/* -*- compile-command: "cd ../linux && make MEMDEBUG=TRUE -j3"; -*- */ /* * Copyright 1997-2020 by Eric House (xwords@eehouse.org). All rights * reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #ifdef XWFEATURE_WALKDICT #ifdef USE_STDIO # include # include #endif #include #include "comtypes.h" #include "dictnryp.h" #include "strutils.h" #include "dictnry.h" #include "dictiter.h" #include "dbgutil.h" /* Define DI_DEBUG in Makefile. It makes iteration really slow on Android */ #ifdef DI_DEBUG # define DI_ASSERT(...) XP_ASSERT(__VA_ARGS__) #else # define DI_ASSERT(...) #endif #ifdef CPLUS extern "C" { #endif #define MAX_ELEMS MAX_COLS_DICT typedef enum { FLAG_NEG = 1, FLAG_SINGLE = 2, } Flags; // #define WITH_START #define MULTI_SET #ifdef MULTI_SET typedef struct _TileSet { uint8_t cnts[64]; } TileSet; #else typedef uint64_t TileSet; #endif typedef enum {_NONE, #ifdef WITH_START START, #endif CHILD, PARENT} PEType; typedef struct _PatElem { PEType typ; /* {2,15} sets min=2, max=15; '*' sets min=0, max=10000, '+' sets min=1, etc */ int minMatched; int maxMatched; union { struct { TileSet tiles; XP_U16 flags; /* Flags bitvector */ } child; struct { int firstChild; int lastChild; } parent; } u; } PatElem; typedef XP_U32 ElemSet; #define MAX_PATS 4 typedef struct _PatMatch { ElemSet elemSet[MAX_PATS]; /* until we have something */ } PatMatch; typedef struct _Pat { const XP_UCHAR* patString; /* Internal representation ("compiled") regex */ PatElem* patElems; XP_U16 nPatElems; } Pat; typedef struct _Indexer { void (*proc)(void* closure); void* closure; } Indexer; struct DictIter { XP_U16 nEdges; #ifdef DEBUG /* Current string: useful when stepping in gdb */ XP_UCHAR curWord[32]; #endif struct { #ifdef DEBUG XP_U16 faceLen; #endif array_edge* edge; PatMatch match; } stack[MAX_COLS_DICT]; XP_U16 min; XP_U16 max; #ifdef DEBUG XP_U32 guard; #endif const DictionaryCtxt* dict; XP_U32 nWords; DictPosition position; #ifdef MULTI_SET Tile blankVal; #else TileSet blankMask; #endif XP_U16 nPats; Pat pats[MAX_PATS]; Indexer* indexer; }; typedef enum { PatErrNone, PatErrMissingClose, PatErrMultipleSpellings, PatErrBadCountTerm, PatErrNoDigit, PatErrTooComplex, PatErrBogusTiles, PatErrDupInSet, } PatErr; #ifdef DEBUG static const XP_UCHAR* patErrToStr( PatErr err ) { const XP_UCHAR* result = NULL; # define CASESTR(s) case s: result = #s; break switch ( err ) { CASESTR(PatErrNone); CASESTR(PatErrMissingClose); CASESTR(PatErrMultipleSpellings); CASESTR(PatErrBadCountTerm); CASESTR(PatErrNoDigit); CASESTR(PatErrTooComplex); CASESTR(PatErrBogusTiles); CASESTR(PatErrDupInSet); } # undef CASESTR return result; } #endif typedef struct _ParseState { const DictionaryCtxt* dict; const XP_UCHAR* pat; int patIndex; int elemIndex; #ifdef MULTI_SET Tile blankVal; #else TileSet blankMask; #endif PatElem elems[MAX_ELEMS]; } ParseState; static PatErr compileParent( ParseState* ps ); static void iterToString( const DictIter* iter, XP_UCHAR* buf, XP_U16 buflen, const XP_UCHAR* delim ); static XP_Bool isFirstEdge( const DictionaryCtxt* dict, array_edge* edge ); /* Read 1 or more digits into a count. It's an error if there isn't at least one, but once we have that we just stop on NAN */ static PatErr getNumber( ParseState* ps, int* out ) { PatErr err = PatErrNoDigit; int result = 0; for ( ; ; ) { XP_UCHAR ch = ps->pat[ps->patIndex]; if ( ch >= '0' && ch <= '9' ) { result = result * 10 + (ch - '0'); err = PatErrNone; ++ps->patIndex; } else { break; } } *out = result; return err; } /* Read in a ?, *, or {n[,n]} */ static PatErr parseCounts( ParseState* ps, int elemIndex ) { PatErr err = PatErrNone; PatElem* elem = &ps->elems[elemIndex]; switch ( ps->pat[ps->patIndex] ) { case '*': ++ps->patIndex; elem->minMatched = 0; elem->maxMatched = 1000; break; case '+': ++ps->patIndex; elem->minMatched = 1; elem->maxMatched = 1000; break; case '{': ++ps->patIndex; err = getNumber( ps, &elem->minMatched ); if ( PatErrNone == err ) { switch ( ps->pat[ps->patIndex++] ) { case '}': elem->maxMatched = elem->minMatched; break; case ',': err = getNumber( ps, &elem->maxMatched ); if ( PatErrNone == err ) { if ( elem->maxMatched < elem->minMatched ) { err = PatErrBadCountTerm; } else if ( '}' != ps->pat[ps->patIndex++] ) { err = PatErrBadCountTerm; } } break; default: err = PatErrBadCountTerm; } } break; default: /* No count found */ elem->minMatched = elem->maxMatched = 1; break; } return err; } typedef struct _FoundData { PatErr err; int nCalls; PatElem* elem; } FoundData; static XP_Bool onFoundTiles( void* closure, const Tile* tiles, int len ) { XP_ASSERT( len == 1 ); FoundData* data = (FoundData*)closure; if ( 1 == len ) { XP_ASSERT( 0 == data->nCalls ); ++data->nCalls; for ( int ii = 0; ii < len; ++ii ) { Tile tile = tiles[ii]; #ifdef MULTI_SET ++data->elem->u.child.tiles.cnts[tile]; #else TileSet mask = 1 << tile; if ( 0 == (data->elem->u.child.tiles & mask ) ) { data->elem->u.child.tiles |= mask; } else { data->err = PatErrDupInSet; break; } #endif } } return 1 == len && PatErrNone == data->err; } static PatErr addElem( ParseState* ps, PatElem* elem ) { PatErr err = PatErrNone; if ( ps->elemIndex < VSIZE(ps->elems) ) { ps->elems[ps->elemIndex++] = *elem; } else { err = PatErrTooComplex; } return err; } static PatErr parseTile( ParseState* ps ) { PatErr err = PatErrNone; if ( '_' == ps->pat[ps->patIndex] ) { ++ps->patIndex; PatElem* elem = &ps->elems[ps->elemIndex]; #ifdef MULTI_SET ++elem->u.child.tiles.cnts[ps->blankVal]; #else elem->u.child.tiles |= ps->blankMask; #endif } else { err = PatErrBogusTiles; /* in case we fail */ XP_U16 maxLen = XP_STRLEN( &ps->pat[ps->patIndex] ); for ( int nChars = 1; nChars <= maxLen; ++nChars ) { FoundData data = { .err = PatErrNone, .elem = &ps->elems[ps->elemIndex], .nCalls = 0, }; dict_tilesForString( ps->dict, &ps->pat[ps->patIndex], nChars, onFoundTiles, &data ); if ( 1 == data.nCalls ) { /* found something? We can proceed */ ps->patIndex += nChars; err = PatErrNone; break; } } } return err; /* nothing can go wrong? */ } static PatErr parseSet( ParseState* ps ) { PatErr err; /* Look for one of the two special chars */ XP_UCHAR ch = ps->pat[ps->patIndex]; switch ( ch ) { case '^': ps->elems[ps->elemIndex].u.child.flags |= FLAG_NEG; ++ps->patIndex; break; case '+': ps->elems[ps->elemIndex].u.child.flags |= FLAG_SINGLE; ++ps->patIndex; break; default: break; } for ( ; ; ) { err = parseTile( ps ); if ( PatErrNone != err ) { break; } if ( ']' == ps->pat[ps->patIndex] ) { ++ps->patIndex; break; } } return err; } static PatErr parseOne( ParseState* ps ) { PatErr err; XP_UCHAR ch = ps->pat[ps->patIndex]; switch ( ch ) { case '(': { /* starts a recursive pattern */ ++ps->patIndex; int myElemIndex = ps->elemIndex; ps->elems[myElemIndex].typ = PARENT; ps->elems[myElemIndex].u.parent.firstChild = ++ps->elemIndex; err = compileParent( ps ); if ( PatErrNone == err ) { if ( ')' == ps->pat[ps->patIndex++] ) { ps->elems[myElemIndex].u.parent.lastChild = ps->elemIndex; err = parseCounts( ps, myElemIndex ); } else { err = PatErrMissingClose; } } } break; case '[': /* starts a set */ ++ps->patIndex; ps->elems[ps->elemIndex].typ = CHILD; err = parseSet( ps ); break; default: ps->elems[ps->elemIndex].typ = CHILD; err = parseTile( ps ); break; } return err; } static PatErr compileParent( ParseState* ps ) { PatErr err = PatErrNone; while ( PatErrNone == err ) { err = parseOne( ps ); if ( PatErrNone == err ) { err = parseCounts( ps, ps->elemIndex ); } if ( PatErrNone == err ) { if ( ++ps->elemIndex >= MAX_ELEMS ) { err = PatErrTooComplex; } XP_UCHAR ch = ps->pat[ps->patIndex]; if ( ')' == ch || '\0' == ch ) { break; } } } return err; } static PatErr initPS( ParseState* ps, const DictionaryCtxt* dict ) { PatErr result = PatErrNone; XP_MEMSET( ps, 0, sizeof(*ps) ); XP_ASSERT( !!dict ); ps->dict = dict; // ps->pat = pat; #ifdef MULTI_SET ps->blankVal = dict_getBlankTile( dict ); #else ps->blankMask = ((TileSet)1) << dict_getBlankTile( dict ); #endif ps->elemIndex = 0; ps->patIndex = 0; #ifdef WITH_START PatElem start = { .typ = START, }; result = addElem( ps, &start ); #endif return result; } static XP_Bool compilePat( ParseState* ps, const XP_UCHAR* strPat ) { ps->pat = strPat; ps->patIndex = 0; PatErr err = compileParent( ps ); XP_Bool success = err == PatErrNone && 0 < ps->elemIndex; if ( !success ) { XP_LOGFF( "=> %s", patErrToStr(err) ); } return success; } #ifdef DEBUG static int formatFlags( XP_UCHAR* buf, int flags ) { int indx = 0; if ( 0 != (flags & FLAG_NEG) ) { buf[indx++] = '^'; } if ( 0 != (flags & FLAG_SINGLE) ) { buf[indx++] = '+'; } buf[indx] = '\0'; return indx; } static void formatTiles( XP_UCHAR* buf, const TileSet* tiles, const DictionaryCtxt* dict ) { int indx = 0; if ( !!tiles ) { #ifdef MULTI_SET for ( Tile ii = 0; ii < VSIZE(tiles->cnts); ++ii ) { for ( int jj = tiles->cnts[ii]; jj > 0; --jj ) { #else for ( Tile ii = 0; ii < 8 * sizeof(tiles); ++ii ) { if ( 0 != (*tiles & (((uint64_t)1) << ii)) ) { #endif indx += dict_tilesToString( dict, &ii, 1, &buf[indx], 4, NULL ); } } } buf[indx] = '\0'; } typedef struct _PrintState { const DictIter* iter; XP_UCHAR* buf; const int bufLen; int curPos; /* int curElem; */ } PrintState; /* static void printChild( PrintState* prs ); */ /* static void */ /* printChildren( PrintState* prs, int lastElem ) */ /* { */ /* while ( prs->curElem < lastElem ) { */ /* printChild( prs ); */ /* ++prs->curElem; */ /* } */ /* } */ static void printCount( PrintState* prs, const PatElem* elem ) { int minMatched = elem->minMatched; int maxMatched = elem->maxMatched; if ( minMatched == 1 && maxMatched == 1 ) { /* do nothing; likely nothing was provided */ } else if ( minMatched == maxMatched ) { prs->curPos += XP_SNPRINTF( &prs->buf[prs->curPos], prs->bufLen - prs->curPos, "{%d}", minMatched ); } else { prs->curPos += XP_SNPRINTF( &prs->buf[prs->curPos], prs->bufLen - prs->curPos, "{%d,%d}", minMatched, maxMatched ); } } /* static void */ /* printChild( PrintState* prs ) */ /* { */ /* const PatElem* elem = &prs->iter->patElems[prs->curElem]; */ /* switch ( elem->typ ) { */ /* case CHILD: { */ /* XP_UCHAR flags[8] = {0}; */ /* formatFlags( flags, elem->u.child.flags ); */ /* XP_UCHAR tiles[128] = {0}; */ /* formatTiles( tiles, elem->u.child.tiles, prs->iter->dict ); */ /* prs->strEnd += XP_SNPRINTF( &prs->buf[prs->strEnd], prs->bufLen - prs->strEnd, */ /* "[%s%s]", flags, tiles ); */ /* printCount( prs, elem ); */ /* } */ /* break; */ /* case PARENT: */ /* prs->buf[prs->strEnd++] = '('; */ /* ++prs->curElem; */ /* XP_ASSERT( prs->curElem == elem->u.parent.firstChild ); */ /* printChildren( prs, elem->u.parent.lastChild ); */ /* prs->buf[prs->strEnd++] = ')'; */ /* printCount( prs, elem ); */ /* break; */ /* #ifdef WITH_START */ /* case START: */ /* break; */ /* #endif */ /* default: */ /* XP_ASSERT(0); */ /* break; */ /* } */ /* } */ # if 0 static void printPat( const DictIter* iter, XP_UCHAR* buf, XP_U16 bufLen ) { PrintState prs = { .iter = iter, .buf = buf, .bufLen = bufLen, }; printChildren( &prs, iter->nPatElems ); prs.buf[prs.strEnd] = '\0'; } # endif #else # define printPat( iter, strPat ) #endif static void initIter( DictIter* iter, const DictionaryCtxt* dict, const DIMinMax* minmax, const Pat* pats, XP_U16 nPats, Indexer* indexer ); static XP_Bool prevWord( DictIter* iter, XP_Bool log ); #ifdef XWFEATURE_WALKDICT_FILTER #define LENOK( iter, nEdges ) XP_TRUE // (iter)->min <= (nEdges) && (nEdges) <= (iter)->max #define HAS_MATCH( ITER, EDGE, MATCHP, LOG ) \ ((0 == (ITER)->nPats) || patHasMatch( (ITER), (EDGE), (MATCHP), (LOG) )) #define MATCH_FINISHED( ITER, LOG ) \ ((0 == (ITER)->nPats) || patMatchFinished( (ITER), (LOG) )) static XP_Bool _isAccepting( DictIter* iter ) { return ISACCEPTING( iter->dict, iter->stack[iter->nEdges-1].edge ); } # define ACCEPT_ITER( iter, log ) \ (_isAccepting( iter ) && MATCH_FINISHED( iter, log )) # define ACCEPT_NODE( iter, node, log ) \ (ISACCEPTING( iter->dict, node ) && MATCH_FINISHED( iter, log )) # define FILTER_TEST(iter,nEdges) XP_TRUE // ((nEdges) <= (iter)->max) #else /* # define ACCEPT_ITER(iter, nEdges) \ */ /* ISACCEPTING( (iter)->dict, (iter)->edges[(nEdges)-1] ) */ /* # define ACCEPT_NODE( iter, node, nEdges ) ISACCEPTING( iter->dict, node ) */ /* # define FILTER_TEST(iter, nEdges) XP_TRUE */ #endif /* Patterns * * Iterator needs to know where it is in the dict, and where it is in the * pattern. Sometimes a letter's consumed from the dict without anything being * comsumed in the pattern (_* consumes anything) * * '[' [^ ']' * */ struct _IPattern { const XP_UCHAR chars[64]; /* let's be safe */ } DIPattern; #ifdef DEBUG /* static void */ /* logCurWord( const DictIter* iter, const XP_UCHAR* note ) */ /* { */ /* XP_UCHAR buf[32]; */ /* XP_U16 bufLen = VSIZE(buf); */ /* formatCurWord( iter, buf, bufLen ); */ /* XP_LOGFF( "note: %s; word: %s", note, buf ); */ /* } */ #endif typedef struct _FaceTile { Tile tile; XP_UCHAR face[8]; } FaceTile; typedef struct _PrevOccurs { XP_Bool allowed; XP_Bool required; XP_Bool matched; } PrevOccurs; typedef struct _Params { const DictIter* iter; int patIndx; int patElemIndx; const PatElem* elem; const Pat* pat; } Params; static void setParams( Params* params, const DictIter* iter, const int patIndx, const int patElemIndx ) { params->iter = iter; params->patIndx = patIndx; params->patElemIndx = patElemIndx; params->pat = &iter->pats[patIndx]; params->elem = ¶ms->pat->patElems[patElemIndx]; } /* How many matches in a row include this PatElem */ static int countPrevOccurs( const Params* params, TileSet* prevs, PrevOccurs* peOut, XP_Bool XP_UNUSED_DBG(log) ) { ElemSet mask = 1 << params->patElemIndx; int result = 0; const DictIter* iter = params->iter; for ( int ii = iter->nEdges - 1; ii >= 0; --ii ) { ElemSet elemSet = iter->stack[ii].match.elemSet[params->patIndx]; if ( 0 == (elemSet & mask) ) { break; } ++result; if ( !!prevs ) { Tile tile = EDGETILE( iter->dict, iter->stack[ii].edge ); #ifdef MULTI_SET if ( 0 == prevs->cnts[tile] ) { tile = iter->blankVal; } XP_ASSERT( 0 < prevs->cnts[tile] ); --prevs->cnts[tile]; #else *prevs &= ~(((TileSet)1) << tile); #endif } } if ( !!peOut ) { const PatElem* elem = params->elem; peOut->allowed = result < elem->maxMatched; peOut->required = result < elem->minMatched; peOut->matched = elem->minMatched <= result && result <= elem->maxMatched; } #ifdef DEBUG if ( log ) { LOG_RETURNF( "%d", result ); } #endif return result; } static void mkFaceTile( const DictionaryCtxt* dict, array_edge* edge, FaceTile* ft ) { Tile tile = EDGETILE( dict, edge ); ft->tile = tile; const XP_UCHAR* face = dict_getTileString( dict, tile ); XP_SNPRINTF( ft->face, VSIZE(ft->face), "%s", face ); } typedef struct _MatchInfo { /* minMatched == 0, a special case */ XP_Bool isOptional; /* The tile is not blocked by this patElem. It's in the set matched, or the elem is optional.