xwords/xwords4/dawg/dict2dawg.cpp
2007-12-02 19:13:25 +00:00

1184 lines
35 KiB
C++

/* -*- compile-command: "g++ -DDEBUG -O -o dict2dawg dict2dawg.cpp"; -*- */
/*************************************************************************
* adapted from perl code that was itself adapted from C++ code
* Copyright (C) 2000 Falk Hueffner
* This version Copyright (C) 2002,2006-2007 Eric House (xwords@eehouse.org)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
* USA
**************************************************************************
* inputs: 0. Name of file mapping letters to 0..31 values. In English
* case just contains A..Z. This will be used to translate the tries
* on output.
* 1. Max number of bytes per binary output file.
*
* 2. Basename of binary files for output.
* 3. Name of file to which to write the number of the
* startNode, since I'm not rewriting a bunch of code to expect Falk's
* '*' node at the start.
*
* In STDIN, the text file to be compressed. It absolutely
* must be sorted. The sort doesn't have to follow the order in the
* map file, however.
* This is meant eventually to be runnable as part of a cgi system for
* letting users generate Crosswords dicts online.
**************************************************************************/
#include <stdio.h>
#include <stdarg.h>
#include <netinet/in.h>
#include <assert.h>
#include <string>
#include <map>
#include <vector>
#include <list>
typedef unsigned int Node;
typedef std::vector<Node> NodeList;
typedef std::vector<char*> WordList;
#define VERSION_STR "$Rev$"
#define MAX_WORD_LEN 15
#define T2ABUFLEN(s) (((s)*4)+3)
int gFirstDiff;
static char gCurrentWordBuf[MAX_WORD_LEN+1] = { '\0' };
// this will never change for non-sort case
static char* gCurrentWord = gCurrentWordBuf;
static int gCurrentWordLen;
char* gCurWord = NULL; // save so can check for sortedness
bool gDone = false;
static int gNextWordIndex;
static void (*gReadWordProc)(void) = NULL;
NodeList gNodes; // final array of nodes
unsigned int gNBytesPerOutfile = 0xFFFFFFFF;
char* gTableFile = NULL;
char* gOutFileBase = NULL;
char* gStartNodeOut = NULL;
static FILE* gInFile = NULL;
bool gKillIfMissing = true;
char gTermChar = '\n';
bool gDumpText = false; // dump the dict as text after?
char* gCountFile = NULL;
char* gBytesPerNodeFile = NULL; // where to write whether node
// size 3 or 4
int gWordCount = 0;
std::map<char,int> gTableHash;
int gBlankIndex;
std::vector<char> gRevMap;
#ifdef DEBUG
bool gDebug = false;
#endif
std::map<NodeList, int> gSubsHash;
bool gForceFour = false; // use four bytes regardless of need?
static int gFileSize = 0;
int gNBytesPerNode;
bool gUseUnicode;
int gLimLow = 2;
int gLimHigh = MAX_WORD_LEN;
// OWL is 1.7M
#define MAX_POOL_SIZE (5 * 0x100000)
#define ERROR_EXIT(...) error_exit( __LINE__, __VA_ARGS__ );
static char* parseARGV( int argc, char** argv, const char** inFileName );
static void usage( const char* name );
static void error_exit( int line, const char* fmt, ... );
static char parsechar( const char* in );
static void makeTableHash( void );
static WordList* parseAndSort( FILE* file );
static void printWords( WordList* strings );
static bool firstBeforeSecond( const char* lhs, const char* rhs );
static char* tileToAscii( char* out, int outSize, const char* in );
static int buildNode( int depth );
static void TrieNodeSetIsLastSibling( Node* nodeR, bool isLastSibling );
static int addNodes( NodeList& newedgesR );
static void TrieNodeSetIsTerminal( Node* nodeR, bool isTerminal );
static bool TrieNodeGetIsTerminal( Node node );
static void TrieNodeSetIsLastSibling( Node* nodeR, bool isLastSibling );
static bool TrieNodeGetIsLastSibling( Node node );
static void TrieNodeSetLetter( Node* nodeR, int letter );
static int TrieNodeGetLetter( Node node );
static void TrieNodeSetFirstChildOffset( Node* nodeR, int fco );
static int TrieNodeGetFirstChildOffset( Node node );
static int findSubArray( NodeList& newedgesR );
static void registerSubArray( NodeList& edgesR, int nodeLoc );
static Node MakeTrieNode( int letter, bool isTerminal, int firstChildOffset,
bool isLastSibling );
static void printNodes( NodeList& nodesR );
static void printNode( int index, Node node );
static void moveTopToFront( int* firstRef );
static void writeOutStartNode( const char* startNodeOut,
int firstRootChildOffset );
static void emitNodes( unsigned int nBytesPerOutfile, const char* outFileBase );
static void outputNode( Node node, int nBytes, FILE* outfile );
static void printOneLevel( int index, char* str, int curlen );
static void readFromSortedArray( void );
int
main( int argc, char** argv )
{
gReadWordProc = readFromSortedArray;
const char* inFileName;
if ( NULL == parseARGV( argc, argv, &inFileName ) ) {
usage(argv[0]);
exit(1);
}
makeTableHash();
// Do I need this stupid thing? Better to move the first row to
// the front of the array and patch everything else. Or fix the
// non-palm dictionary format to include the offset of the first
// node.
