mirror of
git://xwords.git.sourceforge.net/gitroot/xwords/xwords
synced 2025-01-20 22:26:54 +01:00
1075 lines
31 KiB
C++
1075 lines
31 KiB
C++
/* -*- compile-command: "g++ -O -o dict2dawg dict2dawg.cpp"; -*- */
|
|
/*************************************************************************
|
|
* adapted from perl code that was itself adapted from C++ code
|
|
* Copyright (C) 2000 Falk Hueffner
|
|
|
|
* This version Copyright (C) 2002,2006 Eric House (xwords@eehouse.org)
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
|
|
* USA
|
|
**************************************************************************
|
|
* inputs: 0. Name of file mapping letters to 0..31 values. In English
|
|
* case just contains A..Z. This will be used to translate the tries
|
|
* on output.
|
|
* 1. Max number of bytes per binary output file.
|
|
*
|
|
* 2. Basename of binary files for output.
|
|
|
|
* 3. Name of file to which to write the number of the
|
|
* startNode, since I'm not rewriting a bunch of code to expect Falk's
|
|
* '*' node at the start.
|
|
*
|
|
|
|
* In STDIN, the text file to be compressed. It absolutely
|
|
* must be sorted. The sort doesn't have to follow the order in the
|
|
* map file, however.
|
|
|
|
* This is meant eventually to be runnable as part of a cgi system for
|
|
* letting users generate Crosswords dicts online.
|
|
**************************************************************************/
|
|
|
|
#include <stdio.h>
|
|
#include <stdarg.h>
|
|
#include <netinet/in.h>
|
|
#include <assert.h>
|
|
|
|
#include <string>
|
|
#include <map>
|
|
#include <vector>
|
|
#include <list>
|
|
|
|
typedef unsigned int Node;
|
|
typedef std::vector<Node> NodeList;
|
|
typedef std::vector<char*> WordList;
|
|
|
|
#define MAX_WORD_LEN 15
|
|
|
|
int gFirstDiff;
|
|
|
|
static char gCurrentWordBuf[MAX_WORD_LEN+1] = { '\0' };
|
|
// this will never change for non-sort case
|
|
static char* gCurrentWord = gCurrentWordBuf;
|
|
static int gCurrentWordLen;
|
|
|
|
char* gCurWord = NULL; // save so can check for sortedness
|
|
bool gDone = false;
|
|
static int gNextWordIndex;
|
|
static void (*gReadWordProc)(void) = NULL;
|
|
NodeList gNodes; // final array of nodes
|
|
unsigned int gNBytesPerOutfile = 0xFFFFFFFF;
|
|
char* gTableFile = NULL;
|
|
char* gOutFileBase = NULL;
|
|
char* gStartNodeOut = NULL;
|
|
static FILE* gInFile = NULL;
|
|
bool gKillIfMissing = true;
|
|
char gTermChar = '\n';
|
|
bool gDumpText = false; // dump the dict as text after?
|
|
char* gCountFile = NULL;
|
|
char* gBytesPerNodeFile = NULL; // where to write whether node size 3 or 4
|
|
int gWordCount = 0;
|
|
std::map<char,int> gTableHash;
|
|
int gBlankIndex;
|
|
std::vector<char> gRevMap;
|
|
#ifdef DEBUG
|
|
bool gDebug = false;
|
|
#endif
|
|
std::map<NodeList, int> gSubsHash;
|
|
bool gForceFour = false; // use four bytes regardless of need?
|
|
int gNBytesPerNode;
|
|
bool gUseUnicode;
|
|
|
|
|
|
// OWL is 1.7M
|
|
#define MAX_POOL_SIZE 3000000
|
|
#define ERROR_EXIT(...) error_exit( __LINE__, __VA_ARGS__ );
|
|
|
|
static char* parseARGV( int argc, char** argv, const char** inFileName );
|
|
static void usage( const char* name );
|
|
static void error_exit( int line, const char* fmt, ... );
|
|
static char parsechar( const char* in );
|
|
static void makeTableHash( void );
|
|
static WordList* parseAndSort( FILE* file );
|
|
static void printWords( WordList* strings );
|
|
static bool firstBeforeSecond( const char* lhs, const char* rhs );
|
|
static char* tileToAscii( char* out, int outSize, const char* in );
|
|
static int buildNode( int depth );
|
|
static void TrieNodeSetIsLastSibling( Node* nodeR, bool isLastSibling );
|
|
static int addNodes( NodeList& newedgesR );
|
|
static void TrieNodeSetIsTerminal( Node* nodeR, bool isTerminal );
|
|
static bool TrieNodeGetIsTerminal( Node node );
|
|
static void TrieNodeSetIsLastSibling( Node* nodeR, bool isLastSibling );
|
|
static bool TrieNodeGetIsLastSibling( Node node );
|
|
static void TrieNodeSetLetter( Node* nodeR, int letter );
|
|
static int TrieNodeGetLetter( Node node );
|
|
static void TrieNodeSetFirstChildOffset( Node* nodeR, int fco );
|
|
static int TrieNodeGetFirstChildOffset( Node node );
|
|
static int findSubArray( NodeList& newedgesR );
|
|
static void registerSubArray( NodeList& edgesR, int nodeLoc );
|
|
static Node MakeTrieNode( int letter, bool isTerminal, int firstChildOffset,
|
|
bool isLastSibling );
|
|
static void printNodes( NodeList& nodesR );
|
|
static void printNode( int index, Node node );
|
|
static void moveTopToFront( int* firstRef );
|
|
static void writeOutStartNode( const char* startNodeOut,
|
|
int firstRootChildOffset );
|
|
static void emitNodes( unsigned int nBytesPerOutfile, const char* outFileBase );
|
|
static void outputNode( Node node, int nBytes, FILE* outfile );
|
|
static void printOneLevel( int index, char* str, int curlen );
|
|
static void readFromSortedArray( void );
|
|
|
|
int
|
|
main( int argc, char** argv )
|
|
{
|
|
gReadWordProc = readFromSortedArray;
|
|
|
|
const char* inFileName;
|
|
if ( NULL == parseARGV( argc, argv, &inFileName ) ) {
|
|
usage(argv[0]);
|
|
exit(1);
|
|
}
|
|
|
|
makeTableHash();
|
|
|
|
// Do I need this stupid thing? Better to move the first row to
|
|
// the front of the array and patch everything else. Or fix the
|
|
// non-palm dictionary format to include the offset of the first
|
|
// node.
