IDOK,215,12,39,14 DEFPUSHBUTTON "OK",IDOK,215,12,39,14
EDITTEXT IDC_LICENSE,7,33,247,112,ES_MULTILINE | ES_AUTOHSCROLL | EDITTEXT IDC_LICENSE,7,33,247,112,ES_MULTILINE | ES_AUTOHSCROLL |
@ -752,8 +752,8 @@ END
// //
VS_VERSION_INFO VERSIONINFO VS_VERSION_INFO VERSIONINFO
FILEVERSION 1,6,6,0 FILEVERSION 1,6,7,0
PRODUCTVERSION 1,6,6,0 PRODUCTVERSION 1,6,7,0
FILEFLAGSMASK 0x3fL FILEFLAGSMASK 0x3fL
#ifdef _DEBUG #ifdef _DEBUG
FILEFLAGS 0x1L FILEFLAGS 0x1L
@ -770,12 +770,12 @@ BEGIN
BEGIN BEGIN
VALUE "CompanyName", "Christoph Gießelink & Sebastien Carlier\0" VALUE "CompanyName", "Christoph Gießelink & Sebastien Carlier\0"
VALUE "FileDescription", "HP38/39/40/48/49 Emulator\0" VALUE "FileDescription", "HP38/39/40/48/49 Emulator\0"
VALUE "FileVersion", "1, 6, 6, 0\0" VALUE "FileVersion", "1, 6, 7, 0\0"
VALUE "InternalName", "Emu48\0" VALUE "InternalName", "Emu48\0"
VALUE "LegalCopyright", "Copyright © 2023\0" VALUE "LegalCopyright", "Copyright © 2024\0"
VALUE "OriginalFilename", "Emu48.exe\0" VALUE "OriginalFilename", "Emu48.exe\0"
VALUE "ProductName", "Emu48\0" VALUE "ProductName", "Emu48\0"
VALUE "ProductVersion", "1, 6, 6, 0\0" VALUE "ProductVersion", "1, 6, 7, 0\0"
END END
END END
BLOCK "VarFileInfo" BLOCK "VarFileInfo"

View file

@ -1,63 +1,63 @@
// //
// PCH.H (MinGW version) // PCH.H (MinGW version)
// //
#define _WIN32_IE 0x0200 #define _WIN32_IE 0x0200
#include <windows.h> #include <windows.h>
#include <tchar.h> #include <tchar.h>
#include <shellapi.h> #include <shellapi.h>
#include <commctrl.h> #include <commctrl.h>
#include <shlobj.h> #include <shlobj.h>
#include <stdlib.h> #include <stdlib.h>
#include <malloc.h> #include <malloc.h>
#include <stddef.h> #include <stddef.h>
#include <ctype.h> #include <ctype.h>
#include <stdio.h> #include <stdio.h>
#include <direct.h> #include <direct.h>
#include <conio.h> #include <conio.h>
// #include <crtdbg.h> // missing file // #include <crtdbg.h> // missing file
#if !defined IDC_HAND // Win2k specific definition #if !defined IDC_HAND // Win2k specific definition
#define IDC_HAND MAKEINTRESOURCE(32649) #define IDC_HAND MAKEINTRESOURCE(32649)
#endif #endif
#define __unaligned #define __unaligned
// normally defined in STDLIB.H // normally defined in STDLIB.H
#if !defined __max #if !defined __max
#define __max(a,b) (((a) > (b)) ? (a) : (b)) #define __max(a,b) (((a) > (b)) ? (a) : (b))
#endif #endif
#if !defined __min #if !defined __min
#define __min(a,b) (((a) < (b)) ? (a) : (b)) #define __min(a,b) (((a) < (b)) ? (a) : (b))
#endif #endif
// normally defined in missing CRTDBG.H // normally defined in missing CRTDBG.H
#if !defined _ASSERT #if !defined _ASSERT
#define _ASSERT(a) #define _ASSERT(a)
#endif #endif
#define _CrtSetDbgFlag(f) #define _CrtSetDbgFlag(f)
#if !defined VERIFY #if !defined VERIFY
#if defined _DEBUG #if defined _DEBUG
#define VERIFY(f) _ASSERT(f) #define VERIFY(f) _ASSERT(f)
#else // _DEBUG #else // _DEBUG
#define VERIFY(f) ((VOID)(f)) #define VERIFY(f) ((VOID)(f))
#endif // _DEBUG #endif // _DEBUG
#endif // VERIFY #endif // VERIFY
#if !defined PROCESS_POWER_THROTTLING_CURRENT_VERSION #if !defined PROCESS_POWER_THROTTLING_CURRENT_VERSION
#define PROCESS_POWER_THROTTLING_CURRENT_VERSION 1 #define PROCESS_POWER_THROTTLING_CURRENT_VERSION 1
#endif #endif
#if !defined PROCESS_POWER_THROTTLING_IGNORE_TIMER_RESOLUTION #if !defined PROCESS_POWER_THROTTLING_IGNORE_TIMER_RESOLUTION
#define PROCESS_POWER_THROTTLING_IGNORE_TIMER_RESOLUTION 0x04 #define PROCESS_POWER_THROTTLING_IGNORE_TIMER_RESOLUTION 0x04
#endif #endif
enum { ProcessPowerThrottling = 4 }; enum { ProcessPowerThrottling = 4 };
typedef struct _PROCESS_POWER_THROTTLING_STATE { typedef struct _PROCESS_POWER_THROTTLING_STATE {
ULONG Version; ULONG Version;
ULONG ControlMask; ULONG ControlMask;
ULONG StateMask; ULONG StateMask;
} PROCESS_POWER_THROTTLING_STATE, * PPROCESS_POWER_THROTTLING_STATE; } PROCESS_POWER_THROTTLING_STATE, * PPROCESS_POWER_THROTTLING_STATE;

View file

@ -67,4 +67,4 @@ Many thanks to Pedro A. Arranda Guti
compatible. compatible.
