xwords/dawg/dict2dawg.pl
2004-07-21 02:06:24 +00:00

829 lines
23 KiB
Perl
Executable file

#!/usr/bin/perl
##############################################################################
# adapted from C++ code Copyright (C) 2000 Falk Hueffner
# This version Copyright (C) 2002 Eric House (fixin@peak.org)
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
# USA
##############################################################################
# inputs: 0. Name of file mapping letters to 0..31 values. In English
# case just contains A..Z. This will be used to translate the tries
# on output.
# 1. Max number of bytes per binary output file.
#
# 2. Basename of binary files for output.
# 3. Name of file to which to write the number of the
# startNode, since I'm not rewriting a bunch of code to expect Falk's
# '*' node at the start.
#
# In STDIN, the text file to be compressed. It absolutely
# must be sorted. The sort doesn't have to follow the order in the
# map file, however.
# This is meant eventually to be runnable as part of a cgi system for
# letting users generating Crosswords dicts online.
use strict;
use POSIX;
my $gFirstDiff;
my @gCurrentWord;
my $gCurrentWord; # save so can check for sortedness
my $gDone = 0;
my @gInputStrings;
my $gNeedsSort = 1; # read from cmd line eventually
my @gNodes; # final array of nodes
my $gNBytesPerOutfile = 0xFFFFFFFF;
my $gTableFile;
my $gOutFileBase;
my $gStartNodeOut;
my $gInFileName;
my $gKillIfMissing = 1;
my $gTermChar = '/n';
my $gDumpText = 0; # dump the dict as text after?
my $gCountFile;
my $gBytesPerNodeFile; # where to write whether node size 3 or 4
my $gWordCount = 0;
my %gTableHash;
my $gBlankIndex;
my @gRevMap;
my $debug = 0;
my %gSubsHash;
my $gForceFour = 0; # use four bytes regardless of need?
my $gNBytesPerNode;
my $gUseUnicode;
main();
exit;
##############################################################################
sub main() {
if ( !parseARGV() ) {
usage();
exit();
}
makeTableHash();
my $infile;
if ( $gInFileName ) {
open $infile, "<$gInFileName";
} else {
$infile = \*STDIN;
}
@gInputStrings = parseAndSort( $infile );
if ( $gInFileName ) {
close $infile;
}
# Do I need this stupid thing? Better to move the first row to
# the front of the array and patch everything else. Or fix the
# non-palm dictionary format to include the offset of the first
# node.
my $dummyNode = 0xFFFFFFFF;
@gNodes = ( $dummyNode );
readNextWord();
my $firstRootChildOffset = buildNode(0);
moveTopToFront( \$firstRootChildOffset );
if ( $gStartNodeOut ) {
writeOutStartNode( $gStartNodeOut, $firstRootChildOffset );
}
print STDERR "\n... dumping table ...\n" if $debug;
printNodes( \@gNodes, "done with main" ) if $debug;
# write out the number of nodes if requested
if ( $gCountFile ) {
open OFILE, "> $gCountFile";
print OFILE pack( "N", $gWordCount );
close OFILE;
print STDERR "wrote out: got $gWordCount words\n";
}
if ( $gOutFileBase ) {
emitNodes( $gNBytesPerOutfile, $gOutFileBase );
}
if ( $gDumpText && @gNodes > 0 ) {
printOneLevel( $firstRootChildOffset, "" );
}
if ( $gBytesPerNodeFile ) {
open OFILE, "> $gBytesPerNodeFile";
print OFILE $gNBytesPerNode;
close OFILE;
}
print STDERR "Used $gNBytesPerNode per node.\n";