|
|
|
|
Node dummyNode = (Node)0xFFFFFFFF;
|
|
assert( sizeof(Node) == 4 );
|
|
gNodes.push_back(dummyNode);
|
|
|
|
if ( NULL == inFileName ) {
|
|
gInFile = stdin;
|
|
} else {
|
|
gInFile = fopen( inFileName, "r" );
|
|
}
|
|
|
|
(*gReadWordProc)();
|
|
|
|
int firstRootChildOffset = buildNode(0);
|
|
moveTopToFront( &firstRootChildOffset );
|
|
|
|
if ( gStartNodeOut ) {
|
|
writeOutStartNode( gStartNodeOut, firstRootChildOffset );
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
if ( gDebug ) {
|
|
fprintf( stderr, "\n... dumping table ...\n" );
|
|
printNodes( gNodes );
|
|
}
|
|
#endif
|
|
// write out the number of nodes if requested
|
|
if ( gCountFile ) {
|
|
FILE* OFILE;
|
|
OFILE = fopen( gCountFile, "w" );
|
|
unsigned long be = htonl( gWordCount );
|
|
fwrite( &be, sizeof(be), 1, OFILE );
|
|
fclose( OFILE );
|
|
fprintf( stderr, "wrote out: got %d words\n", gWordCount );
|
|
}
|
|
|
|
if ( gOutFileBase ) {
|
|
emitNodes( gNBytesPerOutfile, gOutFileBase );
|
|
}
|
|
|
|
if ( gDumpText && gNodes.size() > 0 ) {
|
|
char buf[(MAX_WORD_LEN*2)+1];
|
|
printOneLevel( firstRootChildOffset, buf, 0 );
|
|
}
|
|
|
|
if ( gBytesPerNodeFile ) {
|
|
FILE* OFILE = fopen( gBytesPerNodeFile, "w" );
|
|
fprintf( OFILE, "%d", gNBytesPerNode );
|
|
fclose( OFILE );
|
|
}
|
|
fprintf( stderr, "Used %d per node.\n", gNBytesPerNode );
|
|
|
|
if ( NULL != inFileName ) {
|
|
fclose( gInFile );
|
|
}
|
|
|
|
} /* main */
|
|
|
|
// We now have an array of nodes with the last subarray being the
|
|
// logical top of the tree. Move them to the start, fixing all fco
|
|
// refs, so that legacy code like Palm can assume top==0.
|
|
//
|
|
// Note: It'd probably be a bit faster to integrate this with emitNodes
|
|
// -- unless I need to have an in-memory list that can be used for
|
|
// lookups. But that's best for debugging, so keep it this way for now.
|
|
//
|
|
// Also Note: the first node is a dummy that can and should be tossed
|
|
// now.
|
|
|
|
static void
|
|
moveTopToFront( int* firstRef )
|
|
{
|
|
int firstChild = *firstRef;
|
|
*firstRef = 0;
|
|
|
|
NodeList lastSub;
|
|
|
|
if ( firstChild > 0 ) {
|
|
lastSub.assign( gNodes.begin() + firstChild, gNodes.end() );
|
|
gNodes.erase( gNodes.begin() + firstChild, gNodes.end() );
|
|
} else if ( gWordCount != 0 ) {
|
|
ERROR_EXIT( "there should be no words!!" );
|
|
}
|
|
|
|
// remove the first (garbage) node
|
|
gNodes.erase( gNodes.begin() );
|
|
|
|
int diff;
|
|
if ( firstChild > 0 ) {
|
|
// -1 because all move down by 1; see prev line
|
|
diff = lastSub.size() - 1;
|
|
if ( diff < 0 ) {
|
|
ERROR_EXIT( "something wrong with lastSub.size()" );
|
|
}
|
|
} else {
|
|
diff = 0;
|
|
}
|
|
|
|
// stick it on the front
|
|
gNodes.insert( gNodes.begin(), lastSub.begin(), lastSub.end() );
|
|
|
|
// We add diff to everything. There's no subtracting because
|
|
// nobody had any refs to the top list.
|
|
|
|
for ( int i = 0; i < gNodes.size(); ++i ) {
|
|
int fco = TrieNodeGetFirstChildOffset( gNodes[i] );
|
|
if ( fco != 0 ) { // 0 means NONE, not 0th!!