04/18/23 (c) by Christoph Gießelink 09/23/24 (c) by Christoph Gießelink

View file

@ -1,266 +1,266 @@
/* /*
* MkShared, (c) 2006 Christoph Giesselink (c.giesselink@gmx.de) * MkShared, (c) 2006 Christoph Giesselink (c.giesselink@gmx.de)
* *
* This program is free software; you can redistribute it and/or modify * This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by * it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or * the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version. * (at your option) any later version.
* *
* This program is distributed in the hope that it will be useful, * This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of * but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details. * GNU General Public License for more details.
* *
* You should have received a copy of the GNU General Public License * You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software * along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, * Foundation, Inc., 59 Temple Place - Suite 330, Boston,
* MA 02111-1307, USA. * MA 02111-1307, USA.
*/ */
#define WIN32_LEAN_AND_MEAN #define WIN32_LEAN_AND_MEAN
#define WIN32_EXTRA_LEAN #define WIN32_EXTRA_LEAN
#include <windows.h> #include <windows.h>
#include <malloc.h> #include <malloc.h>
#include <tchar.h> #include <tchar.h>
#include <commctrl.h> #include <commctrl.h>
#include <crtdbg.h> #include <crtdbg.h>
#include "resource.h" #include "resource.h"
#if _MSC_VER >= 1400 // valid for VS2005 and later #if _MSC_VER >= 1400 // valid for VS2005 and later
#if defined _M_IX86 #if defined _M_IX86
#pragma comment(linker,"/manifestdependency:\" \ #pragma comment(linker,"/manifestdependency:\" \
type='win32' \ type='win32' \
name='Microsoft.Windows.Common-Controls' \ name='Microsoft.Windows.Common-Controls' \
version='6.0.0.0' processorArchitecture='x86' \ version='6.0.0.0' processorArchitecture='x86' \
publicKeyToken='6595b64144ccf1df' \ publicKeyToken='6595b64144ccf1df' \
language='*'\"") language='*'\"")
#elif defined _M_IA64 #elif defined _M_IA64
#pragma comment(linker,"/manifestdependency:\" \ #pragma comment(linker,"/manifestdependency:\" \
type='win32' \ type='win32' \
name='Microsoft.Windows.Common-Controls' \ name='Microsoft.Windows.Common-Controls' \
version='6.0.0.0' processorArchitecture='ia64' \ version='6.0.0.0' processorArchitecture='ia64' \
publicKeyToken='6595b64144ccf1df' \ publicKeyToken='6595b64144ccf1df' \
language='*'\"") language='*'\"")
#elif defined _M_X64 #elif defined _M_X64
#pragma comment(linker,"/manifestdependency:\" \ #pragma comment(linker,"/manifestdependency:\" \
type='win32' \ type='win32' \
name='Microsoft.Windows.Common-Controls' \ name='Microsoft.Windows.Common-Controls' \
version='6.0.0.0' processorArchitecture='amd64' \ version='6.0.0.0' processorArchitecture='amd64' \
publicKeyToken='6595b64144ccf1df' \ publicKeyToken='6595b64144ccf1df' \
language='*'\"") language='*'\"")
#else #else
#pragma comment(linker,"/manifestdependency:\" \ #pragma comment(linker,"/manifestdependency:\" \
type='win32' \ type='win32' \
name='Microsoft.Windows.Common-Controls' \ name='Microsoft.Windows.Common-Controls' \
version='6.0.0.0' processorArchitecture='*' \ version='6.0.0.0' processorArchitecture='*' \