} # main
# We now have an array of nodes with the last subarray being the
# logical top of the tree. Move them to the start, fixing all fco
# refs, so that legacy code like Palm can assume top==0.
#
# Note: It'd probably be a bit faster to integrate this with emitNodes
# -- unless I need to have an in-memory list that can be used for
# lookups. But that's best for debugging, so keep it this way for now.
#
# Also Note: the first node is a dummy that can and should be tossed
# now.
sub moveTopToFront($) {
my ( $firstRef ) = @_;
my $firstChild = ${$firstRef};
${$firstRef} = 0;
my @lastSub;
if ( $firstChild > 0 ) {
# remove the last (the root) subarray
@lastSub = splice( @gNodes, $firstChild );
} else {
die "there should be no words!!" if $gWordCount != 0;
}
# remove the first (garbage) node
shift @gNodes;
my $diff;
if ( $firstChild > 0 ) {
# -1 because all move down by 1; see prev line
$diff = @lastSub - 1;
die "something wrong with len\n" if $diff < 0;
} else {
$diff = 0;
}
# stick it on the front
splice( @gNodes, 0, 0, @lastSub);
# We add $diff to everything. There's no subtracting because
# nobody had any refs to the top list.
for ( my $i = 0; $i < @gNodes; ++$i ) {
my $fco = TrieNodeGetFirstChildOffset( $gNodes[$i] );
if ( $fco != 0 ) { # 0 means NONE, not 0th!!
TrieNodeSetFirstChildOffset( \$gNodes[$i], $fco+$diff );
}
}
} # moveTopToFront
sub buildNode {
my ( $depth ) = @_;
if ( @gCurrentWord == $depth ) {
# End of word reached. If the next word isn't a continuation
# of the current one, then we've reached the bottom of the
# recursion tree.
readNextWord();
if ($gFirstDiff < $depth || $gDone) {
return 0;
}
}
my @newedges;
do {
my $letter = $gCurrentWord[$depth];
my $isTerminal = @gCurrentWord - 1 == $depth ? 1:0;
my $nodeOffset = buildNode($depth+1);
my $newNode = MakeTrieNode($letter, $isTerminal, $nodeOffset);
push( @newedges, $newNode );
} while ( ($gFirstDiff == $depth) && !$gDone);
TrieNodeSetIsLastSibling( \@newedges[@newedges-1], 1 );
return addNodes( \@newedges );
} # buildNode
sub addNodes {
my ( $newedgesR ) = @_;
my $found = findSubArray( $newedgesR );
if ( $found >= 0 ) {
die "0 is an invalid match!!!" if $found == 0;
return $found;
} else {
my $firstFreeIndex = @gNodes;
print STDERR "adding...\n" if $debug;
printNodes( $newedgesR ) if $debug;
push @gNodes, (@{$newedgesR});
registerSubArray( $newedgesR, $firstFreeIndex );
return $firstFreeIndex;
}
} # addNodes
sub printNode {
my ( $index, $node ) = @_;
print STDERR "[$index] ";
printf( STDERR
"letter=%d; isTerminal=%d; isLastSib=%d; fco=%d;\n",
TrieNodeGetLetter($node),
TrieNodeGetIsTerminal($node),
TrieNodeGetIsLastSibling($node),
TrieNodeGetFirstChildOffset($node));
} # printNode
sub printNodes {
my ( $nodesR, $name ) = @_;
my $len = @{$nodesR};
# print "printNodes($name): len = $len\n";
for ( my $i = 0; $i < $len; ++$i ) {
my $node = ${$nodesR}[$i];
printNode( $i, $node );