Node dummyNode = (Node)0xFFFFFFFF;
assert( sizeof(Node) == 4 );
gNodes.push_back(dummyNode);
if ( NULL == inFileName ) {
gInFile = stdin;
} else {
gInFile = fopen( inFileName, "r" );
}
(*gReadWordProc)();
int firstRootChildOffset = buildNode(0);
moveTopToFront( &firstRootChildOffset );
if ( gStartNodeOut ) {
writeOutStartNode( gStartNodeOut, firstRootChildOffset );
}
#ifdef DEBUG
if ( gDebug ) {
fprintf( stderr, "\n... dumping table ...\n" );
printNodes( gNodes );
}
#endif
// write out the number of nodes if requested
if ( gCountFile ) {
FILE* OFILE;
OFILE = fopen( gCountFile, "w" );
unsigned long be = htonl( gWordCount );
fwrite( &be, sizeof(be), 1, OFILE );
fclose( OFILE );
fprintf( stderr, "Wrote %d (word count) to %s\n", gWordCount,
gCountFile );
}
if ( gOutFileBase ) {
emitNodes( gNBytesPerOutfile, gOutFileBase );
}
if ( gDumpText && gNodes.size() > 0 ) {
char buf[(MAX_WORD_LEN*2)+1];
printOneLevel( firstRootChildOffset, buf, 0 );
}
if ( gBytesPerNodeFile ) {
FILE* OFILE = fopen( gBytesPerNodeFile, "w" );
fprintf( OFILE, "%d", gNBytesPerNode );
fclose( OFILE );
}
fprintf( stderr, "Used %d per node.\n", gNBytesPerNode );
if ( NULL != inFileName ) {
fclose( gInFile );
}
} /* main */
// We now have an array of nodes with the last subarray being the
// logical top of the tree. Move them to the start, fixing all fco
// refs, so that legacy code like Palm can assume top==0.
//
// Note: It'd probably be a bit faster to integrate this with emitNodes
// -- unless I need to have an in-memory list that can be used for
// lookups. But that's best for debugging, so keep it this way for now.
//
// Also Note: the first node is a dummy that can and should be tossed
// now.
static void
moveTopToFront( int* firstRef )
{
int firstChild = *firstRef;
*firstRef = 0;
NodeList lastSub;
if ( firstChild > 0 ) {
lastSub.assign( gNodes.begin() + firstChild, gNodes.end() );
gNodes.erase( gNodes.begin() + firstChild, gNodes.end() );
} else if ( gWordCount != 0 ) {
ERROR_EXIT( "there should be no words!!" );
}
// remove the first (garbage) node
gNodes.erase( gNodes.begin() );
int diff;
if ( firstChild > 0 ) {
// -1 because all move down by 1; see prev line
diff = lastSub.size() - 1;
if ( diff < 0 ) {
ERROR_EXIT( "something wrong with lastSub.size()" );
}
} else {
diff = 0;
}
// stick it on the front
gNodes.insert( gNodes.begin(), lastSub.begin(), lastSub.end() );
// We add diff to everything. There's no subtracting because
// nobody had any refs to the top list.
for ( int i = 0; i < gNodes.size(); ++i ) {
int fco = TrieNodeGetFirstChildOffset( gNodes[i] );
if ( fco != 0 ) { // 0 means NONE, not 0th!!
TrieNodeSetFirstChildOffset( &gNodes[i], fco + diff );
}
}
} // moveTopToFront
static int
buildNode( int depth )
{
if ( gCurrentWordLen == depth ) {
// End of word reached. If the next word isn't a continuation
// of the current one, then we've reached the bottom of the
// recursion tree.
