import re import urllib.parse import xml.etree.ElementTree from .common import InfoExtractor from ..utils import ( ExtractorError, int_or_none, parse_qs, smuggle_url, traverse_obj, unified_timestamp, update_url_query, url_or_none, xpath_text, ) class SlidesLiveIE(InfoExtractor): _VALID_URL = r'https?://slideslive\.com/(?:embed/(?:presentation/)?)?(?P<id>[0-9]+)' _TESTS = [{ # service_name = yoda, only XML slides info 'url': 'https://slideslive.com/38902413/gcc-ia16-backend', 'info_dict': { 'id': '38902413', 'ext': 'mp4', 'title': 'GCC IA16 backend', 'timestamp': 1648189972, 'upload_date': '20220325', 'thumbnail': r're:^https?://.*\.jpg', 'thumbnails': 'count:42', 'chapters': 'count:41', 'duration': 1638, }, 'params': { 'skip_download': 'm3u8', }, }, { # service_name = yoda, /v7/ slides 'url': 'https://slideslive.com/38935785', 'info_dict': { 'id': '38935785', 'ext': 'mp4', 'title': 'Offline Reinforcement Learning: From Algorithms to Practical Challenges', 'upload_date': '20211115', 'timestamp': 1636996003, 'thumbnail': r're:^https?://.*\.(?:jpg|png)', 'thumbnails': 'count:640', 'chapters': 'count:639', 'duration': 9832, }, 'params': { 'skip_download': 'm3u8', }, }, { # service_name = yoda, /v1/ slides 'url': 'https://slideslive.com/38973182/how-should-a-machine-learning-researcher-think-about-ai-ethics', 'info_dict': { 'id': '38973182', 'ext': 'mp4', 'title': 'How Should a Machine Learning Researcher Think About AI Ethics?', 'upload_date': '20220201', 'thumbnail': r're:^https?://.*\.jpg', 'timestamp': 1643728135, 'thumbnails': 'count:3', 'chapters': 'count:2', 'duration': 5889, }, 'params': { 'skip_download': 'm3u8', }, }, { # service_name = youtube, only XML slides info 'url': 'https://slideslive.com/38897546/special-metaprednaska-petra-ludwiga-hodnoty-pro-lepsi-spolecnost', 'md5': '8a79b5e3d700837f40bd2afca3c8fa01', 'info_dict': { 'id': 'jmg02wCJD5M', 'display_id': '38897546', 'ext': 'mp4', 'title': 'SPECIÁL: Meta-přednáška Petra Ludwiga - Hodnoty pro lepší společnost', 'description': 'Watch full version of this video at https://slideslive.com/38897546.', 'channel_url': 'https://www.youtube.com/channel/UCZWdAkNYFncuX0khyvhqnxw', 'channel': 'SlidesLive Videos - G1', 'channel_id': 'UCZWdAkNYFncuX0khyvhqnxw', 'uploader_id': 'UCZWdAkNYFncuX0khyvhqnxw', 'uploader': 'SlidesLive Videos - G1', 'uploader_url': 'http://www.youtube.com/channel/UCZWdAkNYFncuX0khyvhqnxw', 'live_status': 'not_live', 'upload_date': '20160710', 'timestamp': 1618786715, 'duration': 6827, 'like_count': int, 'view_count': int, 'comment_count': int, 'channel_follower_count': int, 'age_limit': 0, 'thumbnail': r're:^https?://.*\.(?:jpg|webp)', 'thumbnails': 'count:169', 'playable_in_embed': True, 'availability': 'unlisted', 'tags': [], 'categories': ['People & Blogs'], 'chapters': 'count:168', }, }, { # embed-only presentation, only XML slides info 'url': 'https://slideslive.com/embed/presentation/38925850', 'info_dict': { 'id': '38925850', 'ext': 'mp4', 'title': 'Towards a Deep Network Architecture for Structured Smoothness', 'thumbnail': r're:^https?://.*\.jpg', 'thumbnails': 'count:8', 'timestamp': 1629671508, 'upload_date': '20210822', 'chapters': 'count:7', 'duration': 326, }, 'params': { 'skip_download': 'm3u8', }, }, { # embed-only presentation, only JSON slides info, /v5/ slides (.png) 'url': 'https://slideslive.com/38979920/', 'info_dict': { 'id': '38979920', 'ext': 'mp4', 'title': 'MoReL: Multi-omics Relational Learning', 'thumbnail': r're:^https?://.