publicKeyToken='6595b64144ccf1df' \ publicKeyToken='6595b64144ccf1df' \
language='*'\"") language='*'\"")
#endif #endif
#endif #endif
#define _KB(n) (2*(n)*1024) #define _KB(n) (2*(n)*1024)
#define ARRAYSIZEOF(a) (sizeof(a) / sizeof(a[0])) #define ARRAYSIZEOF(a) (sizeof(a) / sizeof(a[0]))
#define DEFAULTFILE "SHARED.BIN" #define DEFAULTFILE "SHARED.BIN"
typedef enum typedef enum
{ {
STATE_UNKOWN, STATE_UNKOWN,
STATE_GOOD, STATE_GOOD,
STATE_FAIL STATE_FAIL
} CheckState; } CheckState;
static HBRUSH hBrushGreen; static HBRUSH hBrushGreen;
static HBRUSH hBrushRed; static HBRUSH hBrushRed;
static CheckState eState = STATE_UNKOWN; static CheckState eState = STATE_UNKOWN;
static VOID SetInformation(HWND hWnd,LPCTSTR strSize,LPCTSTR strNoOfPorts,LPCTSTR strPorts) static VOID SetInformation(HWND hWnd,LPCTSTR strSize,LPCTSTR strNoOfPorts,LPCTSTR strPorts)
{ {
SetDlgItemText(hWnd,IDC_FILE_SIZE,strSize); SetDlgItemText(hWnd,IDC_FILE_SIZE,strSize);
SetDlgItemText(hWnd,IDC_NO_OF_PORTS,strNoOfPorts); SetDlgItemText(hWnd,IDC_NO_OF_PORTS,strNoOfPorts);
SetDlgItemText(hWnd,IDC_PORT_NO,strPorts); SetDlgItemText(hWnd,IDC_PORT_NO,strPorts);
eState = STATE_UNKOWN; eState = STATE_UNKOWN;
SetDlgItemText(hWnd,IDC_RESULT,_T("")); SetDlgItemText(hWnd,IDC_RESULT,_T(""));
InvalidateRect(GetDlgItem(hWnd,IDC_RESULT),NULL,TRUE); InvalidateRect(GetDlgItem(hWnd,IDC_RESULT),NULL,TRUE);
return; return;
} }
static BOOL WriteCardFile(LPCTSTR strFilename,INT nBlocks) static BOOL WriteCardFile(LPCTSTR strFilename,INT nBlocks)
{ {
HANDLE hFile = CreateFile(strFilename,GENERIC_WRITE,0,NULL,CREATE_ALWAYS,0,NULL); HANDLE hFile = CreateFile(strFilename,GENERIC_WRITE,0,NULL,CREATE_ALWAYS,0,NULL);
if (hFile != INVALID_HANDLE_VALUE) if (hFile != INVALID_HANDLE_VALUE)
{ {
DWORD dwWritten; DWORD dwWritten;
LPBYTE pbyBuffer = (LPBYTE) calloc(1,_KB(1)); LPBYTE pbyBuffer = (LPBYTE) calloc(1,_KB(1));
while (nBlocks--) WriteFile(hFile, pbyBuffer, _KB(1), &dwWritten, NULL); while (nBlocks--) WriteFile(hFile, pbyBuffer, _KB(1), &dwWritten, NULL);
free(pbyBuffer); free(pbyBuffer);
CloseHandle(hFile); CloseHandle(hFile);
return FALSE; return FALSE;
} }
return TRUE; return TRUE;
} }
static LRESULT CALLBACK WndProc(HWND hWnd, UINT iMsg, WPARAM wParam, LPARAM lParam) static LRESULT CALLBACK WndProc(HWND hWnd, UINT iMsg, WPARAM wParam, LPARAM lParam)
{ {
static WORD wSize; static WORD wSize;
TCHAR szFilename[MAX_PATH]; TCHAR szFilename[MAX_PATH];
HCURSOR hCursor; HCURSOR hCursor;
switch (iMsg) switch (iMsg)
{ {
case WM_INITDIALOG: case WM_INITDIALOG:
// filename // filename
SetDlgItemText(hWnd,IDC_FILENAME,_T(DEFAULTFILE)); SetDlgItemText(hWnd,IDC_FILENAME,_T(DEFAULTFILE));
// set to 32kb // set to 32kb
SendDlgItemMessage(hWnd,IDC_CARD32,BM_SETCHECK,1,0); SendDlgItemMessage(hWnd,IDC_CARD32,BM_SETCHECK,1,0);
PostMessage(hWnd,WM_COMMAND,IDC_CARD32,0); PostMessage(hWnd,WM_COMMAND,IDC_CARD32,0);
return TRUE; return TRUE;
case WM_COMMAND: case WM_COMMAND:
switch (LOWORD(wParam)) switch (LOWORD(wParam))
{ {
case IDC_CARD32: case IDC_CARD32:
wSize = 32; wSize = 32;
SetInformation(hWnd,_T("64kb"),_T("1"),_T("2")); SetInformation(hWnd,_T("64kb"),_T("1"),_T("2"));
return 0; return 0;
case IDC_CARD128: case IDC_CARD128:
wSize = 128; wSize = 128;