|
|
TrieNodeSetFirstChildOffset( &gNodes[i], fco + diff );
|
|
}
|
|
}
|
|
} // moveTopToFront
|
|
|
|
static int
|
|
buildNode( int depth )
|
|
{
|
|
if ( gCurrentWordLen == depth ) {
|
|
// End of word reached. If the next word isn't a continuation
|
|
// of the current one, then we've reached the bottom of the
|
|
// recursion tree.
|
|
(*gReadWordProc)();
|
|
if (gFirstDiff < depth || gDone) {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
NodeList newedges;
|
|
|
|
bool wordEnd;
|
|
do {
|
|
char letter = gCurrentWord[depth];
|
|
bool isTerminal = (gCurrentWordLen - 1) == depth;
|
|
|
|
int nodeOffset = buildNode( depth + 1 );
|
|
Node newNode = MakeTrieNode( letter, isTerminal, nodeOffset, false );
|
|
|
|
wordEnd = (gFirstDiff != depth) || gDone;
|
|
if ( wordEnd ) {
|
|
TrieNodeSetIsLastSibling( &newNode, true );
|
|
}
|
|
|
|
newedges.push_back( newNode );
|
|
} while ( !wordEnd );
|
|
|
|
return addNodes( newedges );
|
|
} // buildNode
|
|
|
|
static int
|
|
addNodes( NodeList& newedgesR )
|
|
{
|
|
int found = findSubArray( newedgesR );
|
|
|
|
if ( found == 0 ) {
|
|
ERROR_EXIT( "0 is an invalid match!!!" );
|
|
}
|
|
|
|
if ( found < 0 ) {
|
|
found = gNodes.size();
|
|
#if defined DEBUG && defined SEVERE_DEBUG
|
|
if ( gDebug ) {
|
|
fprintf( stderr, "adding...\n" );
|
|
printNodes( newedgesR );
|
|
}
|
|
#endif
|
|
gNodes.insert( gNodes.end(), newedgesR.begin(), newedgesR.end() );
|
|
|
|
registerSubArray( newedgesR, found );
|
|
}
|
|
#ifdef DEBUG
|
|
if ( gDebug ) {
|
|
fprintf( stderr, "%s => %d\n", __FUNCTION__, found );
|
|
}
|
|
#endif
|
|
return found;
|
|
} // addNodes
|
|
|
|
static void
|
|
printNode( int index, Node node )
|
|
{
|
|
int letter = TrieNodeGetLetter(node);
|
|
assert( letter < gRevMap.size() );
|
|
fprintf( stderr,
|
|
"[%d] letter=%d(%c); isTerminal=%s; isLastSib=%s; fco=%d;\n",
|
|
index, letter, gRevMap[letter],
|
|
TrieNodeGetIsTerminal(node)?"true":"false",
|
|
TrieNodeGetIsLastSibling(node)?"true":"false",
|
|
TrieNodeGetFirstChildOffset(node));
|
|
} // printNode
|
|
|
|
static void
|
|
printNodes( NodeList& nodesR )
|
|
{
|
|
for ( int i = 0; i < nodesR.size(); ++i ) {
|
|
Node node = nodesR[i];
|
|
printNode( i, node );
|
|
}
|
|
}
|
|
|
|
// Hashing. We'll keep a hash of offsets into the existing nodes
|
|
// array, and as the key use a string that represents the entire sub
|
|
// array. Since the key is what we're matching for, there should never
|
|
// be more than one value per hash and so we don't need buckets.
|
|
// Return -1 if there's no match.
|
|
|
|
static int
|
|
findSubArray( NodeList& newedgesR )
|
|
{
|
|
std::map<NodeList, int>::iterator iter = gSubsHash.find( newedgesR );
|
|
if ( iter != gSubsHash.end() ) {
|
|
return iter->second;
|
|
} else {
|
|
return -1;
|
|
}
|
|
} // findSubArray
|
|
|
|
// add to the hash
|
|
static void
|
|
registerSubArray( NodeList& edgesR, int nodeLoc )
|
|
{
|
|
#ifdef DEBUG
|
|
std::map<NodeList, int>::iterator iter = gSubsHash.find( edgesR );
|
|
if ( iter != gSubsHash.end() ) {
|
|
ERROR_EXIT( "entry for key shouldn't exist!!" );
|
|
}
|
|
#endif
|
|
gSubsHash[edgesR] = nodeLoc;
|
|
} // registerSubArray
|
|
|
|
static void
|
|
readFromSortedArray( void )
|
|
{
|
|
// The first time we need a new word, we read 'em all in.