}
}
# Hashing. We'll keep a hash of offsets into the existing nodes
# array, and as the key use a string that represents the entire sub
# array. Since the key is what we're matching for, there should never
# be more than one value per hash and so we don't need buckets.
# Return -1 if there's no match.
sub findSubArray {
my ( $newedgesR ) = @_;
my $key = join('', @{$newedgesR});
if ( exists( $gSubsHash{$key} ) ) {
return $gSubsHash{$key};
} else {
return -1;
}
} # findSubArray
# add to the hash
sub registerSubArray {
my ( $edgesR, $nodeLoc ) = @_;
my $key = join( '', @{$edgesR} );
if ( exists $gSubsHash{$key} ) {
die "entry for key shouldn't exist!!";
} else {
$gSubsHash{$key} = $nodeLoc;
}
} # registerSubArray
sub readNextWord() {
my @word;
if ( !$gDone ) {
$gDone = @gInputStrings == 0;
if ( !$gDone ) {
@word = @{shift @gInputStrings};
} else {
print STDERR "gDone set to true\n" if $debug;
}
print STDERR "got word: ", join(',',@word), "\n" if $debug;
}
my $numCommonLetters = 0;
my $len = @word;
if ( @gCurrentWord < $len ) {
$len = @gCurrentWord;
}
while ( @gCurrentWord[$numCommonLetters] eq @word[$numCommonLetters]
&& $numCommonLetters < $len) {
++$numCommonLetters;
}
$gFirstDiff = $numCommonLetters;
die "words ", join(",",@gCurrentWord), " and ", join(",", @word), " out of order" if #$debug &&
@gCurrentWord > 0 && @word > 0
&& !firstBeforeSecond( \@gCurrentWord, \@word );
@gCurrentWord = @word;
} # readNextWord
sub firstBeforeSecond {
my ( $firstR, $secondR ) = @_;
for ( my $i = 0; ; ++$i ) {
# if we reach the end of the first word/list, we're done.
if ( $i == @{$firstR} ) {
die "duplicate!!!" if $i == @{$secondR};
return 1;
# but if we reach the second end first, we've failed
} elsif ( $i == @{$secondR} ) {
return 0;
}
my $diff = ${$firstR}[$i] <=> ${$secondR}[$i];
if ( $diff == 0 ) {
next;
} else {
return $diff < 0;
}
}
} # firstBeforeSecond
# passed to sort. Should remain unprototyped for effeciency's sake
sub cmpWords {
my $lenA = @{$a};
my $lenB = @{$b};
my $min = $lenA > $lenB? $lenB: $lenA;
for ( my $i = 0; $i < $min; ++$i ) {
my $ac = ${$a}[$i];
my $bc = ${$b}[$i];
my $res = $ac <=> $bc;
if ( $res != 0 ) {
return $res; # we're done
}
}
# If we got here, they match up to their common length. Longer is
# greater.
my $res = @{$a} <=> @{$b};
return $res; # which is longer?
} # cmpWords
sub parseAndSort() {
my ( $infile ) = @_;
my @wordlist;
my @word;
my $lastWord;
WORDLOOP:
for ( ; ; ) {
my $dropWord = 0;
splice @word; # empty it
# for each byte
for ( ; ; ) {
my $byt = getc($infile);
if ( $byt eq undef ) {
last WORDLOOP;
} elsif ( $byt eq $gTermChar ) {
if ( !$dropWord ) {
push @wordlist, [ @word ];
++$gWordCount;
}
$lastWord = "";
next WORDLOOP;
} elsif ( exists( $gTableHash{$byt} ) ) {
if ( !$dropWord ) {
push @word, $gTableHash{$byt};
die "word too long" if @word > 15;
if ( $gKillIfMissing ) {
$lastWord .= $byt;
}
}
} elsif ($gKillIfMissing) {
die "$0: chr $byt (", $byt+0, ") not in map file $gTableFile\n"
. "last word was $lastWord\n";
} else {
$dropWord = 1;
splice @word; # lose anything we already have
}
}
}
if ( $gNeedsSort && ($gWordCount > 0) ) {
@wordlist = sort cmpWords @wordlist;
}
print STDERR "length of list is ", @wordlist + 0, ".\n" if $debug;
return @wordlist;
} # parseAndSort
# Print binary representation of trie array. This isn't used yet, but
# eventually it'll want to dump to multiple files appropriate for Palm
# that can be catenated together on other platforms. There'll need to
# be a file giving the offset of the first node too. Also, might want
# to move to 4-byte representation when the input can't otherwise be
# handled.
sub dumpNodes {
for ( my $i = 0; $i < @gNodes; ++$i ) {
my $node = $gNodes[$i];
my $bstr = pack( "I", $node );
print STDOUT $bstr;