(*gReadWordProc)();
if (gFirstDiff < depth || gDone) {
return 0;
}
}
NodeList newedges;
bool wordEnd;
do {
char letter = gCurrentWord[depth];
bool isTerminal = (gCurrentWordLen - 1) == depth;
int nodeOffset = buildNode( depth + 1 );
Node newNode = MakeTrieNode( letter, isTerminal, nodeOffset, false );
wordEnd = (gFirstDiff != depth) || gDone;
if ( wordEnd ) {
TrieNodeSetIsLastSibling( &newNode, true );
}
newedges.push_back( newNode );
} while ( !wordEnd );
return addNodes( newedges );
} // buildNode
static int
addNodes( NodeList& newedgesR )
{
int found = findSubArray( newedgesR );
if ( found == 0 ) {
ERROR_EXIT( "0 is an invalid match!!!" );
}
if ( found < 0 ) {
found = gNodes.size();
#if defined DEBUG && defined SEVERE_DEBUG
if ( gDebug ) {
fprintf( stderr, "adding...\n" );
printNodes( newedgesR );
}
#endif
gNodes.insert( gNodes.end(), newedgesR.begin(), newedgesR.end() );
registerSubArray( newedgesR, found );
}
#ifdef DEBUG
if ( gDebug ) {
fprintf( stderr, "%s => %d\n", __func__, found );
}
#endif
return found;
} // addNodes
static void
printNode( int index, Node node )
{
int letter = TrieNodeGetLetter(node);
assert( letter < gRevMap.size() );
fprintf( stderr,
"[%d] letter=%d(%c); isTerminal=%s; isLastSib=%s; fco=%d;\n",
index, letter, gRevMap[letter],
TrieNodeGetIsTerminal(node)?"true":"false",
TrieNodeGetIsLastSibling(node)?"true":"false",
TrieNodeGetFirstChildOffset(node));
} // printNode
static void
printNodes( NodeList& nodesR )
{
for ( int i = 0; i < nodesR.size(); ++i ) {
Node node = nodesR[i];
printNode( i, node );
}
}
// Hashing. We'll keep a hash of offsets into the existing nodes
// array, and as the key use a string that represents the entire sub
// array. Since the key is what we're matching for, there should never
// be more than one value per hash and so we don't need buckets.
// Return -1 if there's no match.
static int
findSubArray( NodeList& newedgesR )
{
std::map<NodeList, int>::iterator iter = gSubsHash.find( newedgesR );
if ( iter != gSubsHash.end() ) {
return iter->second;
} else {
return -1;
}
} // findSubArray
// add to the hash
static void
registerSubArray( NodeList& edgesR, int nodeLoc )
{
#ifdef DEBUG
std::map<NodeList, int>::iterator iter = gSubsHash.find( edgesR );
if ( iter != gSubsHash.end() ) {
ERROR_EXIT( "entry for key shouldn't exist!!" );
}
#endif
gSubsHash[edgesR] = nodeLoc;
} // registerSubArray
static void
readFromSortedArray( void )
{
// The first time we need a new word, we read 'em all in.
static WordList* sInputStrings = NULL; // we'll just let this leak
if ( sInputStrings == NULL ) {
sInputStrings = parseAndSort( gInFile );
gNextWordIndex = 0;
#ifdef DEBUG
if ( gDebug ) {
printWords( sInputStrings );
}
#endif
}
for ( ; ; ) {
char* word = "";
if ( !gDone ) {
gDone = gNextWordIndex == sInputStrings->size();
if ( !gDone ) {
word = sInputStrings->at(gNextWordIndex++);
#ifdef DEBUG
} else if ( gDebug ) {
fprintf( stderr, "gDone set to true\n" );
#endif
}
#ifdef DEBUG
if ( gDebug ) {
char buf[T2ABUFLEN(MAX_WORD_LEN)];
fprintf( stderr, "%s: got word: %s\n", __func__,
tileToAscii( buf, sizeof(buf), word ) );
}
#endif
}
int numCommonLetters = 0;
int len = strlen( word );
if ( gCurrentWordLen < len ) {
len = gCurrentWordLen;
}
while ( gCurrentWord[numCommonLetters] == word[numCommonLetters]
&& numCommonLetters < len ) {
++numCommonLetters;
}
gFirstDiff = numCommonLetters;
if ( (gCurrentWordLen > 0) && (strlen(word) > 0)
&& !firstBeforeSecond( gCurrentWord, word ) ) {
#ifdef DEBUG
if ( gDebug ) {
char buf1[T2ABUFLEN(MAX_WORD_LEN)];
char buf2[T2ABUFLEN(MAX_WORD_LEN)];
fprintf( stderr,
"%s: words %s and %s are the same or out of order\n",
__func__,
tileToAscii( buf1, sizeof(buf1), gCurrentWord ),
tileToAscii( buf2, sizeof(buf2), word ) );
}
#endif
continue;
}
gCurrentWord = word;
gCurrentWordLen = strlen(word);
break;
}
#ifdef DEBUG
if ( gDebug ) {
char buf[T2ABUFLEN(MAX_WORD_LEN)];
fprintf( stderr, "gCurrentWord now %s\n",
tileToAscii( buf, sizeof(buf), gCurrentWord) );
}
#endif
} // readFromSortedArray
static char*
readOneWord( char* wordBuf, int bufLen, int* lenp, bool* gotEOF )
{
char* result = NULL;
int count = 0;
bool dropWord = false;
bool done = false;
// for each byte, append to an internal buffer up to size limit.