|
|
static WordList* sInputStrings = NULL; // we'll just let this leak
|
|
|
|
if ( sInputStrings == NULL ) {
|
|
sInputStrings = parseAndSort( gInFile );
|
|
gNextWordIndex = 0;
|
|
|
|
#ifdef DEBUG
|
|
if ( gDebug ) {
|
|
printWords( sInputStrings );
|
|
}
|
|
#endif
|
|
}
|
|
|
|
char* word = "";
|
|
|
|
if ( !gDone ) {
|
|
gDone = gNextWordIndex == sInputStrings->size();
|
|
if ( !gDone ) {
|
|
word = sInputStrings->at(gNextWordIndex++);
|
|
#ifdef DEBUG
|
|
} else if ( gDebug ) {
|
|
fprintf( stderr, "gDone set to true\n" );
|
|
#endif
|
|
}
|
|
#ifdef DEBUG
|
|
if ( gDebug ) {
|
|
fprintf( stderr, "got word: %s\n", word );
|
|
}
|
|
#endif
|
|
}
|
|
int numCommonLetters = 0;
|
|
int len = strlen( word );
|
|
if ( gCurrentWordLen < len ) {
|
|
len = gCurrentWordLen;
|
|
}
|
|
|
|
while ( gCurrentWord[numCommonLetters] == word[numCommonLetters]
|
|
&& numCommonLetters < len ) {
|
|
++numCommonLetters;
|
|
}
|
|
|
|
gFirstDiff = numCommonLetters;
|
|
if ( (gCurrentWordLen > 0) && (strlen(word) > 0)
|
|
&& !firstBeforeSecond( gCurrentWord, word ) ) {
|
|
char buf1[MAX_WORD_LEN+1];
|
|
char buf2[MAX_WORD_LEN+1];
|
|
ERROR_EXIT( "words %s and %s are out of order\n",
|
|
tileToAscii( buf1, sizeof(buf1), gCurrentWord ),
|
|
tileToAscii( buf2, sizeof(buf2), word ) );
|
|
}
|
|
gCurrentWord = word;
|
|
gCurrentWordLen = strlen(word);
|
|
|
|
#ifdef DEBUG
|
|
if ( gDebug ) {
|
|
char buf[MAX_WORD_LEN+1];
|
|
fprintf( stderr, "gCurrentWord now %s\n",
|
|
tileToAscii( buf, sizeof(buf), gCurrentWord) );
|
|
}
|
|
#endif
|
|
} // readFromSortedArray
|
|
|
|
static char*
|
|
readOneWord( char* wordBuf, int bufLen, int* lenp, bool* gotEOF )
|
|
{
|
|
char* result = NULL;
|
|
int count = 0;
|
|
bool dropWord = false;
|
|
bool done = false;
|
|
|
|
// for each byte
|
|
for ( ; ; ) {
|
|
int byt = getc( gInFile );
|
|
|
|
// EOF is special: we don't try for another word even if
|
|
// dropWord is true; we must leave now.
|
|
if ( byt == EOF || byt == gTermChar ) {
|
|
*gotEOF = byt == EOF;
|
|
|
|
if ( !dropWord || *gotEOF ) {
|
|
if ( count != 0 ) {
|
|
wordBuf[count] = '\0';
|
|
result = wordBuf;
|
|
*lenp = count;
|
|
++gWordCount;
|
|
}
|
|
break; // we've finished a word
|
|
} else if ( *gotEOF ) {
|
|
break;
|
|
}
|
|
|
|
// Don't call into the hashtable twice here!!
|
|
} else if ( gTableHash.find(byt) != gTableHash.end() ) {
|
|
if ( !dropWord ) {
|
|
wordBuf[count++] = (char)gTableHash[byt];
|
|
if ( count >= bufLen ) {
|
|
char buf[MAX_WORD_LEN+1];
|
|
ERROR_EXIT( "word starting \"%s\" too long",
|
|
tileToAscii( buf, sizeof(buf), wordBuf ));
|
|
}
|
|
}
|
|
} else if ( gKillIfMissing ) {
|
|
char buf[MAX_WORD_LEN+1];
|
|
ERROR_EXIT( "chr %c (%d) not in map file %s\n"
|
|
"last word was %s\n",
|
|
byt, (int)byt, gTableFile,
|
|
tileToAscii( buf, sizeof(buf), wordBuf ) );
|
|
} else {
|
|
dropWord = true;
|
|
count = 0; // lose anything we already have
|
|
}
|
|
}
|
|
|
|
// if ( NULL != result ) {
|
|
// char buf[MAX_WORD_LEN+1];
|
|
// fprintf( stderr, "%s returning %s\n", __FUNCTION__,
|
|
// tileToAscii( buf, sizeof(buf), result ) );
|
|
// }
|
|
return result;
|
|
} // readOneWord
|
|
|
|
static void
|
|
readFromFile( void )
|
|
{
|
|
char wordBuf[MAX_WORD_LEN+1];
|
|
static bool s_eof = false;;
|
|
char* word;
|
|
int len;
|
|
|
|
gDone = s_eof;
|
|
if ( !gDone ) {
|
|
word = readOneWord( wordBuf, sizeof(wordBuf), &len, &s_eof );
|
|
gDone = NULL == word;
|
|
}
|
|
if ( gDone ) {
|
|
word = "";
|
|
len = 0;
|
|
}
|
|
|
|
int numCommonLetters = 0;
|
|
if ( gCurrentWordLen < len ) {
|
|
len = gCurrentWordLen;
|
|
}
|
|
|
|
while ( gCurrentWord[numCommonLetters] == word[numCommonLetters]
|
|
&& numCommonLetters < len ) {
|
|
++numCommonLetters;
|
|
}
|
|
|
|
gFirstDiff = numCommonLetters;
|
|
if ( (gCurrentWordLen > 0) && (strlen(word) > 0)
|
|
&& !firstBeforeSecond( gCurrentWord, word ) ) {
|
|
char buf1[MAX_WORD_LEN+1];
|
|