}
}
##############################################################################
# Little node-field setters and getters to hide what bits represent
# what.
#
# high bit (31) is ACCEPTING bit
# next bit (30) is LAST_SIBLING bit
# next 6 bits (29-24) are tile bit (allowing alphabets of 64 letters)
# final 24 bits (23-0) are the index of the first child (fco)
#
##############################################################################
sub TrieNodeSetIsTerminal {
my ( $nodeR, $isTerminal ) = @_;
if ( $isTerminal ) {
${$nodeR} |= (1 << 31);
} else {
${$nodeR} &= ~(1 << 31);
}
}
sub TrieNodeGetIsTerminal {
my ( $node ) = @_;
return ($node & (1 << 31)) != 0;
}
sub TrieNodeSetIsLastSibling {
my ( $nodeR, $isLastSibling ) = @_;
if ( $isLastSibling ) {
${$nodeR} |= (1 << 30);
} else {
${$nodeR} &= ~(1 << 30);
}
}
sub TrieNodeGetIsLastSibling {
my ( $node ) = @_;
return ($node & (1 << 30)) != 0;
}
sub TrieNodeSetLetter {
my ( $nodeR, $letter ) = @_;
die "$0: letter ", $letter, " too big" if $letter >= 64;
my $mask = ~(0x3F << 24);
${$nodeR} &= $mask; # clear all the bits
${$nodeR} |= ($letter << 24); # set new ones
}
sub TrieNodeGetLetter {
my ( $node ) = @_;
$node >>= 24;
$node &= 0x3F; # is 3f ok for 3-byte case???
return $node;
}
sub TrieNodeSetFirstChildOffset {
my ( $nodeR, $fco ) = @_;
die "$0: $fco larger than 24 bits" if ($fco & 0xFF000000) != 0;
my $mask = ~0x00FFFFFF;
${$nodeR} &= $mask; # clear all the bits
${$nodeR} |= $fco; # set new ones
}
sub TrieNodeGetFirstChildOffset {
my ( $node ) = @_;
$node &= 0x00FFFFFF; # 24 bits
return $node;
}
sub MakeTrieNode {
my ( $letter, $isTerminal, $firstChildOffset, $isLastSibling ) = @_;
my $result = 0;
TrieNodeSetIsTerminal( \$result, $isTerminal );
TrieNodeSetIsLastSibling( \$result, $isLastSibling );
TrieNodeSetLetter( \$result, $letter );
TrieNodeSetFirstChildOffset( \$result, $firstChildOffset );
return $result;
} # MakeTrieNode
# Caller may need to know the offset of the first top-level node.
# Write it here.
sub writeOutStartNode {
my ( $startNodeOut, $firstRootChildOffset ) = @_;
open NODEOUT, ">$startNodeOut";
print NODEOUT pack( "N", $firstRootChildOffset );
close NODEOUT;
} # writeOutStartNode
# build the hash for translating. I'm using a hash assuming it'll be
# fast. Key is the letter; value is the 0..31 value to be output.
sub makeTableHash {
my $i;
open TABLEFILE, "< $gTableFile";
splice @gRevMap; # empty it
for ( $i = 0; ; ++$i ) {
my $ch = getc(TABLEFILE);
if ( $ch eq undef ) {
last;
}
if ( $gUseUnicode ) { # skip the first byte each time: tmp HACK!!!
$ch = getc(TABLEFILE);
}
if ( $ch eq undef ) {
last;
}
push @gRevMap, $ch;
if ( ord($ch) == 0 ) { # blank
$gBlankIndex = $i;
next; # we want to increment i when blank seen since
# it is a tile value
}
die "$0: $gTableFile too large\n" if $i > 64;
die "$0: only blank (0) can be 64th char\n" if ($i == 64 && $ch != 0);
$gTableHash{$ch} = $i;
}
close TABLEFILE;
} # makeTableHash
# emitNodes. "input" is $gNodes. From it we write up to
# $nBytesPerOutfile to files named $outFileBase0..n, mapping the
# letter field down to 5 bits with a hash built from $tableFile. If
# at any point we encounter a letter not in the hash we fail with an
# error.
sub emitNodes($$) {
my ( $nBytesPerOutfile, $outFileBase ) = @_;
# now do the emit.
# is 17 bits enough?
printf STDERR ("There are %d (0x%x) nodes in this DAWG.\n",
0 + @gNodes, 0 + @gNodes );
my $nTiles = 0 + keys(%gTableHash); # blank is not included in this count!