SetInformation(hWnd,_T("256kb"),_T("1"),_T("2")); SetInformation(hWnd,_T("256kb"),_T("1"),_T("2"));
return 0; return 0;
case IDC_CARD256: case IDC_CARD256:
wSize = 256; wSize = 256;
SetInformation(hWnd,_T("512kb"),_T("2"),_T("2,3")); SetInformation(hWnd,_T("512kb"),_T("2"),_T("2,3"));
return 0; return 0;
case IDC_CARD512: case IDC_CARD512:
wSize = 512; wSize = 512;
SetInformation(hWnd,_T("1mb"),_T("4"),_T("2 through 5")); SetInformation(hWnd,_T("1mb"),_T("4"),_T("2 through 5"));
return 0; return 0;
case IDC_CARD1024: case IDC_CARD1024:
wSize = 1024; wSize = 1024;
SetInformation(hWnd,_T("2mb"),_T("8"),_T("2 through 9")); SetInformation(hWnd,_T("2mb"),_T("8"),_T("2 through 9"));
return 0; return 0;
case IDC_CARD2048: case IDC_CARD2048:
wSize = 2048; wSize = 2048;
SetInformation(hWnd,_T("4mb"),_T("16"),_T("2 through 17")); SetInformation(hWnd,_T("4mb"),_T("16"),_T("2 through 17"));
return 0; return 0;
case IDC_CARD4096: case IDC_CARD4096:
wSize = 4096; wSize = 4096;
SetInformation(hWnd,_T("8mb"),_T("32"),_T("2 through 33")); SetInformation(hWnd,_T("8mb"),_T("32"),_T("2 through 33"));
return 0; return 0;
case IDOK: case IDOK:
GetDlgItemText(hWnd,IDC_FILENAME,szFilename,ARRAYSIZEOF(szFilename)); GetDlgItemText(hWnd,IDC_FILENAME,szFilename,ARRAYSIZEOF(szFilename));
hCursor = SetCursor(LoadCursor(NULL,IDC_WAIT)); hCursor = SetCursor(LoadCursor(NULL,IDC_WAIT));
// create file // create file
if (WriteCardFile(szFilename,wSize)) if (WriteCardFile(szFilename,wSize))
{ {
eState = STATE_FAIL; eState = STATE_FAIL;
SetDlgItemText(hWnd,IDC_RESULT,_T("Fail!")); SetDlgItemText(hWnd,IDC_RESULT,_T("Fail!"));
} }
else else
{ {
eState = STATE_GOOD; eState = STATE_GOOD;
SetDlgItemText(hWnd,IDC_RESULT,_T("Done!")); SetDlgItemText(hWnd,IDC_RESULT,_T("Done!"));
} }
InvalidateRect(GetDlgItem(hWnd,IDC_RESULT),NULL,TRUE); InvalidateRect(GetDlgItem(hWnd,IDC_RESULT),NULL,TRUE);
SetCursor(hCursor); // restore cursor SetCursor(hCursor); // restore cursor
return 0; return 0;
} }
return 0; return 0;
case WM_CTLCOLORSTATIC: case WM_CTLCOLORSTATIC:
if (GetDlgCtrlID((HWND) lParam) == IDC_RESULT) if (GetDlgCtrlID((HWND) lParam) == IDC_RESULT)
{ {
switch (eState) switch (eState)
{ {
case STATE_GOOD: case STATE_GOOD:
SetTextColor((HDC) wParam,(COLORREF) 0xFFFFFF); // white SetTextColor((HDC) wParam,(COLORREF) 0xFFFFFF); // white
SetBkMode((HDC) wParam,TRANSPARENT); SetBkMode((HDC) wParam,TRANSPARENT);
return (LRESULT) hBrushGreen; return (LRESULT) hBrushGreen;
case STATE_FAIL: case STATE_FAIL:
SetTextColor((HDC) wParam,(COLORREF) 0xFFFFFF); // white SetTextColor((HDC) wParam,(COLORREF) 0xFFFFFF); // white
SetBkMode((HDC) wParam,TRANSPARENT); SetBkMode((HDC) wParam,TRANSPARENT);
return (LRESULT) hBrushRed; return (LRESULT) hBrushRed;
} }
} }
break; // default handler for all other windows break; // default handler for all other windows
case WM_DESTROY: case WM_DESTROY:
PostQuitMessage(0); PostQuitMessage(0);
return 0; return 0;
} }
return DefWindowProc(hWnd,iMsg,wParam,lParam); return DefWindowProc(hWnd,iMsg,wParam,lParam);
} }
INT WINAPI WinMain(HINSTANCE hInst,HINSTANCE hPrev,LPSTR lpszCmdLine,INT nCmdShow) INT WINAPI WinMain(HINSTANCE hInst,HINSTANCE hPrev,LPSTR lpszCmdLine,INT nCmdShow)
{ {
HWND hWnd; HWND hWnd;
MSG msg; MSG msg;
WNDCLASS wc; WNDCLASS wc;
// RECT rc; // RECT rc;