char buf2[MAX_WORD_LEN+1];
|
|
ERROR_EXIT( "words %s and %s are out of order\n",
|
|
tileToAscii( buf1, sizeof(buf1), gCurrentWord ),
|
|
tileToAscii( buf2, sizeof(buf2), word ) );
|
|
}
|
|
gCurrentWordLen = strlen(word);
|
|
strncpy( gCurrentWordBuf, word, sizeof(gCurrentWordBuf) );
|
|
|
|
#ifdef DEBUG
|
|
if ( gDebug ) {
|
|
char buf[MAX_WORD_LEN+1];
|
|
fprintf( stderr, "gCurrentWord now %s\n",
|
|
tileToAscii( buf, sizeof(buf), gCurrentWord) );
|
|
}
|
|
#endif
|
|
} // readFromFile
|
|
|
|
static bool
|
|
firstBeforeSecond( const char* lhs, const char* rhs )
|
|
{
|
|
bool gt = 0 > strcmp( lhs, rhs );
|
|
return gt;
|
|
}
|
|
|
|
static char*
|
|
tileToAscii( char* out, int outSize, const char* in )
|
|
{
|
|
char* orig = out;
|
|
for ( ; ; ) {
|
|
char ch = *in++;
|
|
if ( '\0' == ch ) {
|
|
*out = '\0';
|
|
break;
|
|
}
|
|
assert( ch < gRevMap.size() );
|
|
*out++ = gRevMap[ch];
|
|
assert( (out - orig) < outSize );
|
|
}
|
|
return orig;
|
|
}
|
|
|
|
static WordList*
|
|
parseAndSort( FILE* infile )
|
|
{
|
|
WordList* wordlist = new WordList;
|
|
|
|
// allocate storage for the actual chars. wordlist's char*
|
|
// elements will point into this. It'll leak. So what.
|
|
|
|
int memleft = MAX_POOL_SIZE;
|
|
char* str = (char*)malloc( memleft );
|
|
if ( NULL == str ) {
|
|
ERROR_EXIT( "can't allocate main string storage" );
|
|
}
|
|
|
|
bool eof = false;
|
|
for ( ; ; ) {
|
|
int len;
|
|
char buf[MAX_WORD_LEN+1];
|
|
char* word = readOneWord( str, memleft, &len, &eof );
|
|
|
|
if ( NULL == word ) {
|
|
break;
|
|
}
|
|
|
|
wordlist->push_back( str );
|
|
++len; // include null byte
|
|
str += len;
|
|
memleft -= len;
|
|
++gWordCount;
|
|
|
|
if ( eof ) {
|
|
break;
|
|
}
|
|
if ( memleft <= 0 ) {
|
|
ERROR_EXIT( "no memory left\n" );
|
|
}
|
|
}
|
|
|
|
if ( gWordCount > 1 ) {
|
|
#ifdef DEBUG
|
|
if ( gDebug ) {
|
|
fprintf( stderr, "starting sort...\n" );
|
|
}
|
|
#endif
|
|
std::sort( wordlist->begin(), wordlist->end(), firstBeforeSecond );
|
|
#ifdef DEBUG
|
|
if ( gDebug ) {
|
|
fprintf( stderr, "sort finished\n" );
|
|
}
|
|
#endif
|
|
}
|
|
return wordlist;
|
|
} // parseAndSort
|
|
|
|
static void
|
|
printWords( std::vector<char*>* strings )
|
|
{
|
|
std::vector<char*>::iterator iter = strings->begin();
|
|
while ( iter != strings->end() ) {
|
|
char buf[MAX_WORD_LEN+1];
|
|
tileToAscii( buf, sizeof(buf), *iter );
|
|
fprintf( stderr, "%s\n", buf );
|
|
++iter;
|
|
}
|
|
}
|
|
|
|
/*****************************************************************************
|
|
* Little node-field setters and getters to hide what bits represent
|
|
* what.
|
|
|
|
* high bit (31) is ACCEPTING bit
|
|
* next bit (30) is LAST_SIBLING bit
|
|
* next 6 bits (29-24) are tile bit (allowing alphabets of 64 letters)
|
|
* final 24 bits (23-0) are the index of the first child (fco)
|
|
******************************************************************************/
|
|
|
|
static void
|
|
TrieNodeSetIsTerminal( Node* nodeR, bool isTerminal )
|
|
{
|
|
if ( isTerminal ) {
|
|
*nodeR |= (1 << 31);
|
|
} else {
|
|
*nodeR &= ~(1 << 31);
|
|
}
|
|
}
|
|
|
|
static bool
|
|
TrieNodeGetIsTerminal( Node node )
|
|
{
|
|
return (node & (1 << 31)) != 0;
|
|
}
|
|
|
|
static void
|
|
TrieNodeSetIsLastSibling( Node* nodeR, bool isLastSibling )
|
|
{
|
|
if ( isLastSibling ) {
|
|
*nodeR |= (1 << 30);
|
|
} else {
|
|
*nodeR &= ~(1 << 30);
|
|
}
|
|
}
|
|
|
|
static bool
|
|
TrieNodeGetIsLastSibling( Node node )
|
|
{
|
|
return (node & (1 << 30)) != 0;
|
|
}
|
|
|
|
static void
|
|
TrieNodeSetLetter( Node* nodeR, int letter )
|
|
{
|
|
if( letter >= 64 ) {
|
|
ERROR_EXIT( "letter %d too big", letter );
|
|
}
|
|
|
|
int mask = ~(0x3F << 24);
|
|
*nodeR &= mask; // clear all the bits
|
|
*nodeR |= (letter << 24); // set new ones
|
|
}
|
|
|
|
static int
|
|
TrieNodeGetLetter( Node node )
|
|
{
|
|
node >>= 24;
|
|
node &= 0x3F; // is 3f ok for 3-byte case???