// On reaching an end-of-word or EOF, check if the word formed is
// within the length range and contains no unknown chars. If yes,
// return it. If no, start over ONLY IF the terminator was not
// EOF.
for ( ; ; ) {
int byt = getc( gInFile );
// EOF is special: we don't try for another word even if
// dropWord is true; we must leave now.
if ( byt == EOF || byt == gTermChar ) {
bool isEOF = byt == EOF;
*gotEOF = isEOF;
assert( isEOF || count < bufLen );
if ( !dropWord && (count >= gLimLow) && (count <= gLimHigh) ) {
assert( count < bufLen );
wordBuf[count] = '\0';
result = wordBuf;
*lenp = count;
++gWordCount;
break;
} else if ( isEOF ) {
assert( !result );
break;
}
#ifdef DEBUG
if ( gDebug ) {
char buf[T2ABUFLEN(count)];
wordBuf[count] = '\0';
fprintf( stderr, "%s: dropping word (len=%d): %s\n", __func__,
count, tileToAscii( buf, sizeof(buf), wordBuf ) );
}
#endif
count = 0; // we'll start over
dropWord = false;
} else if ( count >= bufLen ) {
// Just drop it...
dropWord = true;
// Don't call into the hashtable twice here!!
} else if ( gTableHash.find(byt) != gTableHash.end() ) {
assert( count < bufLen );
wordBuf[count++] = (char)gTableHash[byt];
if ( count >= bufLen ) {
char buf[T2ABUFLEN(count)];
ERROR_EXIT( "no space for word %d (starting \"%s\")",
gWordCount,
tileToAscii( buf, sizeof(buf), wordBuf ));
}
} else if ( gKillIfMissing || !dropWord ) {
char buf[T2ABUFLEN(count)];
wordBuf[count] = '\0';
tileToAscii( buf, sizeof(buf), wordBuf );
if ( gKillIfMissing ) {
ERROR_EXIT( "chr %c (%d) not in map file %s\n"
"last word was %s\n",
(char)byt, (int)byt, gTableFile, buf );
} else if ( !dropWord ) {
#ifdef DEBUG
if ( gDebug ) {
fprintf( stderr, "%s: chr %c (%d) not in map file %s\n"
"dropping partial word %s\n", __func__,
(char)byt, (int)byt, gTableFile, buf );
}
#endif
dropWord = true;
}
}
}
// if ( NULL != result ) {
// char buf[MAX_WORD_LEN+1];
// fprintf( stderr, "%s returning %s\n", __func__,
// tileToAscii( buf, sizeof(buf), result ) );
// }
return result;
} // readOneWord
static void
readFromFile( void )
{
char wordBuf[MAX_WORD_LEN+1];
static bool s_eof = false;
char* word;
int len;
gDone = s_eof;
// Repeat until we get a new word that's not "out-of-order". When
// we see this the problem isn't failure to sort, it's duplicates.
// So dropping is ok. The alternative would be detecting dupes
// during the sort. This seems easier.