if ( @gNodes > 0x1FFFF || $gForceFour || $nTiles > 32 ) {
$gNBytesPerNode = 4;
} elsif ( $nTiles < 32 ) {
$gNBytesPerNode = 3;
} else {
if ( $gBlankIndex == 32 ) { # blank
print STDERR "blank's at 32; 3-byte-nodes still ok\n";
$gNBytesPerNode = 3;
} else {
die "$0: move blank to last position in info.txt for smaller DAWG";
}
}
my $nextIndex = 0;
my $nextFileNum = 0;
for ( $nextFileNum = 0; ; ++$nextFileNum ) {
if ( $nextIndex >= @gNodes ) {
last; # we're done
}
die "Too many outfiles; infinite loop?" if $nextFileNum > 99;
my $outName = sprintf("${outFileBase}_%03d.bin", $nextFileNum);
open OUTFILE, "> $outName";
binmode( OUTFILE );
my $curSize = 0;
while ( $nextIndex < @gNodes ) {
# scan to find the next terminal
my $i;
for ( $i = $nextIndex;
!TrieNodeGetIsLastSibling($gNodes[$i]);
++$i ) {
# do nothing but a sanity check
if ( $i >= @gNodes) {
die "bad trie format: last node not last sibling" ;
}
}
++$i; # move beyond the terminal
my $nextSize = ($i - $nextIndex) * $gNBytesPerNode;
if ($curSize + $nextSize > $nBytesPerOutfile) {
last;
} else {
# emit the subarray
while ( $nextIndex < $i ) {
outputNode( $gNodes[$nextIndex], $gNBytesPerNode,
\*OUTFILE );
++$nextIndex;
}
$curSize += $nextSize;
}
}
close OUTFILE;
}
} # emitNodes
sub printWord {
my ( $str ) = @_;
print STDERR "$str\n";
}
# print out the entire dictionary, as text, to STDERR.
sub printOneLevel {
my ( $index, $str ) = @_;
for ( ; ; ) {
my $newStr = $str;
my $node = $gNodes[$index++];
my $lindx = $gRevMap[TrieNodeGetLetter($node)];
if ( ord($lindx) >= 0x20 ) {
$newStr .= "$lindx";
} else {
print STDERR "sub space" if $debug;
$newStr .= "\\" . chr('0'+$lindx);
}
if ( TrieNodeGetIsTerminal($node) ) {
printWord( $newStr );
}
my $fco = TrieNodeGetFirstChildOffset( $node );
if ( $fco != 0 ) {
printOneLevel( $fco, $newStr );
}
if ( TrieNodeGetIsLastSibling($node) ) {
last;
}
}
}
sub outputNode ($$$) {
my ( $node, $nBytes, $outfile ) = @_;
my $fco = TrieNodeGetFirstChildOffset($node);
my $fourthByte;
if ( $nBytes == 4 ) {
$fourthByte = $fco >> 16;
die "$0: fco too big" if $fourthByte > 0xFF;
$fco &= 0xFFFF;