HFONT hFont; HFONT hFont;
InitCommonControls(); InitCommonControls();
// create background brushes // create background brushes
hBrushGreen = CreateSolidBrush(0x008000); hBrushGreen = CreateSolidBrush(0x008000);
hBrushRed = CreateSolidBrush(0x0000FF); hBrushRed = CreateSolidBrush(0x0000FF);
wc.style = CS_HREDRAW | CS_VREDRAW; wc.style = CS_HREDRAW | CS_VREDRAW;
wc.lpfnWndProc = WndProc; wc.lpfnWndProc = WndProc;
wc.cbClsExtra = 0; wc.cbClsExtra = 0;
wc.cbWndExtra = DLGWINDOWEXTRA; wc.cbWndExtra = DLGWINDOWEXTRA;
wc.hInstance = hInst; wc.hInstance = hInst;
wc.hIcon = LoadIcon(hInst,MAKEINTRESOURCE(IDI_MKSHARED)); wc.hIcon = LoadIcon(hInst,MAKEINTRESOURCE(IDI_MKSHARED));
wc.hCursor = LoadCursor(NULL,IDC_ARROW); wc.hCursor = LoadCursor(NULL,IDC_ARROW);
wc.hbrBackground = (HBRUSH) (COLOR_BTNFACE + 1); wc.hbrBackground = (HBRUSH) (COLOR_BTNFACE + 1);
wc.lpszMenuName = NULL; wc.lpszMenuName = NULL;
wc.lpszClassName = _T("CMkShared"); wc.lpszClassName = _T("CMkShared");
RegisterClass(&wc); RegisterClass(&wc);
hWnd = CreateDialog(hInst,MAKEINTRESOURCE(IDD_MAIN),0,(DLGPROC) WndProc); hWnd = CreateDialog(hInst,MAKEINTRESOURCE(IDD_MAIN),0,(DLGPROC) WndProc);
_ASSERT(hWnd); _ASSERT(hWnd);
#if 0 #if 0
// center window // center window
GetWindowRect(hWnd, &rc); GetWindowRect(hWnd, &rc);
SetWindowPos(hWnd, HWND_TOP, SetWindowPos(hWnd, HWND_TOP,
((GetSystemMetrics(SM_CXSCREEN) - (rc.right - rc.left)) / 2), ((GetSystemMetrics(SM_CXSCREEN) - (rc.right - rc.left)) / 2),
((GetSystemMetrics(SM_CYSCREEN) - (rc.bottom - rc.top)) / 2), ((GetSystemMetrics(SM_CYSCREEN) - (rc.bottom - rc.top)) / 2),
0, 0, SWP_NOSIZE | SWP_NOACTIVATE); 0, 0, SWP_NOSIZE | SWP_NOACTIVATE);
#endif #endif
// initialization // initialization
hFont = CreateFont(20,0,0,0,FW_NORMAL,0,0,0,ANSI_CHARSET, hFont = CreateFont(20,0,0,0,FW_NORMAL,0,0,0,ANSI_CHARSET,
OUT_DEVICE_PRECIS,CLIP_DEFAULT_PRECIS, OUT_DEVICE_PRECIS,CLIP_DEFAULT_PRECIS,
PROOF_QUALITY,DEFAULT_PITCH|TMPF_TRUETYPE|FF_ROMAN, PROOF_QUALITY,DEFAULT_PITCH|TMPF_TRUETYPE|FF_ROMAN,
_T("Times New Roman")); _T("Times New Roman"));
_ASSERT(hFont); _ASSERT(hFont);
SendDlgItemMessage(hWnd,IDC_STATIC_TITLE,WM_SETFONT,(WPARAM)hFont,MAKELPARAM(TRUE,0)); SendDlgItemMessage(hWnd,IDC_STATIC_TITLE,WM_SETFONT,(WPARAM)hFont,MAKELPARAM(TRUE,0));
SendDlgItemMessage(hWnd,IDC_RESULT,WM_SETFONT,(WPARAM)hFont,MAKELPARAM(TRUE,0)); SendDlgItemMessage(hWnd,IDC_RESULT,WM_SETFONT,(WPARAM)hFont,MAKELPARAM(TRUE,0));
while(GetMessage(&msg,NULL,0,0)) while(GetMessage(&msg,NULL,0,0))
{ {
if(!IsDialogMessage(hWnd,&msg)) if(!IsDialogMessage(hWnd,&msg))
{ {
TranslateMessage(&msg); TranslateMessage(&msg);
DispatchMessage(&msg); DispatchMessage(&msg);
} }
} }
DeleteObject(hFont); DeleteObject(hFont);
DeleteObject(hBrushGreen); DeleteObject(hBrushGreen);
DeleteObject(hBrushRed); DeleteObject(hBrushRed);
return msg.wParam; return msg.wParam;
UNREFERENCED_PARAMETER(hPrev); UNREFERENCED_PARAMETER(hPrev);
UNREFERENCED_PARAMETER(lpszCmdLine); UNREFERENCED_PARAMETER(lpszCmdLine);
UNREFERENCED_PARAMETER(nCmdShow); UNREFERENCED_PARAMETER(nCmdShow);
} }

View file

@ -1,32 +1,32 @@
//{{NO_DEPENDENCIES}} //{{NO_DEPENDENCIES}}
// Microsoft Developer Studio generated include file. // Microsoft Developer Studio generated include file.