*\.(?:jpg|png)', 'thumbnails': 'count:7', 'timestamp': 1654714970, 'upload_date': '20220608', 'chapters': 'count:6', 'duration': 171, }, 'params': { 'skip_download': 'm3u8', }, }, { # /v2/ slides (.jpg) 'url': 'https://slideslive.com/38954074', 'info_dict': { 'id': '38954074', 'ext': 'mp4', 'title': 'Decentralized Attribution of Generative Models', 'thumbnail': r're:^https?://.*\.jpg', 'thumbnails': 'count:16', 'timestamp': 1622806321, 'upload_date': '20210604', 'chapters': 'count:15', 'duration': 306, }, 'params': { 'skip_download': 'm3u8', }, }, { # /v4/ slides (.png) 'url': 'https://slideslive.com/38979570/', 'info_dict': { 'id': '38979570', 'ext': 'mp4', 'title': 'Efficient Active Search for Combinatorial Optimization Problems', 'thumbnail': r're:^https?://.*\.(?:jpg|png)', 'thumbnails': 'count:9', 'timestamp': 1654714896, 'upload_date': '20220608', 'chapters': 'count:8', 'duration': 295, }, 'params': { 'skip_download': 'm3u8', }, }, { # /v10/ slides 'url': 'https://slideslive.com/embed/presentation/38979880?embed_parent_url=https%3A%2F%2Fedit.videoken.com%2F', 'info_dict': { 'id': '38979880', 'ext': 'mp4', 'title': 'The Representation Power of Neural Networks', 'timestamp': 1654714962, 'thumbnail': r're:^https?://.*\.(?:jpg|png)', 'thumbnails': 'count:22', 'upload_date': '20220608', 'chapters': 'count:21', 'duration': 294, }, 'params': { 'skip_download': 'm3u8', }, }, { # /v7/ slides, 2 video slides 'url': 'https://slideslive.com/embed/presentation/38979682?embed_container_origin=https%3A%2F%2Fedit.videoken.com', 'playlist_count': 3, 'info_dict': { 'id': '38979682-playlist', 'title': 'LoRA: Low-Rank Adaptation of Large Language Models', }, 'playlist': [{ 'info_dict': { 'id': '38979682', 'ext': 'mp4', 'title': 'LoRA: Low-Rank Adaptation of Large Language Models', 'timestamp': 1654714920, 'thumbnail': r're:^https?://.*\.(?:jpg|png)', 'thumbnails': 'count:30', 'upload_date': '20220608', 'chapters': 'count:31', 'duration': 272, }, }, { 'info_dict': { 'id': '38979682-021', 'ext': 'mp4', 'title': 'LoRA: Low-Rank Adaptation of Large Language Models - Slide 021', 'duration': 3, 'timestamp': 1654714920, 'upload_date': '20220608', }, }, { 'info_dict': { 'id': '38979682-024', 'ext': 'mp4', 'title': 'LoRA: Low-Rank Adaptation of Large Language Models - Slide 024', 'duration': 4, 'timestamp': 1654714920, 'upload_date': '20220608', }, }], 'params': { 'skip_download': 'm3u8', }, }, { # /v6/ slides, 1 video slide, edit.videoken.com embed 'url': 'https://slideslive.com/38979481/', 'playlist_count': 2, 'info_dict': { 'id': '38979481-playlist', 'title': 'How to Train Your MAML to Excel in Few-Shot Classification', }, 'playlist': [{ 'info_dict': { 'id': '38979481', 'ext': 'mp4', 'title': 'How to Train Your MAML to Excel in Few-Shot Classification', 'timestamp': 1654714877, 'thumbnail': r're:^https?://.*\.