}
# Formats are different depending on whether it's to have 3- or
# 4-byte nodes.
# Here's what the three-byte node looks like. 16 bits plus one
# burried in the last byte for the next node address, five for a
# character/tile and one each for accepting and last-edge.
# 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
# |-------- 16 bits of next node address -------| | | | |-tile indx-|
# | | |
# accepting bit ---+ | |
# last edge bit ------+ |
# ---- last bit (17th on next node addr)---------+
# The four-byte format adds a byte at the right end for
# addressing, but removes the extra bit (5) in order to let the
# chars field be six bits. Bits 7 and 6 remain the same.
# write the fco (less that one bit). We want two bytes worth
# in three-byte mode, and three in four-byte mode
# first two bytes are low-word of fco, regardless of format
for ( my $i = 1; $i >= 0; --$i ) {
my $tmp = ($fco >> ($i * 8)) & 0xFF;
print $outfile pack( "C", $tmp );
}
$fco >>= 16; # it should now be 1 or 0
die "fco not 1 or 0" if $fco > 1;
my $chIn5 = TrieNodeGetLetter($node);
my $bits = $chIn5;
die "$0: char $bits too big" if $bits > 0x1F && $nBytes == 3;
if ( TrieNodeGetIsLastSibling($node) ) {
$bits |= 0x40;
}
if ( TrieNodeGetIsTerminal($node) ) {
$bits |= 0x80;
}
# We set the 17th next-node bit only in 3-byte case (where char is
# 5 bits)
if ( $nBytes == 3 && $fco != 0 ) {
$bits |= 0x20;
}
print $outfile pack( "C", $bits );
# the final byte, if in use
if ( $nBytes == 4 ) {
print $outfile pack( "C", $fourthByte );
}
} # outputNode
sub usage {
print STDERR "usage: $0 \n"
. "\t[-b bytesPerFile] (default = 0xFFFFFFFF)\n"
. "\t-m mapFile\n"
. "\t-ob outFileBase\n"
. "\t-sn start node out file\n"
. "\t[-if input file name] -- default = stdin\n"
. "\t[-term ch] (word terminator -- default = '\\0'\n"
. "\t[-nosort] (input already sorted in accord with -m; " .
" default=sort'\n"
. "\t[-dump] (write dictionary as text to STDERR for testing)\n"
. "\t[-force4](use 4 bytes per node regardless of need)\n"
. "\t[-r] (reject words with letters not in mapfile)\n"
. "\t[-k] (kill if any letters no in mapfile -- default)\n"
;
} # usage
sub parseARGV {
my $arg;
while ( my $arg = shift(@ARGV) ) {
SWITCH: {
if ($arg =~ /-b/) {$gNBytesPerOutfile = shift(@ARGV), last SWITCH;}
if ($arg =~ /-mn/) {$gTableFile = shift(@ARGV);
$gUseUnicode = 1;
last SWITCH;}
if ($arg =~ /-m/) {$gTableFile = shift(@ARGV); last SWITCH;}
if ($arg =~ /-ob/) {$gOutFileBase = shift(@ARGV), last SWITCH;}
if ($arg =~ /-sn/) {$gStartNodeOut = shift(@ARGV), last SWITCH;}
if ($arg =~ /-if/) {$gInFileName = shift(@ARGV), last SWITCH;}
if ($arg =~ /-r/) {$gKillIfMissing = 0; last SWITCH;}
if ($arg =~ /-k/) {$gKillIfMissing = 1; last SWITCH;}
if ($arg =~ /-term/) {$gTermChar = chr(shift(@ARGV)); last SWITCH;}
if ($arg =~ /-dump/) {$gDumpText = 1; last SWITCH;}
if ($arg =~ /-nosort/) {$gNeedsSort = 0; last SWITCH;}
if ($arg =~ /-wc/) {$gCountFile = shift(@ARGV); last SWITCH;}
if ($arg =~ /-ns/) {$gBytesPerNodeFile = shift(@ARGV); last SWITCH;}
if ($arg =~ /-force4/) {$gForceFour = 1; last SWITCH;}
die "unexpected arg $arg\n";
}
}
print STDERR "gNBytesPerOutfile=$gNBytesPerOutfile\n" if $debug;
print STDERR "gTableFile=$gTableFile\n" if $debug;
print STDERR "gOutFileBase=$gOutFileBase\n" if $debug;
print STDERR "gStartNodeOut=$gStartNodeOut\n" if $debug;
printf STDERR "gTermChar=%s(%d)\n", $gTermChar, ord($gTermChar) if $debug;
return $gTableFile;
} # parseARGV