// Used by MKSHARED.RC // Used by MKSHARED.RC
// //
#define IDD_MAIN 100 #define IDD_MAIN 100
#define IDI_MKSHARED 101 #define IDI_MKSHARED 101
#define IDC_CARD32 1000 #define IDC_CARD32 1000
#define IDC_CARD128 1001 #define IDC_CARD128 1001
#define IDC_CARD256 1002 #define IDC_CARD256 1002
#define IDC_CARD512 1003 #define IDC_CARD512 1003
#define IDC_CARD1024 1004 #define IDC_CARD1024 1004
#define IDC_CARD2048 1005 #define IDC_CARD2048 1005
#define IDC_CARD4096 1006 #define IDC_CARD4096 1006
#define IDC_STATIC_TITLE 1007 #define IDC_STATIC_TITLE 1007
#define IDC_FILENAME 1008 #define IDC_FILENAME 1008
#define IDC_FILE_SIZE 1009 #define IDC_FILE_SIZE 1009
#define IDC_NO_OF_PORTS 1010 #define IDC_NO_OF_PORTS 1010
#define IDC_PORT_NO 1011 #define IDC_PORT_NO 1011
#define IDC_RESULT 1012 #define IDC_RESULT 1012
#define IDC_STATIC -1 #define IDC_STATIC -1
// Next default values for new objects // Next default values for new objects
// //
#ifdef APSTUDIO_INVOKED #ifdef APSTUDIO_INVOKED
#ifndef APSTUDIO_READONLY_SYMBOLS #ifndef APSTUDIO_READONLY_SYMBOLS
#define _APS_NO_MFC 1 #define _APS_NO_MFC 1
#define _APS_NEXT_RESOURCE_VALUE 102 #define _APS_NEXT_RESOURCE_VALUE 102
#define _APS_NEXT_COMMAND_VALUE 40001 #define _APS_NEXT_COMMAND_VALUE 40001
#define _APS_NEXT_CONTROL_VALUE 1013 #define _APS_NEXT_CONTROL_VALUE 1013
#define _APS_NEXT_SYMED_VALUE 101 #define _APS_NEXT_SYMED_VALUE 101
#endif #endif
#endif #endif

View file

@ -1,120 +1,120 @@
/* /*
* T48G, (c) 2000 Christoph Giesselink (cgiess@swol.de) * T48G, (c) 2000 Christoph Giesselink (cgiess@swol.de)
* *
* This program is free software; you can redistribute it and/or modify * This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by * it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or * the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version. * (at your option) any later version.
* *
* This program is distributed in the hope that it will be useful, * This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of * but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details. * GNU General Public License for more details.
* *
* You should have received a copy of the GNU General Public License * You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software * along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, * Foundation, Inc., 59 Temple Place - Suite 330, Boston,
* MA 02111-1307, USA. * MA 02111-1307, USA.
*/ */
#define WIN32_LEAN_AND_MEAN #define WIN32_LEAN_AND_MEAN
#define WIN32_EXTRA_LEAN #define WIN32_EXTRA_LEAN
#include <windows.h> #include <windows.h>
#include <stdio.h> #include <stdio.h>
#include <stdlib.h> #include <stdlib.h>
#include <stddef.h> #include <stddef.h>
#include <assert.h> #include <assert.h>
#include "types.h" #include "types.h"
#define VERSION "1.0" #define VERSION "1.0"
#define _KB(n) (n*1024*2) // KB emulator block #define _KB(n) (n*1024*2) // KB emulator block
#define HP48SIG "Emu48 Document\xFE" // HP49 state file signature #define HP48SIG "Emu48 Document\xFE" // HP49 state file signature
VOID MakeTemplate(FILE *hFile,BYTE type,DWORD Port0Size,DWORD Port1Size) VOID MakeTemplate(FILE *hFile,BYTE type,DWORD Port0Size,DWORD Port1Size)
{ {
CHIPSET Chipset; CHIPSET Chipset;
DWORD dwBytesWritten; DWORD dwBytesWritten;
UINT nVar; UINT nVar;
BYTE byZ; BYTE byZ;
// file signature // file signature
WriteFile(hFile,HP48SIG,sizeof(HP48SIG),&dwBytesWritten,NULL); WriteFile(hFile,HP48SIG,sizeof(HP48SIG),&dwBytesWritten,NULL);
assert(dwBytesWritten == sizeof(HP48SIG)); assert(dwBytesWritten == sizeof(HP48SIG));
// KML filename length // KML filename length
nVar = 0; // no name nVar = 0; // no name
WriteFile(hFile,&nVar,sizeof(nVar),&dwBytesWritten,NULL); WriteFile(hFile,&nVar,sizeof(nVar),&dwBytesWritten,NULL);
assert(dwBytesWritten == sizeof(nVar)); assert(dwBytesWritten == sizeof(nVar));
// KML filename // KML filename