(?:jpg|png)', 'thumbnails': 'count:43', 'upload_date': '20220608', 'chapters': 'count:43', 'duration': 315, }, }, { 'info_dict': { 'id': '38979481-013', 'ext': 'mp4', 'title': 'How to Train Your MAML to Excel in Few-Shot Classification - Slide 013', 'duration': 3, 'timestamp': 1654714877, 'upload_date': '20220608', }, }], 'params': { 'skip_download': 'm3u8', }, }, { # /v3/ slides, .jpg and .png, service_name = youtube 'url': 'https://slideslive.com/embed/38932460/', 'info_dict': { 'id': 'RTPdrgkyTiE', 'display_id': '38932460', 'ext': 'mp4', 'title': 'Active Learning for Hierarchical Multi-Label Classification', 'description': 'Watch full version of this video at https://slideslive.com/38932460.', 'channel': 'SlidesLive Videos - A', 'channel_id': 'UC62SdArr41t_-_fX40QCLRw', 'channel_url': 'https://www.youtube.com/channel/UC62SdArr41t_-_fX40QCLRw', 'uploader': 'SlidesLive Videos - A', 'uploader_id': 'UC62SdArr41t_-_fX40QCLRw', 'uploader_url': 'http://www.youtube.com/channel/UC62SdArr41t_-_fX40QCLRw', 'upload_date': '20200903', 'timestamp': 1602599092, 'duration': 942, 'age_limit': 0, 'live_status': 'not_live', 'playable_in_embed': True, 'availability': 'unlisted', 'categories': ['People & Blogs'], 'tags': [], 'channel_follower_count': int, 'like_count': int, 'view_count': int, 'thumbnail': r're:^https?://.*\.(?:jpg|png|webp)', 'thumbnails': 'count:21', 'chapters': 'count:20', }, 'params': { 'skip_download': 'm3u8', }, }, { # /v3/ slides, .png only, service_name = yoda 'url': 'https://slideslive.com/38983994', 'info_dict': { 'id': '38983994', 'ext': 'mp4', 'title': 'Zero-Shot AutoML with Pretrained Models', 'timestamp': 1662384834, 'upload_date': '20220905', 'thumbnail': r're:^https?://.*\.(?:jpg|png)', 'thumbnails': 'count:23', 'chapters': 'count:22', 'duration': 295, }, 'params': { 'skip_download': 'm3u8', }, }, { # service_name = yoda 'url': 'https://slideslive.com/38903721/magic-a-scientific-resurrection-of-an-esoteric-legend', 'only_matching': True, }, { # dead link, service_name = url 'url': 'https://slideslive.com/38922070/learning-transferable-skills-1', 'only_matching': True, }, { # dead link, service_name = vimeo 'url': 'https://slideslive.com/38921896/retrospectives-a-venue-for-selfreflection-in-ml-research-3', 'only_matching': True, }] _WEBPAGE_TESTS = [{ # only XML slides info 'url': 'https://iclr.cc/virtual_2020/poster_Hklr204Fvr.html', 'info_dict': { 'id': '38925850', 'ext': 'mp4', 'title': 'Towards a Deep Network Architecture for Structured Smoothness', 'thumbnail': r're:^https?://.*\.jpg', 'thumbnails': 'count:8', 'timestamp': 1629671508, 'upload_date': '20210822', 'chapters': 'count:7', 'duration': 326, }, 'params': { 'skip_download': 'm3u8', }, }] @classmethod def _extract_embed_urls(cls, url, webpage): # Reference: https://slideslive.com/embed_presentation.js for embed_id in re.findall(r'(?s)new\s+SlidesLiveEmbed\s*\([^)]+\bpresentationId:\s*["\'](\d+)["\']', webpage): url_parsed = urllib.parse.urlparse(url) origin = f'{url_parsed.scheme}://{url_parsed.netloc}' yield update_url_query( f'https://slideslive.com/embed/presentation/{embed_id}', { 'embed_parent_url': url, 'embed_container_origin': origin, }) def _download_embed_webpage_handle(self, video_id, headers): return self._download_webpage_handle( f'https://slideslive.com/embed/presentation/{video_id}', video_id, headers=headers, query=traverse_obj(headers, { 'embed_parent_url': 'Referer', 'embed_container_origin': 'Origin', })) def _extract_custom_m3u8_info(self, m3u8_data): m3u8_dict = {} lookup = { 'PRESENTATION-TITLE': 'title', 'PRESENTATION-UPDATED-AT': 'timestamp', 'PRESENTATION-THUMBNAIL': 'thumbnail', 