|
|
return node;
|
|
}
|
|
|
|
static void
|
|
TrieNodeSetFirstChildOffset( Node* nodeR, int fco )
|
|
{
|
|
if ( (fco & 0xFF000000) != 0 ) {
|
|
ERROR_EXIT( "%x larger than 24 bits", fco );
|
|
}
|
|
|
|
int mask = ~0x00FFFFFF;
|
|
*nodeR &= mask; // clear all the bits
|
|
*nodeR |= fco; // set new ones
|
|
}
|
|
|
|
static int
|
|
TrieNodeGetFirstChildOffset( Node node )
|
|
{
|
|
node &= 0x00FFFFFF; // 24 bits
|
|
return node;
|
|
}
|
|
|
|
static Node
|
|
MakeTrieNode( int letter, bool isTerminal, int firstChildOffset,
|
|
bool isLastSibling )
|
|
{
|
|
Node result = 0;
|
|
|
|
TrieNodeSetIsTerminal( &result, isTerminal );
|
|
TrieNodeSetIsLastSibling( &result, isLastSibling );
|
|
TrieNodeSetLetter( &result, letter );
|
|
TrieNodeSetFirstChildOffset( &result, firstChildOffset );
|
|
|
|
return result;
|
|
} // MakeTrieNode
|
|
|
|
// Caller may need to know the offset of the first top-level node.
|
|
// Write it here.
|
|
static void
|
|
writeOutStartNode( const char* startNodeOut, int firstRootChildOffset )
|
|
{
|
|
FILE* NODEOUT;
|
|
NODEOUT = fopen( startNodeOut, "w" );
|
|
unsigned long be = htonl( firstRootChildOffset );
|
|
(void)fwrite( &be, sizeof(be), 1, NODEOUT );
|
|
fclose( NODEOUT );
|
|
} // writeOutStartNode
|
|
|
|
// build the hash for translating. I'm using a hash assuming it'll be
|
|
// fast. Key is the letter; value is the 0..31 value to be output.
|
|
static void
|
|
makeTableHash( void )
|
|
{
|
|
int i;
|
|
FILE* TABLEFILE = fopen( gTableFile, "r" );
|
|
if ( NULL == TABLEFILE ) {
|
|
ERROR_EXIT( "unable to open %s\n", gTableFile );
|
|
}
|
|
|
|
for ( i = 0; ; ++i ) {
|
|
int ch = getc(TABLEFILE);
|
|
if ( ch == EOF ) {
|
|
break;
|
|
}
|
|
|
|
if ( gUseUnicode ) { // skip the first byte each time: tmp HACK!!!
|
|
ch = getc(TABLEFILE);
|
|
}
|
|
if ( ch == EOF ) {
|
|
break;
|
|
}
|
|
|
|
gRevMap.push_back(ch);
|
|
|
|
if ( ch == 0 ) { // blank
|
|
gBlankIndex = i;
|
|
// we want to increment i when blank seen since it is a
|
|
// tile value
|
|
continue;
|
|
}
|
|
// die "$0: $gTableFile too large\n"
|
|
assert( i < 64 );
|
|
// die "$0: only blank (0) can be 64th char\n" ;
|
|
assert( i < 64 || ch == 0 );
|
|
|
|
gTableHash[ch] = i;
|
|
}
|
|
|
|
fclose( TABLEFILE );
|
|
} // makeTableHash
|
|
|
|
// emitNodes. "input" is $gNodes. From it we write up to
|
|
// $nBytesPerOutfile to files named $outFileBase0..n, mapping the
|
|
// letter field down to 5 bits with a hash built from $tableFile. If
|
|
// at any point we encounter a letter not in the hash we fail with an
|
|
// error.
|
|
|
|
static void
|
|
emitNodes( unsigned int nBytesPerOutfile, const char* outFileBase )
|
|
{
|
|
// now do the emit.
|
|
|
|
// is 17 bits enough?
|
|
fprintf( stderr, "There are %d (0x%x) nodes in this DAWG.\n",
|
|
gNodes.size(), gNodes.size() );
|
|
int nTiles = gTableHash.size(); // blank is not included in this count!