// Chipset Size // Chipset Size
nVar = sizeof(Chipset); // length, no name nVar = sizeof(Chipset); // length, no name
WriteFile(hFile,&nVar,sizeof(nVar),&dwBytesWritten,NULL); WriteFile(hFile,&nVar,sizeof(nVar),&dwBytesWritten,NULL);
assert(dwBytesWritten == sizeof(nVar)); assert(dwBytesWritten == sizeof(nVar));
// Chipset // Chipset
ZeroMemory(&Chipset,sizeof(Chipset)); ZeroMemory(&Chipset,sizeof(Chipset));
Chipset.type = type; Chipset.type = type;
Chipset.Port0Size = Port0Size; Chipset.Port0Size = Port0Size;
Chipset.Port1Size = Port1Size; Chipset.Port1Size = Port1Size;
Chipset.Port2Size = 0; Chipset.Port2Size = 0;
Chipset.cards_status = 0x0; Chipset.cards_status = 0x0;
WriteFile(hFile,&Chipset,sizeof(Chipset),&dwBytesWritten,NULL); WriteFile(hFile,&Chipset,sizeof(Chipset),&dwBytesWritten,NULL);
assert(dwBytesWritten == sizeof(Chipset)); assert(dwBytesWritten == sizeof(Chipset));
byZ = 0; // fill with zero nibble byZ = 0; // fill with zero nibble
// write port0 memory content // write port0 memory content
for (nVar = 0; nVar < _KB(Chipset.Port0Size); ++nVar) for (nVar = 0; nVar < _KB(Chipset.Port0Size); ++nVar)
{ {
WriteFile(hFile,&byZ,1,&dwBytesWritten,NULL); WriteFile(hFile,&byZ,1,&dwBytesWritten,NULL);
assert(dwBytesWritten == 1); assert(dwBytesWritten == 1);
} }
// write port1 memory content // write port1 memory content
for (nVar = 0; nVar < _KB(Chipset.Port1Size); ++nVar) for (nVar = 0; nVar < _KB(Chipset.Port1Size); ++nVar)
{ {
WriteFile(hFile,&byZ,1,&dwBytesWritten,NULL); WriteFile(hFile,&byZ,1,&dwBytesWritten,NULL);
assert(dwBytesWritten == 1); assert(dwBytesWritten == 1);
} }
return; return;
} }
UINT main(int argc, char *argv[]) UINT main(int argc, char *argv[])
{ {
HANDLE hFile; HANDLE hFile;
BYTE type; BYTE type;
DWORD Port0Size; DWORD Port0Size;
DWORD Port1Size; DWORD Port1Size;
printf("HP48 State File Template for Emu48 V" VERSION "\n"); printf("HP48 State File Template for Emu48 V" VERSION "\n");
if (argc != 5 || (*argv[2] != 'S' && *argv[2] != 'G')) if (argc != 5 || (*argv[2] != 'S' && *argv[2] != 'G'))
{ {
printf("\nUsage:\n\t%s <E48-File> <Model[S|G]> <Port0-Size> <Port1-Size>\n\n", argv[0]); printf("\nUsage:\n\t%s <E48-File> <Model[S|G]> <Port0-Size> <Port1-Size>\n\n", argv[0]);
return 1; return 1;
} }
type = *argv[2]; type = *argv[2];
Port0Size = atoi(argv[3]); Port0Size = atoi(argv[3]);
Port1Size = atoi(argv[4]); Port1Size = atoi(argv[4]);
hFile = CreateFile(argv[1],GENERIC_WRITE,0,NULL,CREATE_ALWAYS,0,NULL); hFile = CreateFile(argv[1],GENERIC_WRITE,0,NULL,CREATE_ALWAYS,0,NULL);
if (hFile != INVALID_HANDLE_VALUE) if (hFile != INVALID_HANDLE_VALUE)
{ {
// write template // write template
MakeTemplate(hFile,type,Port0Size,Port1Size); MakeTemplate(hFile,type,Port0Size,Port1Size);
puts("Generation successful."); puts("Generation successful.");
CloseHandle(hFile); CloseHandle(hFile);
} }
else else
{ {
printf("Cannot open file %s.\n", argv[1]); printf("Cannot open file %s.\n", argv[1]);
return TRUE; return TRUE;
} }
return FALSE; return FALSE;
} }

View file

@ -1,103 +1,103 @@
/* /*
* types.h * types.h
* *
* This file is part of Emu48 * This file is part of Emu48
* *
* Copyright (C) 1995 Sebastien Carlier * Copyright (C) 1995 Sebastien Carlier
* *
*/ */
// HST bits // HST bits
#define XM 1 #define XM 1
#define SB 2 #define SB 2
#define SR 4 #define SR 4
#define MP 8 #define MP 8
#define SWORD SHORT // signed 16 Bit variable #define SWORD SHORT // signed 16 Bit variable
#define QWORD ULONGLONG // unsigned 64 Bit variable #define QWORD ULONGLONG // unsigned 64 Bit variable
#define CHIPSET Chipset_t #define CHIPSET Chipset_t
typedef struct typedef struct
{ {
SWORD nPosX; // position of window SWORD nPosX; // position of window
SWORD nPosY; SWORD nPosY;
BYTE type; // calculator type BYTE type; // calculator type
DWORD Port0Size; // real size of module in KB DWORD Port0Size; // real size of module in KB