for ( ; ; ) {
if ( !gDone ) {
word = readOneWord( wordBuf, sizeof(wordBuf), &len, &s_eof );
gDone = NULL == word;
}
if ( gDone ) {
word = "";
len = 0;
}
int numCommonLetters = 0;
if ( gCurrentWordLen < len ) {
len = gCurrentWordLen;
}
while ( gCurrentWord[numCommonLetters] == word[numCommonLetters]
&& numCommonLetters < len ) {
++numCommonLetters;
}
gFirstDiff = numCommonLetters;
if ( (gCurrentWordLen > 0) && (strlen(word) > 0)
&& !firstBeforeSecond( gCurrentWord, word ) ) {
#ifdef DEBUG
if ( gDebug ) {
char buf1[T2ABUFLEN(MAX_WORD_LEN)];
char buf2[T2ABUFLEN(MAX_WORD_LEN)];
fprintf( stderr,
"%s: words %s and %s are the smae or out of order\n",
__func__,
tileToAscii( buf1, sizeof(buf1), gCurrentWord ),
tileToAscii( buf2, sizeof(buf2), word ) );
}
#endif
continue;
}
break;
}
gCurrentWordLen = strlen(word);
strncpy( gCurrentWordBuf, word, sizeof(gCurrentWordBuf) );
#ifdef DEBUG
if ( gDebug ) {
char buf[T2ABUFLEN(MAX_WORD_LEN)];
fprintf( stderr, "gCurrentWord now %s\n",
tileToAscii( buf, sizeof(buf), gCurrentWord) );
}
#endif
} // readFromFile
static bool
firstBeforeSecond( const char* lhs, const char* rhs )
{
bool gt = 0 > strcmp( lhs, rhs );
return gt;
}
static char*
tileToAscii( char* out, int outSize, const char* in )
{
char tiles[outSize];
int tilesLen = 1;
tiles[0] = '[';
char* orig = out;
for ( ; ; ) {
char ch = *in++;
if ( '\0' == ch ) {
break;
}
assert( ch < gRevMap.size() );
*out++ = gRevMap[ch];
tilesLen += sprintf( &tiles[tilesLen], "%d,", ch );
assert( (out - orig) < outSize );
}
tiles[tilesLen] = ']';
tiles[tilesLen+1] = '\0';
strcpy( out, tiles );
return orig;
}
static WordList*
parseAndSort( FILE* infile )
{
WordList* wordlist = new WordList;
// allocate storage for the actual chars. wordlist's char*
// elements will point into this. It'll leak. So what.
int memleft = gFileSize;
if ( memleft == 0 ) {
memleft = MAX_POOL_SIZE;
}
char* str = (char*)malloc( memleft );
if ( NULL == str ) {
ERROR_EXIT( "can't allocate main string storage" );
}
bool eof = false;
for ( ; ; ) {
int len;
char buf[MAX_WORD_LEN+1];
char* word = readOneWord( str, memleft, &len, &eof );
if ( NULL == word ) {
break;
}
wordlist->push_back( str );
++len; // include null byte
str += len;
memleft -= len;
if ( eof ) {
break;
}
if ( memleft < 0 ) {
ERROR_EXIT( "no memory left\n" );
}
}
if ( gWordCount > 1 ) {
#ifdef DEBUG
if ( gDebug ) {
fprintf( stderr, "starting sort...\n" );
}
#endif
std::sort( wordlist->begin(), wordlist->end(), firstBeforeSecond );
#ifdef DEBUG
if ( gDebug ) {
fprintf( stderr, "sort finished\n" );
}
#endif
}
return wordlist;
} // parseAndSort
static void
printWords( std::vector<char*>* strings )
{
std::vector<char*>::iterator iter = strings->begin();
while ( iter != strings->end() ) {
char buf[T2ABUFLEN(MAX_WORD_LEN)];
tileToAscii( buf, sizeof(buf), *iter );
fprintf( stderr, "%s\n", buf );
++iter;
}
}
/*****************************************************************************
* Little node-field setters and getters to hide what bits represent
* what.
* high bit (31) is ACCEPTING bit
* next bit (30) is LAST_SIBLING bit
* next 6 bits (29-24) are tile bit (allowing alphabets of 64 letters)
* final 24 bits (23-0) are the index of the first child (fco)
******************************************************************************/
static void
TrieNodeSetIsTerminal( Node* nodeR, bool isTerminal )
{
if ( isTerminal ) {
*nodeR |= (1 << 31);
} else {
*nodeR &= ~(1 << 31);
}
}
static bool
TrieNodeGetIsTerminal( Node node )
{
return (node & (1 << 31)) != 0;
}
static void
TrieNodeSetIsLastSibling( Node* nodeR, bool isLastSibling )
{
if ( isLastSibling ) {
*nodeR |= (1 << 30);
} else {
*nodeR &= ~(1 << 30);
}
}
static bool
TrieNodeGetIsLastSibling( Node node )
{
return (node & (1 << 30)) != 0;
}
static void
TrieNodeSetLetter( Node* nodeR, int letter )
{
if( letter >= 64 ) {
ERROR_EXIT( "letter %d too big", letter );
}
int mask = ~(0x3F << 24);
*nodeR &= mask; // clear all the bits
*nodeR |= (letter << 24); // set new ones
}
static int
TrieNodeGetLetter( Node node )
{
node >>= 24;
node &= 0x3F; // is 3f ok for 3-byte case???