|
|
if ( gNodes.size() > 0x1FFFF || gForceFour || nTiles > 32 ) {
|
|
gNBytesPerNode = 4;
|
|
} else if ( nTiles < 32 ) {
|
|
gNBytesPerNode = 3;
|
|
} else {
|
|
if ( gBlankIndex == 32 ) { // blank
|
|
fprintf( stderr, "blank's at 32; 3-byte-nodes still ok\n" );
|
|
gNBytesPerNode = 3;
|
|
} else {
|
|
ERROR_EXIT( "move blank to last position in info.txt "
|
|
"for smaller DAWG." );
|
|
}
|
|
}
|
|
|
|
int nextIndex = 0;
|
|
int nextFileNum;
|
|
|
|
for ( nextFileNum = 0; ; ++nextFileNum ) {
|
|
|
|
if ( nextIndex >= gNodes.size() ) {
|
|
break; // we're done
|
|
}
|
|
|
|
if ( nextFileNum > 99 ) {
|
|
ERROR_EXIT( "Too many outfiles; infinite loop?" );
|
|
}
|
|
|
|
char outName[256];
|
|
snprintf( outName, sizeof(outName), "%s_%03d.bin",
|
|
outFileBase, nextFileNum);
|
|
FILE* OUTFILE = fopen( outName, "w" );
|
|
assert( OUTFILE );
|
|
int curSize = 0;
|
|
|
|
while ( nextIndex < gNodes.size() ) {
|
|
// scan to find the next terminal
|
|
int i;
|
|
for ( i = nextIndex; !TrieNodeGetIsLastSibling(gNodes[i]); ++i ) {
|
|
|
|
// do nothing but a sanity check
|
|
if ( i >= gNodes.size() ) {
|
|
ERROR_EXIT( "bad trie format: last node not last sibling" );
|
|
}
|
|
|
|
}
|
|
++i; // move beyond the terminal
|
|
int nextSize = (i - nextIndex) * gNBytesPerNode;
|
|
if (curSize + nextSize > nBytesPerOutfile ) {
|
|
break;
|
|
} else {
|
|
// emit the subarray
|
|
while ( nextIndex < i ) {
|
|
outputNode( gNodes[nextIndex], gNBytesPerNode, OUTFILE );
|
|
++nextIndex;
|
|
}
|
|
curSize += nextSize;
|
|
}
|
|
}
|
|
|
|
fclose( OUTFILE );
|
|
}
|
|
|
|
} // emitNodes
|
|
|
|
// print out the entire dictionary, as text, to STDERR.
|
|
static void
|
|
printOneLevel( int index, char* str, int curlen )
|
|
{
|
|
int inlen = curlen;
|
|
for ( ; ; ) {
|
|
Node node = gNodes[index++];
|
|
|
|
assert( TrieNodeGetLetter(node) < gRevMap.size() );
|
|
char lindx = gRevMap[TrieNodeGetLetter(node)];
|
|
|
|
if ( (int)lindx >= 0x20 ) {
|
|
str[curlen++] = lindx;
|
|
} else {
|
|
#ifdef DEBUG
|
|
if ( gDebug ) {
|
|
fprintf( stderr, "sub space\n" );
|
|
}
|
|
#endif
|
|
str[curlen++] = '\\';
|
|
str[curlen++] = '0' + lindx;
|
|
}
|
|
str[curlen] = '\0';
|
|
|
|
if ( TrieNodeGetIsTerminal(node) ) {
|
|
fprintf( stderr, "%s\n", str );
|
|
}
|
|
|
|
int fco = TrieNodeGetFirstChildOffset( node );
|
|
if ( fco != 0 ) {
|
|
printOneLevel( fco, str, curlen );
|
|
}
|
|
|
|
if ( TrieNodeGetIsLastSibling(node) ) {
|
|
break;
|
|
}
|
|
curlen = inlen;
|
|
}
|
|
str[inlen] = '\0';
|
|
}
|
|
|
|
static void
|
|
outputNode( Node node, int nBytes, FILE* outfile )
|
|
{
|
|
unsigned int fco = TrieNodeGetFirstChildOffset(node);
|
|
unsigned int fourthByte;
|
|
|
|
if ( nBytes == 4 ) {
|
|
fourthByte = fco >> 16;
|
|
if ( fourthByte > 0xFF ) {
|
|
ERROR_EXIT( "fco too big" );
|
|
}
|
|
fco &= 0xFFFF;
|
|
}
|
|
|
|
// Formats are different depending on whether it's to have 3- or
|
|
// 4-byte nodes.
|
|
|
|
// Here's what the three-byte node looks like. 16 bits plus one
|
|
// burried in the last byte for the next node address, five for a
|
|
// character/tile and one each for accepting and last-edge.
|
|
|
|
// 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|
|
// |-------- 16 bits of next node address -------| | | | |-tile indx-|
|
|
// | | |
|
|
// accepting bit ---+ | |
|
|
// last edge bit ------+ |
|
|
// ---- last bit (17th on next node addr)---------+
|
|
|
|
// The four-byte format adds a byte at the right end for
|
|
// addressing, but removes the extra bit (5) in order to let the
|
|
// chars field be six bits. Bits 7 and 6 remain the same.