DWORD Port1Size; // real size of module in KB DWORD Port1Size; // real size of module in KB
DWORD Port2Size; // real size of module in KB (HP49G only) DWORD Port2Size; // real size of module in KB (HP49G only)
LPBYTE Port0; LPBYTE Port0;
LPBYTE Port1; LPBYTE Port1;
LPBYTE Port2; LPBYTE Port2;
DWORD pc; DWORD pc;
DWORD d0; DWORD d0;
DWORD d1; DWORD d1;
DWORD rstkp; DWORD rstkp;
DWORD rstk[8]; DWORD rstk[8];
BYTE A[16]; BYTE A[16];
BYTE B[16]; BYTE B[16];
BYTE C[16]; BYTE C[16];
BYTE D[16]; BYTE D[16];
BYTE R0[16]; BYTE R0[16];
BYTE R1[16]; BYTE R1[16];
BYTE R2[16]; BYTE R2[16];
BYTE R3[16]; BYTE R3[16];
BYTE R4[16]; BYTE R4[16];
BYTE ST[4]; BYTE ST[4];
BYTE HST; BYTE HST;
BYTE P; BYTE P;
WORD out; WORD out;
WORD in; WORD in;
BOOL SoftInt; BOOL SoftInt;
BOOL Shutdn; BOOL Shutdn;
BOOL mode_dec; BOOL mode_dec;
BOOL inte; // interrupt status flag (FALSE = int in service) BOOL inte; // interrupt status flag (FALSE = int in service)
BOOL intk; // 1 ms keyboard scan flag (TRUE = enable) BOOL intk; // 1 ms keyboard scan flag (TRUE = enable)
BOOL intd; // keyboard interrupt pending (TRUE = int pending) BOOL intd; // keyboard interrupt pending (TRUE = int pending)
BOOL carry; BOOL carry;
WORD crc; WORD crc;
WORD wPort2Crc; // fingerprint of port2 WORD wPort2Crc; // fingerprint of port2
WORD wRomCrc; // fingerprint of ROM WORD wRomCrc; // fingerprint of ROM
#if defined _USRDLL // DLL version #if defined _USRDLL // DLL version
QWORD cycles; // oscillator cycles QWORD cycles; // oscillator cycles
#else // EXE version #else // EXE version
DWORD cycles; // oscillator cycles DWORD cycles; // oscillator cycles
DWORD cycles_reserved; // reserved for MSB of oscillator cycles DWORD cycles_reserved; // reserved for MSB of oscillator cycles
#endif #endif
DWORD dwKdnCycles; // cpu cycles at start of 1ms key handler DWORD dwKdnCycles; // cpu cycles at start of 1ms key handler
UINT Bank_FF; // save state of HP48GX port2 or state of HP49G ROM FF UINT Bank_FF; // save state of HP48GX port2 or state of HP49G ROM FF
UINT FlashRomState; // WSM state of flash memory (unused) UINT FlashRomState; // WSM state of flash memory (unused)
BYTE cards_status; BYTE cards_status;
BYTE IORam[64]; // I/O hardware register BYTE IORam[64]; // I/O hardware register
UINT IOBase; // address of I/O modules page UINT IOBase; // address of I/O modules page
BOOL IOCfig; // I/O module configuration flag BOOL IOCfig; // I/O module configuration flag
BYTE P0Base, BSBase, P1Base, P2Base; // address of modules first 2KB page BYTE P0Base, BSBase, P1Base, P2Base; // address of modules first 2KB page
BYTE P0Size, BSSize, P1Size, P2Size; // mapped size of module in 2KB BYTE P0Size, BSSize, P1Size, P2Size; // mapped size of module in 2KB
BYTE P0End, BSEnd, P1End, P2End; // address of modules last 2KB page BYTE P0End, BSEnd, P1End, P2End; // address of modules last 2KB page
BOOL P0Cfig, BSCfig, P1Cfig, P2Cfig; // module address configuration flag BOOL P0Cfig, BSCfig, P1Cfig, P2Cfig; // module address configuration flag
BOOL P0Cfg2, BSCfg2, P1Cfg2, P2Cfg2; // module size configuration flag BOOL P0Cfg2, BSCfg2, P1Cfg2, P2Cfg2; // module size configuration flag
BYTE t1; BYTE t1;
DWORD t2; DWORD t2;
BOOL bShutdnWake; // flag for wake up from SHUTDN mode BOOL bShutdnWake; // flag for wake up from SHUTDN mode
BYTE Keyboard_Row[9]; BYTE Keyboard_Row[9];
WORD IR15X; WORD IR15X;
UINT Keyboard_State; // not used UINT Keyboard_State; // not used
signed short loffset; signed short loffset;
signed int width; signed int width;
UINT boffset; UINT boffset;
UINT lcounter; UINT lcounter;
UINT sync; // not used UINT sync; // not used
BYTE contrast; BYTE contrast;
BOOL dispon; BOOL dispon;
DWORD start1; DWORD start1;
DWORD start12; DWORD start12;
DWORD end1; DWORD end1;
DWORD start2, end2; DWORD start2, end2;
} Chipset_t; } Chipset_t;

Binary file not shown.