return node;
}
static void
TrieNodeSetFirstChildOffset( Node* nodeR, int fco )
{
if ( (fco & 0xFF000000) != 0 ) {
ERROR_EXIT( "%x larger than 24 bits", fco );
}
int mask = ~0x00FFFFFF;
*nodeR &= mask; // clear all the bits
*nodeR |= fco; // set new ones
}
static int
TrieNodeGetFirstChildOffset( Node node )
{
node &= 0x00FFFFFF; // 24 bits
return node;
}
static Node
MakeTrieNode( int letter, bool isTerminal, int firstChildOffset,
bool isLastSibling )
{
Node result = 0;
TrieNodeSetIsTerminal( &result, isTerminal );
TrieNodeSetIsLastSibling( &result, isLastSibling );
TrieNodeSetLetter( &result, letter );
TrieNodeSetFirstChildOffset( &result, firstChildOffset );
return result;
} // MakeTrieNode
// Caller may need to know the offset of the first top-level node.
// Write it here.
static void
writeOutStartNode( const char* startNodeOut, int firstRootChildOffset )
{
FILE* nodeout;
nodeout = fopen( startNodeOut, "w" );
unsigned long be = htonl( firstRootChildOffset );
(void)fwrite( &be, sizeof(be), 1, nodeout );
fclose( nodeout );
} // writeOutStartNode
// build the hash for translating. I'm using a hash assuming it'll be
// fast. Key is the letter; value is the 0..31 value to be output.
static void
makeTableHash( void )
{
int ii;
FILE* TABLEFILE = fopen( gTableFile, "r" );
if ( NULL == TABLEFILE ) {
ERROR_EXIT( "unable to open %s\n", gTableFile );
}
// Fill the 0th space since references are one-based
gRevMap.push_back(0);
for ( ii = 0; ; ++ii ) {
int ch = getc(TABLEFILE);
if ( ch == EOF ) {
break;
}
if ( gUseUnicode ) { // skip the first byte each time: tmp HACK!!!
ch = getc(TABLEFILE);
}
if ( ch == EOF ) {
break;
}
gRevMap.push_back(ch);
if ( ch == 0 ) { // blank
gBlankIndex = ii;
// we want to increment i when blank seen since it is a
// tile value
continue;
}
// die "$0: $gTableFile too large\n"
assert( ii < 64 );
// die "$0: only blank (0) can be 64th char\n" ;
assert( ii < 64 || ch == 0 );
// Add 1 to i so no tile-strings contain 0 and we can treat as
// null-terminated. The 1 is subtracted again in
// outputNode().
gTableHash[ch] = ii + 1;
}
fclose( TABLEFILE );
} // makeTableHash
// emitNodes. "input" is $gNodes. From it we write up to
// $nBytesPerOutfile to files named $outFileBase0..n, mapping the
// letter field down to 5 bits with a hash built from $tableFile. If
// at any point we encounter a letter not in the hash we fail with an
// error.
static void
emitNodes( unsigned int nBytesPerOutfile, const char* outFileBase )
{
// now do the emit.
// is 17 bits enough?
fprintf( stderr, "There are %d (0x%x) nodes in this DAWG.\n",
gNodes.size(), gNodes.size() );
int nTiles = gTableHash.size(); // blank is not included in this count!
if ( gNodes.size() > 0x1FFFF || gForceFour || nTiles > 32 ) {
gNBytesPerNode = 4;
} else if ( nTiles < 32 ) {
gNBytesPerNode = 3;
} else {
if ( gBlankIndex == 32 ) { // blank
gNBytesPerNode = 3;
} else {
ERROR_EXIT( "move blank to last position in info.txt "
"for smaller DAWG." );
}
}
int nextIndex = 0;
int nextFileNum;
for ( nextFileNum = 0; ; ++nextFileNum ) {
if ( nextIndex >= gNodes.size() ) {
break; // we're done
}
if ( nextFileNum > 99 ) {
ERROR_EXIT( "Too many outfiles; infinite loop?" );
}
char outName[256];
snprintf( outName, sizeof(outName), "%s_%03d.bin",
outFileBase, nextFileNum);
FILE* OUTFILE = fopen( outName, "w" );
assert( OUTFILE );
int curSize = 0;
while ( nextIndex < gNodes.size() ) {
// scan to find the next terminal
int i;
for ( i = nextIndex; !TrieNodeGetIsLastSibling(gNodes[i]); ++i ) {
// do nothing but a sanity check
if ( i >= gNodes.size() ) {
ERROR_EXIT( "bad trie format: last node not last sibling" );
}
}
++i; // move beyond the terminal
int nextSize = (i - nextIndex) * gNBytesPerNode;
if (curSize + nextSize > nBytesPerOutfile ) {
break;
} else {
// emit the subarray
while ( nextIndex < i ) {
outputNode( gNodes[nextIndex], gNBytesPerNode, OUTFILE );
++nextIndex;
}
curSize += nextSize;
}
}
fclose( OUTFILE );
}
} // emitNodes
// print out the entire dictionary, as text, to STDERR.