|
|
|
|
// write the fco (less that one bit). We want two bytes worth
|
|
// in three-byte mode, and three in four-byte mode
|
|
|
|
// first two bytes are low-word of fco, regardless of format
|
|
for ( int i = 1; i >= 0; --i ) {
|
|
unsigned char tmp = (fco >> (i * 8)) & 0xFF;
|
|
fwrite( &tmp, 1, 1, outfile );
|
|
}
|
|
fco >>= 16; // it should now be 1 or 0
|
|
if ( fco > 1 ) {
|
|
ERROR_EXIT( "fco not 1 or 0" );
|
|
}
|
|
|
|
unsigned char chIn5 = TrieNodeGetLetter(node);
|
|
unsigned char bits = chIn5;
|
|
if ( bits > 0x1F && nBytes == 3 ) {
|
|
ERROR_EXIT( "char %d too big", bits );
|
|
}
|
|
|
|
if ( TrieNodeGetIsLastSibling(node) ) {
|
|
bits |= 0x40;
|
|
}
|
|
if ( TrieNodeGetIsTerminal(node) ) {
|
|
bits |= 0x80;
|
|
}
|
|
|
|
// We set the 17th next-node bit only in 3-byte case (where char is
|
|
// 5 bits)
|
|
if ( nBytes == 3 && fco != 0 ) {
|
|
bits |= 0x20;
|
|
}
|
|
fwrite( &bits, 1, 1, outfile );
|
|
|
|
// the final byte, if in use
|
|
if ( nBytes == 4 ) {
|
|
unsigned char tmp = (unsigned char)fourthByte;
|
|
fwrite( &tmp, 1, 1, outfile );
|
|
}
|
|
} // outputNode
|
|
|
|
static void
|
|
usage( const char* name )
|
|
{
|
|
fprintf( stderr, "usage: %s \n"
|
|
"\t[-b bytesPerFile] (default = 0xFFFFFFFF)\n"
|
|
"\t-m mapFile\n"
|
|
"\t-mn mapFile (unicode)\n"
|
|
"\t-ob outFileBase\n"
|
|
"\t-sn start node out file\n"
|
|
"\t[-if input file name] -- default = stdin\n"
|
|
"\t[-term ch] (word terminator -- default = '\\0'\n"
|
|
"\t[-nosort] (input already sorted in accord with -m; "
|
|
" default=sort'\n"
|
|
"\t[-dump] (write dictionary as text to STDERR for testing)\n"
|
|
#ifdef DEBUG
|
|
"\t[-debug] (turn on verbose output)\n"
|
|
#endif
|
|
"\t[-force4](use 4 bytes per node regardless of need)\n"
|
|
"\t[-r] (reject words with letters not in mapfile)\n"
|
|
"\t[-k] (kill if any letters not in mapfile -- default)\n",
|
|
name
|
|
);
|
|
} // usage
|
|
|
|
static void
|
|
error_exit( int line, const char* fmt, ... )
|
|
{
|
|
fprintf( stderr, "Error on line %d: ", line );
|
|
va_list ap;
|
|
va_start( ap, fmt );
|
|
vfprintf( stderr, fmt, ap );
|
|
va_end( ap );
|
|
fprintf( stderr, "\n" );
|
|
exit( 1 );
|
|
}
|
|
|
|
static char*
|
|
parseARGV( int argc, char** argv, const char** inFileName )
|
|
{
|
|
*inFileName = NULL;
|
|
int index = 1;
|
|
while ( index < argc ) {
|
|
|
|
char* arg = argv[index++];
|
|
|
|
if ( 0 == strcmp( arg, "-b" ) ) {
|
|
gNBytesPerOutfile = atol( argv[index++] );
|
|
} else if ( 0 == strcmp( arg, "-mn" ) ) {
|
|
gTableFile = argv[index++];
|
|
gUseUnicode = true;
|
|
} else if ( 0 == strcmp( arg, "-m" ) ) {
|
|
gTableFile = argv[index++];
|
|
} else if ( 0 == strcmp( arg, "-ob" ) ) {
|
|
gOutFileBase = argv[index++];
|
|
} else if ( 0 == strcmp( arg, "-sn" ) ) {
|
|
gStartNodeOut = argv[index++];
|
|
} else if ( 0 == strcmp( arg, "-if" ) ) {
|
|
*inFileName = argv[index++];
|
|
} else if ( 0 == strcmp( arg, "-r" ) ) {
|
|
gKillIfMissing = false;
|
|
} else if ( 0 == strcmp( arg, "-k" ) ) {
|
|
gKillIfMissing = true;
|
|
} else if ( 0 == strcmp( arg, "-term" ) ) {
|
|
gTermChar = (char)atoi(argv[index++]);
|
|
} else if ( 0 == strcmp( arg, "-dump" ) ) {
|
|
gDumpText = true;
|
|
} else if ( 0 == strcmp( arg, "-nosort" ) ) {
|
|
gReadWordProc = readFromFile;
|
|
} else if ( 0 == strcmp( arg, "-wc" ) ) {
|
|
gCountFile = argv[index++];
|
|
} else if ( 0 == strcmp( arg, "-ns" ) ) {
|
|
gBytesPerNodeFile = argv[index++];
|
|
} else if ( 0 == strcmp( arg, "-force4" ) ) {
|
|
gForceFour = true;
|
|
#ifdef DEBUG
|
|
} else if ( 0 == strcmp( arg, "-debug" ) ) {
|
|
gDebug = true;
|
|
#endif
|
|
} else {
|
|
ERROR_EXIT( "unexpected arg %s", arg );
|
|
}
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
if ( gDebug ) {
|
|
fprintf( stderr, "gNBytesPerOutfile=$gNBytesPerOutfile\n" );
|
|
fprintf( stderr, "gTableFile=$gTableFile\n" );
|
|
fprintf( stderr, "gOutFileBase=$gOutFileBase\n" );
|
|
fprintf( stderr, "gStartNodeOut=$gStartNodeOut\n" );
|
|
fprintf( stderr, "gTermChar=%c(%d)\n", gTermChar, (int)gTermChar );
|
|
}
|
|
#endif
|
|
return gTableFile;
|
|
} // parseARGV
|