'PLAYLIST-TYPE': 'playlist_type', 'VOD-VIDEO-SERVICE-NAME': 'service_name', 'VOD-VIDEO-ID': 'service_id', 'VOD-VIDEO-SERVERS': 'video_servers', 'VOD-SUBTITLES': 'subtitles', 'VOD-SLIDES-JSON-URL': 'slides_json_url', 'VOD-SLIDES-XML-URL': 'slides_xml_url', } for line in m3u8_data.splitlines(): if not line.startswith('#EXT-SL-'): continue tag, _, value = line.partition(':') key = lookup.get(tag.lstrip('#EXT-SL-')) if not key: continue m3u8_dict[key] = value # Some values are stringified JSON arrays for key in ('video_servers', 'subtitles'): if key in m3u8_dict: m3u8_dict[key] = self._parse_json(m3u8_dict[key], None, fatal=False) or [] return m3u8_dict def _extract_formats_and_duration(self, cdn_hostname, path, video_id, skip_duration=False): formats, duration = [], None hls_formats = self._extract_m3u8_formats( f'https://{cdn_hostname}/{path}/master.m3u8', video_id, 'mp4', m3u8_id='hls', fatal=False, live=True) if hls_formats: if not skip_duration: duration = self._extract_m3u8_vod_duration( hls_formats[0]['url'], video_id, note='Extracting duration from HLS manifest') formats.extend(hls_formats) dash_formats = self._extract_mpd_formats( f'https://{cdn_hostname}/{path}/master.mpd', video_id, mpd_id='dash', fatal=False) if dash_formats: if not duration and not skip_duration: duration = self._extract_mpd_vod_duration( f'https://{cdn_hostname}/{path}/master.mpd', video_id, note='Extracting duration from DASH manifest') formats.extend(dash_formats) return formats, duration def _real_extract(self, url): video_id = self._match_id(url) webpage, urlh = self._download_embed_webpage_handle( video_id, headers=traverse_obj(parse_qs(url), { 'Referer': ('embed_parent_url', -1), 'Origin': ('embed_container_origin', -1)})) redirect_url = urlh.url if 'domain_not_allowed' in redirect_url: domain = traverse_obj(parse_qs(redirect_url), ('allowed_domains[]', ...), get_all=False) if not domain: raise ExtractorError( 'This is an embed-only presentation. Try passing --referer', expected=True) webpage, _ = self._download_embed_webpage_handle(video_id, headers={ 'Referer': f'https://{domain}/', 'Origin': f'https://{domain}', }) player_token = self._search_regex(r'data-player-token="([^"]+)"', webpage, 'player token') player_data = self._download_webpage( f'https://ben.slideslive.com/player/{video_id}', video_id, note='Downloading player info', query={'player_token': player_token}) player_info = self._extract_custom_m3u8_info(player_data) service_name = player_info['service_name'].lower() assert service_name in ('url', 'yoda', 'vimeo', 'youtube') service_id = player_info['service_id'] slide_url_template = 'https://slides.slideslive.com/%s/slides/original/%s%s' slides, slides_info = {}, [] if player_info.get('slides_json_url'): slides = self._download_json( player_info['slides_json_url'], video_id, fatal=False, note='Downloading slides JSON', errnote=False) or {} slide_ext_default = '.png' slide_quality = traverse_obj(slides, ('slide_qualities', 0)) if slide_quality: slide_ext_default = '.jpg' slide_url_template = f'https://cdn.slideslive.com/data/presentations/%s/slides/{slide_quality}/%s%s' for slide_id, slide in enumerate(traverse_obj(slides, ('slides', ...), expected_type=dict), 1): slides_info.append(( slide_id, traverse_obj(slide, ('image', 'name')), traverse_obj(slide, ('image', 