static void
printOneLevel( int index, char* str, int curlen )
{
int inlen = curlen;
for ( ; ; ) {
Node node = gNodes[index++];
assert( TrieNodeGetLetter(node) < gRevMap.size() );
char lindx = gRevMap[TrieNodeGetLetter(node)];
if ( (int)lindx >= 0x20 ) {
str[curlen++] = lindx;
} else {
#ifdef DEBUG
if ( gDebug ) {
fprintf( stderr, "sub space\n" );
}
#endif
str[curlen++] = '\\';
str[curlen++] = '0' + lindx;
}
str[curlen] = '\0';
if ( TrieNodeGetIsTerminal(node) ) {
fprintf( stderr, "%s\n", str );
}
int fco = TrieNodeGetFirstChildOffset( node );
if ( fco != 0 ) {
printOneLevel( fco, str, curlen );
}
if ( TrieNodeGetIsLastSibling(node) ) {
break;
}
curlen = inlen;
}
str[inlen] = '\0';
}
static void
outputNode( Node node, int nBytes, FILE* outfile )
{
unsigned int fco = TrieNodeGetFirstChildOffset(node);
unsigned int fourthByte;
if ( nBytes == 4 ) {
fourthByte = fco >> 16;
if ( fourthByte > 0xFF ) {
ERROR_EXIT( "fco too big" );
}
fco &= 0xFFFF;
}
// Formats are different depending on whether it's to have 3- or
// 4-byte nodes.
// Here's what the three-byte node looks like. 16 bits plus one
// burried in the last byte for the next node address, five for a
// character/tile and one each for accepting and last-edge.
// 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
// |-------- 16 bits of next node address -------| | | | |-tile indx-|
// | | |
// accepting bit ---+ | |
// last edge bit ------+ |
// ---- last bit (17th on next node addr)---------+
// The four-byte format adds a byte at the right end for
// addressing, but removes the extra bit (5) in order to let the
// chars field be six bits. Bits 7 and 6 remain the same.
// write the fco (less that one bit). We want two bytes worth
// in three-byte mode, and three in four-byte mode
// first two bytes are low-word of fco, regardless of format
for ( int i = 1; i >= 0; --i ) {
unsigned char tmp = (fco >> (i * 8)) & 0xFF;
fwrite( &tmp, 1, 1, outfile );
}
fco >>= 16; // it should now be 1 or 0
if ( fco > 1 ) {
ERROR_EXIT( "fco not 1 or 0" );
}
// - 1 below reverses + 1 in makeTableHash()
unsigned char chIn5 = TrieNodeGetLetter(node) - 1;
unsigned char bits = chIn5;
if ( bits > 0x1F && nBytes == 3 ) {
ERROR_EXIT( "char %d too big", bits );
}
if ( TrieNodeGetIsLastSibling(node) ) {
bits |= 0x40;
}
if ( TrieNodeGetIsTerminal(node) ) {
bits |= 0x80;
}
// We set the 17th next-node bit only in 3-byte case (where char is
// 5 bits)
if ( nBytes == 3 && fco != 0 ) {
bits |= 0x20;
}
fwrite( &bits, 1, 1, outfile );
// the final byte, if in use
if ( nBytes == 4 ) {
unsigned char tmp = (unsigned char)fourthByte;
fwrite( &tmp, 1, 1, outfile );
}
} // outputNode
static void
usage( const char* name )
{
fprintf( stderr, "usage: %s \n"
"\t[-v] (print version and exit)\n"
"\t[-poolsize] (print hardcoded size of pool and exit)\n"
"\t[-b bytesPerFile] (default = 0xFFFFFFFF)\n"
"\t[-min <num in 0..15>]\n"
"\t[-max <num in 0..15>]\n"
"\t-m mapFile\n"
"\t-mn mapFile (unicode)\n"
"\t-ob outFileBase\n"
"\t-sn start node out file\n"
"\t[-if input file name] -- default = stdin\n"
"\t[-term ch] (word terminator -- default = '\\0'\n"
"\t[-nosort] (input already sorted in accord with -m; "
" default=sort'\n"
"\t[-dump] (write dictionary as text to STDERR for testing)\n"
#ifdef DEBUG
"\t[-debug] (turn on verbose output)\n"
#endif
"\t[-force4](use 4 bytes per node regardless of need)\n"
"\t[-r] (reject words with letters not in mapfile)\n"
"\t[-k] (kill if any letters not in mapfile -- default)\n",
name
);
} // usage
static void
error_exit( int line, const char* fmt, ... )
{
fprintf( stderr, "Error on line %d: ", line );
va_list ap;
va_start( ap, fmt );
vfprintf( stderr, fmt, ap );
va_end( ap );
fprintf( stderr, "\n" );
exit( 1 );
}
static char*
parseARGV( int argc, char** argv, const char** inFileName )
{
*inFileName = NULL;
int index = 1;
while ( index < argc ) {
char* arg = argv[index++];
if ( 0 == strcmp( arg, "-v" ) ) {
fprintf( stderr, "%s (Subversion revision %s)\n", argv[0],
VERSION_STR );
exit( 0 );
} else if ( 0 == strcmp( arg, "-poolsize" ) ) {
printf( "%d", MAX_POOL_SIZE );
exit( 0 );
} else if ( 0 == strcmp( arg, "-b" ) ) {
gNBytesPerOutfile = atol( argv[index++] );
} else if ( 0 == strcmp( arg, "-mn" ) ) {
gTableFile = argv[index++];
gUseUnicode = true;
} else if ( 0 == strcmp( arg, "-min" ) ) {
gLimLow = atoi(argv[index++]);
} else if ( 0 == strcmp( arg, "-max" ) ) {
gLimHigh = atoi(argv[index++]);
} else if ( 0 == strcmp( arg, "-m" ) ) {
gTableFile = argv[index++];
} else if ( 0 == strcmp( arg, "-ob" ) ) {
gOutFileBase = argv[index++];
} else if ( 0 == strcmp( arg, "-sn" ) ) {
gStartNodeOut = argv[index++];
} else if ( 0 == strcmp( arg, "-if" ) ) {
*inFileName = argv[index++];
} else if ( 0 == strcmp( arg, "-r" ) ) {
gKillIfMissing = false;
} else if ( 0 == strcmp( arg, "-k" ) ) {
gKillIfMissing = true;
} else if ( 0 == strcmp( arg, "-term" ) ) {
gTermChar = (char)atoi(argv[index++]);
} else if ( 0 == strcmp( arg, "-dump" ) ) {
gDumpText = true;
} else if ( 0 == strcmp( arg, "-nosort" ) ) {
gReadWordProc = readFromFile;
} else if ( 0 == strcmp( arg, "-wc" ) ) {
gCountFile = argv[index++];
} else if ( 0 == strcmp( arg, "-ns" ) ) {
gBytesPerNodeFile = argv[index++];
} else if ( 0 == strcmp( arg, "-force4" ) ) {
gForceFour = true;
} else if ( 0 == strcmp( arg, "-fsize" ) ) {
gFileSize = atoi(argv[index++]);
#ifdef DEBUG
} else if ( 0 == strcmp( arg, "-debug" ) ) {
gDebug = true;
#endif
} else {
ERROR_EXIT( "%s: unexpected arg %s", __func__, arg );
}
}
if ( gLimHigh > MAX_WORD_LEN || gLimLow > MAX_WORD_LEN ) {
usage( argv[0] );
exit(1);
}
#ifdef DEBUG
if ( gDebug ) {
fprintf( stderr, "gNBytesPerOutfile=%d\n", gNBytesPerOutfile );
fprintf( stderr, "gTableFile=%s\n", gTableFile );
fprintf( stderr, "gOutFileBase=%s\n", gOutFileBase );
fprintf( stderr, "gStartNodeOut=%s\n", gStartNodeOut );
fprintf( stderr, "gTermChar=%c(%d)\n", gTermChar, (int)gTermChar );
fprintf( stderr, "gFileSize=%d\n", gFileSize );
fprintf( stderr, "gLimLow=%d\n", gLimLow );
fprintf( stderr, "gLimHigh=%d\n", gLimHigh );
}
#endif
return gTableFile;
} // parseARGV