'extname'), default=slide_ext_default), int_or_none(slide.get('time'), scale=1000))) if not slides and player_info.get('slides_xml_url'): slides = self._download_xml( player_info['slides_xml_url'], video_id, fatal=False, note='Downloading slides XML', errnote='Failed to download slides info') if isinstance(slides, xml.etree.ElementTree.Element): slide_url_template = 'https://cdn.slideslive.com/data/presentations/%s/slides/big/%s%s' for slide_id, slide in enumerate(slides.findall('./slide')): slides_info.append(( slide_id, xpath_text(slide, './slideName', 'name'), '.jpg', int_or_none(xpath_text(slide, './timeSec', 'time')))) chapters, thumbnails = [], [] if url_or_none(player_info.get('thumbnail')): thumbnails.append({'id': 'cover', 'url': player_info['thumbnail']}) for slide_id, slide_path, slide_ext, start_time in slides_info: if slide_path: thumbnails.append({ 'id': f'{slide_id:03d}', 'url': slide_url_template % (video_id, slide_path, slide_ext), }) chapters.append({ 'title': f'Slide {slide_id:03d}', 'start_time': start_time, }) subtitles = {} for sub in traverse_obj(player_info, ('subtitles', ...), expected_type=dict): webvtt_url = url_or_none(sub.get('webvtt_url')) if not webvtt_url: continue subtitles.setdefault(sub.get('language') or 'en', []).append({ 'url': webvtt_url, 'ext': 'vtt', }) info = { 'id': video_id, 'title': player_info.get('title') or self._html_search_meta('title', webpage, default=''), 'timestamp': unified_timestamp(player_info.get('timestamp')), 'is_live': player_info.get('playlist_type') != 'vod', 'thumbnails': thumbnails, 'chapters': chapters, 'subtitles': subtitles, } if service_name == 'url': info['url'] = service_id elif service_name == 'yoda': formats, duration = self._extract_formats_and_duration( player_info['video_servers'][0], service_id, video_id) info.update({ 'duration': duration, 'formats': formats, }) else: info.update({ '_type': 'url_transparent', 'url': service_id, 'ie_key': service_name.capitalize(), 'display_id': video_id, }) if service_name == 'vimeo': info['url'] = smuggle_url( f'https://player.vimeo.com/video/{service_id}', {'referer': url}) video_slides = traverse_obj(slides, ('slides', ..., 'video', 'id')) if not video_slides: return info def entries(): yield info service_data = self._download_json( f'https://ben.slideslive.com/player/{video_id}/slides_video_service_data', video_id, fatal=False, query={ 'player_token': player_token, 'videos': ','.join(video_slides), }, note='Downloading video slides info', errnote='Failed to download video slides info') or {} for slide_id, slide in enumerate(traverse_obj(slides, ('slides', ...)), 1): if not traverse_obj(slide, ('video', 'service')) == 'yoda': continue video_path = traverse_obj(slide, ('video', 'id')) cdn_hostname = traverse_obj(service_data, ( video_path, 'video_servers', ...), get_all=False) if not cdn_hostname or not video_path: continue formats, _ = self._extract_formats_and_duration( cdn_hostname, video_path, video_id, skip_duration=True) if not formats: continue yield { 'id': f'{video_id}-{slide_id:03d}', 'title': f'{info["title"]} - Slide {slide_id:03d}', 'timestamp': info['timestamp'], 'duration': int_or_none(traverse_obj(slide, ('video', 'duration_ms')), scale=1000), 'formats': formats, } return self.playlist_result(entries(), f'{video_id}-playlist', info['title'])