*/ XP_Bool matched; } MatchInfo; static void getMatchInfo( const Params* params, const TileSet* prevs, const FaceTile* ft, MatchInfo* mi, XP_Bool log ) { const DictIter* iter = params->iter; XP_ASSERT( params->patElemIndx < params->pat->nPatElems ); int usedCount; const PatElem* elem = params->elem; switch ( elem->typ ) { #ifdef WITH_START case START: mi->matches = XP_TRUE; // mi->exhausted = XP_TRUE; mi->consumed = XP_TRUE; break; #endif case CHILD: { XP_Bool matches = XP_TRUE; #ifdef MULTI_SET const TileSet* elemTileSet = &elem->u.child.tiles; #else TileSet curMask = {0}; #endif if ( !!ft ) { Tile tile = ft->tile; #ifdef MULTI_SET XP_ASSERT( iter->blankVal != tile ); Tile usedTile = tile; matches = 0 != elemTileSet->cnts[usedTile]; if ( matches && !!prevs ) { matches = 0 < prevs->cnts[usedTile]; } if ( !matches ) { usedTile = iter->blankVal; matches = 0 != elemTileSet->cnts[usedTile]; } if ( matches && !!prevs ) { matches = 0 < prevs->cnts[usedTile]; } #else XP_USE(prevs); XP_ASSERT( iter->blankMask != 1 << tile ); curMask = iter->blankMask | ((TileSet)1) << tile; matches = 0 != (elem->u.child.tiles & curMask); #endif } mi->isOptional = 0 == elem->minMatched; /* if it matches, we need to make sure it hasn't matched too many times already */ usedCount = matches ? 1 : 0; /* this match is 1 */ const ElemSet elemMask = 1 << params->patElemIndx; for ( int ii = iter->nEdges - 1; matches && ii >= 0; --ii ) { ElemSet elemSet = iter->stack[ii].match.elemSet[params->patIndx]; if ( 0 == (elemSet & elemMask) ) { break; } ++usedCount; matches = matches && usedCount <= elem->maxMatched; } mi->matched = matches; if ( matches ) { XP_ASSERT( !matches || usedCount <= elem->maxMatched ); XP_ASSERT( usedCount <= elem->maxMatched ); XP_ASSERT( usedCount <= elem->maxMatched ); } } break; default: XP_ASSERT(0); break; } if ( log ) { XP_LOGFF( "(tile: '%s', indx: %d)=> matches: %s, isOptional: %s (usedCount %d)", !!ft ? ft->face : "", params->patElemIndx, boolToStr(mi->matched), boolToStr(mi->isOptional), usedCount ); } } /* getMatchInfo */ #ifdef DEBUG static const XP_UCHAR* formatSets( XP_UCHAR* buf, int bufLen, const PatMatch* matchP ) { int count = 0; for ( int ii = 0; ii < MAX_PATS; ++ii ) { ElemSet es = matchP->elemSet[ii]; if ( 0 != es ) { ++count; } } int indx = 0; for ( int ii = 0; ii < MAX_PATS; ++ii ) { ElemSet es = matchP->elemSet[ii]; if ( 0 != es ) { if ( 1 == count ) { /* the common case */ indx += XP_SNPRINTF( &buf[indx], bufLen-indx, "0x%x", es ); } else { indx += XP_SNPRINTF( &buf[indx], bufLen-indx, "[%d]: 0x%x,", ii, es ); } } } return buf; } static void formatElem( PrintState* prs, const PatElem* elem ) { switch ( elem->typ ) { case CHILD: { XP_UCHAR flags[8] = {0}; formatFlags( flags, elem->u.child.flags ); XP_UCHAR tiles[128] = {0}; formatTiles( tiles, &elem->u.child.tiles, prs->iter->dict ); prs->curPos += XP_SNPRINTF( &prs->buf[prs->curPos], prs->bufLen - prs->curPos, "[%s%s]", flags, tiles ); printCount( prs, elem ); } break; default: XP_ASSERT(0); } /* case PARENT: */ /* prs->buf[prs->strEnd++] = '('; */ /* ++prs->curElem; */ /* XP_ASSERT( prs->curElem == elem->u.parent.firstChild ); */ /* printChildren( prs, elem->u.parent.lastChild ); */ /* prs->buf[prs->strEnd++] = ')'; */ /* printCount( prs, elem ); */ /* break; */ /* #ifdef WITH_START */ /* case START: */ /* break; */ /* #endif */ /* default: */ /* XP_ASSERT(0); */ /* break; */ /* } */ } #endif /* The current edge contains a set of all matches that COULD HAVE gotten it this far. So with a new input tile, we want to build the set that could have gotten us here. Since each match in that set is a starting point for considering the new input, we repeat for each testing whether it can accept the new one. We check: 1) is that match possibly exhausted after the previous input (max too low)? If so, add the next state to test set. 2) If the set has room for this tile and it matches, add it Initial/fake edge has as its set the */ static XP_Bool patHasMatch( DictIter* iter, array_edge* edge, PatMatch* matchP, XP_Bool log ) { XP_Bool success = XP_TRUE; FaceTile _tile = {0}; mkFaceTile( iter->dict, edge, &_tile ); const FaceTile* ft = &_tile; PatMatch resultMatch = {0}; for ( int patIndx = 0; success && patIndx < iter->nPats; ++patIndx ) { ElemSet oldElems; if ( 0 == iter->nEdges ) { oldElems = 1; // initialSet( iter, patIndx, log ); // setsToConsume( iter, patIndx, oldElems, ft, XP_FALSE, &newElems, log ); } else { oldElems = iter->stack[iter->nEdges-1].match.elemSet[patIndx]; } ElemSet newElems = 0; // XP_Bool consumed = XP_FALSE; const Pat* pat = &iter->pats[patIndx]; for ( int patElemIndx = 0; 0 != oldElems && patElemIndx < pat->nPatElems; ++patElemIndx ) { ElemSet mask = ((ElemSet)1) << patElemIndx; if ( 0 != (oldElems & mask) ) { oldElems &= ~mask; Params params; setParams( ¶ms, iter, patIndx, patElemIndx ); /* Look at the elem that got me here. If it's potentially exhausted, add its successor */ TileSet prevs; TileSet* prevsPtr = NULL; if ( 0 != (FLAG_SINGLE & params.elem->u.child.flags) ) { prevs = params.elem->u.child.tiles; prevsPtr = &prevs; } int count = countPrevOccurs( ¶ms, prevsPtr, NULL, log ); if ( count >= params.elem->minMatched ) { oldElems |= 1 << (1 + patElemIndx); } MatchInfo mi; getMatchInfo( ¶ms, prevsPtr, ft, &mi, log ); if ( mi.isOptional ) { oldElems |= 1 << (patElemIndx + 1); /* we'll try the next to see if it matches */ } if ( mi.matched ) { newElems |= 1 << patElemIndx; /* we used this to get here */ } } } success = 0 != newElems; if ( success ) { resultMatch.elemSet[patIndx] = newElems; } } if ( success ) { *matchP = resultMatch; } #ifdef DEBUG if ( log ) { if ( success ) { XP_UCHAR buf[128]; LOG_RETURNF( "(tile[%d]: %s) => %s (new sets: %s)", iter->nEdges, _tile.face, boolToStr(success), formatSets( buf, VSIZE(buf), matchP ) ); } else { LOG_RETURNF( "(tile[%d]: %s) => %s", iter->nEdges, _tile.face, boolToStr(success) ); } } #endif return success; } static XP_Bool patMatchFinished( const DictIter* iter, XP_Bool log ) { XP_Bool result = XP_FALSE; Params params; for ( int patIndx = 0; patIndx < iter->nPats; ++patIndx ) { const ElemSet finalSet = iter->stack[iter->nEdges-1].match.elemSet[patIndx]; const Pat* pat = &iter->pats[patIndx]; /* We want to know if the last element is in last tile's matched set. If the last elements are optional, however, it's ok to skip back over them. */ int foundIndx = -1; for ( int indx = pat->nPatElems - 1; ; --indx ) { ElemSet mask = 1 << indx; if ( 0 != (finalSet & mask) ) { foundIndx = indx; break; } /* Not in the set. Can we skip it? */ if ( 0 != pat->patElems[indx].minMatched ) { break; } } result = 0 <= foundIndx; if ( result ) { PrevOccurs pe; setParams( ¶ms, iter, patIndx, foundIndx ); countPrevOccurs( ¶ms, NULL, &pe, log ); result = pe.matched; } if ( !result ) { break; /* we're done */ } } #ifdef DEBUG if ( log ) { if ( result ) { XP_UCHAR elemBuf[64]; PrintState prs = { .iter = iter, .buf = elemBuf, .bufLen = VSIZE(elemBuf), }; formatElem( &prs, params.elem ); XP_LOGFF( "for word %s: => %s (matched elem %d: %s)", iter->curWord, boolToStr(result), params.patElemIndx, elemBuf ); } else { XP_LOGFF( "for word %s: => %s", iter->curWord, boolToStr(result) ); } } #endif return result; } static XP_Bool prevPeerMatch( DictIter* iter, array_edge** edgeP, PatMatch* matchP, XP_Bool log ) { const DictionaryCtxt* dict = iter->dict; array_edge* edge = *edgeP; XP_Bool found = XP_FALSE; for ( ; ; ) { PatMatch match = { 0 }; found = HAS_MATCH( iter, edge, &match, log ); if ( found ) { *edgeP = edge; *matchP = match; break; } if ( isFirstEdge( dict, edge ) ) { break; } edge -= dict->nodeSize; } return found; } static XP_Bool nextPeerMatch( DictIter* iter, array_edge** edgeP, PatMatch* matchP, XP_Bool log ) { array_edge* edge = *edgeP; XP_Bool found = XP_FALSE; const DictionaryCtxt* dict = iter->dict; for ( ; ; ) { PatMatch match = { 0}; found = HAS_MATCH( iter, edge, &match, log ); if ( found ) { *edgeP = edge; *matchP = match; break; } if ( IS_LAST_EDGE( dict, edge ) ) { break; } edge += dict->nodeSize; } return found; } static XP_U16 pushEdge( DictIter* iter, array_edge* edge, PatMatch* match ) { XP_U16 nEdges = iter->nEdges; XP_ASSERT( nEdges < iter->max ); iter->stack[nEdges].edge = edge; iter->stack[nEdges].match = *match; #ifdef DEBUG if ( !!edge ) { /* Will fail when called from di_stringMatches() */ // XP_LOGFF( "before: %s", iter->curWord ); Tile tile = EDGETILE( iter->dict, edge ); const XP_UCHAR* face = dict_getTileString( iter->dict, tile ); iter->stack[nEdges].faceLen = XP_STRLEN( face ); XP_STRCAT( iter->curWord, face ); // XP_LOGFF( "after: %s", iter->curWord ); } #endif return ++iter->nEdges; } static array_edge* popEdge( DictIter* iter ) { XP_ASSERT( 0 < iter->nEdges ); #ifdef DEBUG // XP_LOGFF( "before: %s", iter->curWord ); XP_U16 curLen = XP_STRLEN( iter->curWord ); XP_U16 popLen = iter->stack[iter->nEdges-1].faceLen; XP_ASSERT( curLen >= popLen ); iter->curWord[curLen-popLen] = '\0'; // XP_LOGFF( "after: %s", iter->curWord ); #endif return iter->stack[--iter->nEdges].edge; } static XP_Bool nextWord( DictIter* iter, XP_Bool log ) { // LOG_FUNC(); const DictionaryCtxt* dict = iter->dict; XP_Bool success = XP_FALSE; while ( 0 < iter->nEdges && ! success ) { if ( iter->nEdges < iter->max ) { array_edge* next = dict_follow( dict, iter->stack[iter->nEdges-1].edge ); if ( !!next ) { PatMatch match = {0}; if ( nextPeerMatch( iter, &next, &match, log ) ) { pushEdge( iter, next, &match ); success = iter->min <= iter->nEdges && ACCEPT_NODE( iter, next, log ); continue; /* try with longer word */ } } } while ( iter->nEdges > 0 && IS_LAST_EDGE( dict, iter->stack[iter->nEdges-1].edge ) ) { popEdge( iter ); } /* We're now at a point where the top edge is not a candidate and we need to look at its next siblings. (If we don't have any edges, we're done, and the top-level while will exit) */ while ( 0 < iter->nEdges ) { /* remove so isn't part of the match of its peers! */ array_edge* edge = popEdge( iter ); if ( !IS_LAST_EDGE( dict, edge ) ) { edge += dict->nodeSize; PatMatch match = {0}; if ( nextPeerMatch( iter, &edge, &match, log ) ) { pushEdge( iter, edge, &match ); /* let the top of the loop examine this one */ success = iter->min <= iter->nEdges && ACCEPT_NODE( iter, edge, log ); break; } } } } if ( success && !!iter->indexer ) { (*iter->indexer->proc)(iter->indexer->closure); } #ifdef DEBUG if ( log ) { if ( success ) { XP_LOGFF( "word found: %s", iter->curWord ); } else { XP_LOGFF( "NOTHING FOUND" ); } } #endif // LOG_RETURNF( "%s", boolToStr(success) ); XP_ASSERT( (iter->min <= iter->nEdges && iter->nEdges <= iter->max) || !success ); return success; } static XP_Bool isFirstEdge( const DictionaryCtxt* dict, array_edge* edge ) { XP_Bool result = edge == dict->base; /* can't back up from first node */ if ( !result ) { result = IS_LAST_EDGE( dict, edge - dict->nodeSize ); } return result; } static void pushLastEdges( DictIter* iter, array_edge* edge, XP_Bool log ) { const DictionaryCtxt* dict = iter->dict; while ( iter->nEdges < iter->max ) { /* walk to the end ... */ while ( !IS_LAST_EDGE( dict, edge ) ) { edge += dict->nodeSize; } /* ... so we can then move back, testing */ PatMatch match = {0}; if ( ! prevPeerMatch( iter, &edge, &match, log ) ) { break; } pushEdge( iter, edge, &match ); edge = dict_follow( dict, edge ); if ( NULL == edge ) { break; } } } static XP_Bool prevWord( DictIter* iter, XP_Bool log ) { const DictionaryCtxt* dict = iter->dict; XP_Bool success = XP_FALSE; while ( 0 < iter->nEdges && ! success ) { if ( isFirstEdge( dict, iter->stack[iter->nEdges-1].edge ) ) { popEdge( iter ); success = iter->min <= iter->nEdges && ACCEPT_NODE( iter, iter->stack[iter->nEdges-1].edge, log ); continue; } array_edge* edge = popEdge(iter); XP_ASSERT( !isFirstEdge( dict, edge ) ); edge -= dict->nodeSize; PatMatch match = {0}; if ( prevPeerMatch( iter, &edge, &match, log ) ) { pushEdge( iter, edge, &match ); if ( iter->nEdges < iter->max ) { edge = dict_follow( dict, edge ); if ( NULL != edge ) { pushLastEdges( iter, edge, log ); } } } success = iter->min <= iter->nEdges && ACCEPT_NODE( iter, iter->stack[iter->nEdges-1].edge, log ); } #ifdef DEBUG if ( log ) { if ( success ) { XP_LOGFF( "word found: %s", iter->curWord ); } else { XP_LOGFF( "NOTHING FOUND" ); } } #endif XP_ASSERT( (iter->min <= iter->nEdges && iter->nEdges <= iter->max) || !success ); return success; } static XP_Bool findStartsWithTiles( DictIter* iter, const Tile* tiles, XP_U16 nTiles ) { XP_ASSERT( nTiles <= iter->min ); const DictionaryCtxt* dict = iter->dict; array_edge* edge = dict_getTopEdge( dict ); iter->nEdges = 0; #ifdef DEBUG iter->curWord[0] = '\0'; #endif while ( nTiles > 0 ) { Tile tile = *tiles++; edge = dict_edge_with_tile( dict, edge, tile ); if ( NULL == edge ) { break; } PatMatch match = {0}; if ( ! HAS_MATCH( iter, edge, &match, XP_FALSE ) ) { break; } pushEdge( iter, edge, &match ); edge = dict_follow( dict, edge ); --nTiles; } return 0 == nTiles; } static XP_Bool startsWith( const DictIter* iter, const Tile* tiles, XP_U16 nTiles ) { XP_Bool success = nTiles <= iter->nEdges; while ( success && nTiles-- ) { success = tiles[nTiles] == EDGETILE( iter->dict, iter->stack[nTiles].edge ); } return success; } static XP_Bool findWordStartsWith( DictIter* iter, const Tile* tiles, XP_U16 nTiles, XP_Bool log ) { XP_Bool found = XP_FALSE; if ( findStartsWithTiles( iter, tiles, nTiles ) ) { found = ACCEPT_ITER( iter, log ) && iter->min <= iter->nEdges && iter->nEdges <= iter->max; if ( !found ) { found = nextWord( iter, log ) && startsWith( iter, tiles, nTiles ); } } return found; } static void initIterFrom( DictIter* dest, const DictIter* src, Indexer* indexer ) { /* LOG_FUNC(); */ DIMinMax mm = { .min = src->min, .max = src->max, }; initIter( dest, src->dict, &mm, #ifdef XWFEATURE_WALKDICT_FILTER src->pats, src->nPats, indexer // src->patString #else error #endif ); /* LOG_RETURN_VOID(); */ } static XP_Bool firstWord( DictIter* iter, XP_Bool log ) { if ( log ) { LOG_FUNC(); } array_edge* top = dict_getTopEdge( iter->dict ); XP_Bool success = !!top; if ( success ) { // iter->nPatMatches = 0; PatMatch match; success = nextPeerMatch( iter, &top, &match, log ); if ( success ) { iter->nEdges = 0; pushEdge( iter, top, &match ); // iter->edges[0] = top; if ( ACCEPT_ITER( iter, log ) ) { XP_ASSERT(0); /* should be impossible */ } else { success = nextWord( iter, log ); } } } return success; } static XP_Bool addTilePats( ParseState* ps, const PatDesc* pd ) { XP_Bool success = XP_TRUE; XP_Bool anyOrderOk = pd->anyOrderOk; PatElem elem = { .typ = CHILD, .minMatched = 1, .maxMatched = 1, }; for ( int ii = 0; success && ii < pd->nTiles; ++ii ) { #ifdef MULTI_SET ++elem.u.child.tiles.cnts[pd->tiles[ii]]; #else elem.u.child.tiles |= 1 << pd->tiles[ii]; #endif if ( !anyOrderOk ) { success = ps->elemIndex < VSIZE(ps->elems); if ( success ) { success = PatErrNone == addElem( ps, &elem ); #ifdef MULTI_SET XP_MEMSET( &elem.u.child.tiles, 0, sizeof(elem.u.child.tiles) ); #else elem.u.child.tiles = 0; #endif } } } if ( anyOrderOk ) { elem.u.child.flags |= FLAG_SINGLE; elem.minMatched = elem.maxMatched = pd->nTiles; success = PatErrNone == addElem( ps, &elem ); } LOG_RETURNF( "%s", boolToStr(success) ); return success; } static void addWildcard( ParseState* ps ) { PatElem elem = { .typ = CHILD, .minMatched = 0, .maxMatched = 1000, }; #ifdef MULTI_SET elem.u.child.tiles.cnts[ps->blankVal] = 1; #else elem.u.child.tiles = ps->blankMask; #endif #ifdef DEBUG PatErr err = #endif addElem( ps, &elem ); XP_ASSERT( err == PatErrNone ); } static void copyParsedPat( const DictionaryCtxt* XP_UNUSED_DBG(dict), Pat* pat, ParseState* ps, const XP_UCHAR* patStr ) { if ( !!patStr ) { pat->patString = copyString( dict->mpool, patStr ); } size_t size = ps->elemIndex * sizeof(pat->patElems[0]); if ( 0 < size ) { XP_LOGFF( "pat elems size: %zu", size ); pat->patElems = XP_MALLOC( dict->mpool, size ); XP_MEMCPY( pat->patElems, ps->elems, size ); pat->nPatElems = ps->elemIndex; } } enum { STARTS_WITH, CONTAINS, ENDS_WITH, N_SEGS }; DictIter* di_makeIter( const DictionaryCtxt* dict, XWEnv xwe, const DIMinMax* minmax, const XP_UCHAR** strPats, XP_U16 nPats, const PatDesc* tilePats, XP_U16 XP_UNUSED_DBG(nTilePats) ) { XP_ASSERT( 0 == nPats || !tilePats ); /* Can't both be non-null */ DictIter* iter = NULL; XP_U16 nUsed = 0; Pat pats[MAX_PATS] = {{0}}; ParseState ps; XP_Bool success = XP_TRUE; if ( 0 < nPats ) { for ( int ii = 0; success && ii < nPats; ++ii ) { initPS( &ps, dict ); success = compilePat( &ps, strPats[ii] ); if ( success ) { copyParsedPat( dict, &pats[nUsed++], &ps, strPats[ii] ); } } } else if ( !!tilePats ) { XP_ASSERT( N_SEGS == nTilePats ); for ( int ii = STARTS_WITH; success && ii < N_SEGS; ++ii ) { const PatDesc* ta = &tilePats[ii]; if ( 0 < ta->nTiles ) { initPS( &ps, dict ); if ( ii != STARTS_WITH ) { addWildcard( &ps ); } success = addTilePats( &ps, ta ); if ( success ) { if ( ii != ENDS_WITH ) { addWildcard( &ps ); } copyParsedPat( dict, &pats[nUsed++], &ps, NULL ); } } } } if ( success ) { XP_LOGFF( "making iter of size %zu", sizeof(*iter) ); iter = XP_CALLOC( dict->mpool, sizeof(*iter) ); initIter( iter, dict_ref( dict, xwe ), minmax, pats, nUsed, NULL ); } return iter; } void di_freeIter( DictIter* iter, XWEnv xwe ) { for ( int ii = 0; ii < iter->nPats; ++ii ) { XP_FREEP( iter->dict->mpool, &iter->pats[ii].patElems ); } #ifdef MEM_DEBUG MemPoolCtx* mpool = iter->dict->mpool; #endif dict_unref( iter->dict, xwe ); XP_FREE( mpool, iter ); } #ifdef XWFEATURE_TESTPATSTR typedef struct _FindState { int timesCalled; Tile tiles[32]; int nTiles; } FindState; static XP_Bool onFoundTilesSM( void* closure, const Tile* tiles, int len ) { FindState* fs = (FindState*)closure; ++fs->timesCalled; fs->nTiles = len; XP_ASSERT( len * sizeof(fs->tiles[0]) < VSIZE(fs->tiles) ); XP_MEMCPY( fs->tiles, tiles, len * sizeof(fs->tiles[0]) ); return XP_TRUE; } #ifdef DEBUG static void logPats( const DictIter* iter ) { for ( int ii = 0; ii < iter->nPats; ++ii ) { const Pat* pat = &iter->pats[ii]; for ( int jj = 0; jj < pat->nPatElems; ++jj ) { const PatElem* elem = &pat->patElems[jj]; XP_UCHAR elemBuf[64]; PrintState prs = { .iter = iter, .buf = elemBuf, .bufLen = VSIZE(elemBuf), }; formatElem( &prs, elem ); if ( 1 == iter->nPats ) { XP_LOGFF( "elems[%d]: %s", jj, elemBuf ); } else { XP_LOGFF( "pats[%d]/elems[%d]: %s", ii, jj, elemBuf ); } } } } #else # define logPats( iter ) #endif XP_Bool di_stringMatches( DictIter* iter, const XP_UCHAR* str ) { LOG_FUNC(); FindState fs = {0}; dict_tilesForString( iter->dict, str, 0, onFoundTilesSM, &fs ); XP_ASSERT( 1 == fs.timesCalled ); logPats( iter ); array_edge_old tmps[fs.nTiles]; XP_MEMSET( &tmps[0], 0, VSIZE(tmps) * sizeof(tmps[0]) ); XP_Bool matched = XP_TRUE; for ( int ii = 0; matched && ii < fs.nTiles; ++ii ) { PatMatch match = {0}; array_edge_old* tmp = &tmps[ii]; tmp->bits = fs.tiles[ii]; array_edge* fakeEdge = (array_edge*)tmp; matched = HAS_MATCH( iter, fakeEdge, &match, XP_TRUE ); if ( !matched ) { break; } pushEdge( iter, fakeEdge, &match ); } if ( matched ) { matched = MATCH_FINISHED( iter, XP_TRUE ); } LOG_RETURNF( "%s", boolToStr(matched) ); return matched; } /* di_stringMatches */ #endif static XP_U32 countWordsIn( DictIter* iter, LengthsArray* lens ) { if ( NULL != lens ) { XP_MEMSET( lens, 0, sizeof(*lens) ); } XP_U32 count = 0; for ( XP_Bool ok = firstWord( iter, XP_FALSE ); ok; ok = nextWord( iter, XP_FALSE) ) { ++count; if ( NULL != lens ) { ++lens->lens[iter->nEdges]; } } return count; } XP_U32 di_countWords( const DictIter* iter, LengthsArray* lens ) { /* LOG_FUNC(); */ DictIter counter; initIterFrom( &counter, iter, NULL ); XP_U32 result = countWordsIn( &counter, lens ); /* LOG_RETURNF( "%d", result ); */ return result; } #define GUARD_VALUE 0x12345678 #define ASSERT_INITED( iter ) XP_ASSERT( (iter)->guard == GUARD_VALUE ) static void initIter( DictIter* iter, const DictionaryCtxt* dict, const DIMinMax* minmax, const Pat* pats, XP_U16 nPats, Indexer* indexer ) { XP_MEMSET( iter, 0, sizeof(*iter) ); iter->dict = dict; iter->indexer = indexer; #ifdef MULTI_SET iter->blankVal = dict_getBlankTile( dict ); #else iter->blankMask = ((TileSet)1) << dict_getBlankTile( dict ); #endif #ifdef DEBUG iter->guard = GUARD_VALUE; #endif #ifdef XWFEATURE_WALKDICT_FILTER if ( !!minmax ) { iter->min = XP_MAX(2, minmax->min); iter->max = minmax->max; } if ( iter->max < 2 || MAX_COLS_DICT < iter->max ) { iter->max = MAX_COLS_DICT; } if ( iter->min < 2 || iter->max < iter->min ) { iter->min = 2; } XP_ASSERT( nPats <= MAX_PATS ); if ( 0 < nPats ) { XP_MEMCPY( iter->pats, pats, nPats * sizeof(pats[0]) ); } iter->nPats = nPats; iter->nWords = countWordsIn( iter, NULL ); /* XP_UCHAR buf[128]; */ /* printPat( iter, buf, VSIZE(buf) ); */ /* XP_LOGFF( "%s => %s", strPat, buf ); */ #else error; #endif } static DictPosition placeWordClose( DictIter* iter, const DictPosition position, XP_U16 depth, const IndexData* data ) { XP_S16 index = -1; for ( XP_S16 low = 0, high = data->count - 1; ; ) { if ( low > high ) { break; } index = low + ( (high - low) / 2); if ( position < data->indices[index] ) { high = index - 1; } else if ( data->indices[index+1] <= position) { low = index + 1; } else { break; } } /* Now we have the index immediately below the position we want. But we may be better off starting with the next if it's closer. The last index is a special case since we use lastWord rather than a prefix to init */ if ( ( index + 1 < data->count ) && (data->indices[index + 1] - position) < (position - data->indices[index]) ) { ++index; } if ( !findWordStartsWith( iter, &data->prefixes[depth*index], depth, XP_FALSE ) ) { XP_ASSERT(0); } return data->indices[index]; } /* placeWordClose */ static void iterToString( const DictIter* iter, XP_UCHAR* buf, XP_U16 buflen, const XP_UCHAR* delim ) { XP_U16 ii; XP_U16 nEdges = iter->nEdges; Tile tiles[nEdges]; for ( ii = 0; ii < nEdges; ++ii ) { tiles[ii] = EDGETILE( iter->dict, iter->stack[ii].edge ); } (void)dict_tilesToString( iter->dict, tiles, nEdges, buf, buflen, delim ); } typedef struct _IndexState { const DictIter* iter; IndexData* data; XP_U16 depth; XP_U32 nWordsSeen; Tile* curPrefix; const Tile* lastPrefix; } IndexState; /* Each time we're called, check if the first tiles are a new * pattern. If so, increment the counter and record the position. */ static void tryIndex( void* closure ) { IndexState* is = (IndexState*)closure; const XP_U16 depth = is->depth; IndexData* data = is->data; const DictIter* iter = is->iter; XP_ASSERT( iter->nEdges >= depth ); /* won't happen now */ XP_ASSERT( iter->min <= iter->nEdges && iter->nEdges <= iter->max ); if ( NULL == is->curPrefix ) { /* first time through */ is->curPrefix = data->prefixes - depth; } /* We have to accumulate prefix somewhere. Might as well be where we'll save it if it's new. Should be no danger */ Tile* nextPrefix = is->curPrefix + depth; if ( nextPrefix < is->lastPrefix ) { for ( int ii = 0; ii < depth; ++ii ) { nextPrefix[ii] = EDGETILE( iter->dict, iter->stack[ii].edge ); } if ( 0 == data->count || 0 != XP_MEMCMP( is->curPrefix, nextPrefix, depth )) { /* It's new. Point at it */ is->curPrefix = nextPrefix; data->indices[data->count] = is->nWordsSeen; #ifdef DEBUG /* XP_UCHAR buf[depth * 3]; */ /* (void)dict_tilesToString( iter->dict, nextPrefix, depth, buf, */ /* VSIZE(buf), NULL ); */ /* XP_LOGFF( "set position[%d]: %s: %d", data->count, buf, */ /* data->indices[data->count] ); */ #endif ++data->count; } ++is->nWordsSeen; } else { XP_LOGFF( "out of space" ); } } void di_makeIndex( const DictIter* iter, XP_U16 depth, IndexData* data ) { LOG_FUNC(); ASSERT_INITED( iter ); const DictionaryCtxt* dict = iter->dict; DI_ASSERT( depth < MAX_COLS_DICT ); XP_U16 ii, needCount; const XP_U16 nFaces = dict_numTileFaces( dict ); XP_U16 nNonBlankFaces = nFaces; XP_Bool hasBlank = dict_hasBlankTile( dict ); if ( hasBlank ) { --nNonBlankFaces; } // this is just needCount = pow(nNonBlankFaces,depth) for ( ii = 1, needCount = nNonBlankFaces; ii < depth; ++ii ) { needCount *= nNonBlankFaces; } DI_ASSERT( needCount <= data->count ); DictIter tmpIter; IndexState is = { .iter = &tmpIter, .data = data, .nWordsSeen = 0, .depth = depth, .curPrefix = NULL, .lastPrefix = data->prefixes + (depth * data->count * sizeof(data->prefixes[0])), }; Indexer indexer = { .proc = tryIndex, .closure = &is, }; data->count = 0; initIterFrom( &tmpIter, iter, &indexer ); #ifdef DI_DEBUG DictPosition pos; for ( pos = 1; pos < data->count; ++pos ) { DI_ASSERT( data->indices[pos-1] < data->indices[pos] ); } #endif LOG_RETURN_VOID(); } /* di_makeIndex */ XP_Bool di_firstWord( DictIter* iter ) { ASSERT_INITED( iter ); XP_Bool success = firstWord( iter, XP_FALSE ); if ( success ) { iter->position = 0; } return success; } XP_Bool di_getNextWord( DictIter* iter ) { ASSERT_INITED( iter ); XP_Bool success = nextWord( iter, XP_FALSE ); if ( success ) { ++iter->position; } return success; } XP_Bool di_lastWord( DictIter* iter ) { const XP_Bool log = XP_FALSE; ASSERT_INITED( iter ); while ( 0 < iter->nEdges ) { popEdge( iter ); } pushLastEdges( iter, dict_getTopEdge( iter->dict ), log ); XP_Bool success = ACCEPT_ITER( iter, log ) && iter->min <= iter->nEdges && iter->nEdges <= iter->max; if ( !success ) { success = prevWord( iter, log ); } if ( success ) { iter->position = iter->nWords - 1; } return success; } XP_Bool di_getPrevWord( DictIter* iter ) { ASSERT_INITED( iter ); XP_Bool success = prevWord( iter, XP_FALSE ); if ( success ) { --iter->position; } return success; } /* If we start without an initialized word, init it to be closer to what's sought. OR if we're father than necessary from what's sought, start over at the closer end. Then move as many steps as necessary to reach it. */ XP_Bool di_getNthWord( DictIter* iter, XWEnv xwe, DictPosition position, XP_U16 depth, const IndexData* data ) { /* XP_LOGFF( "(position=%d, depth=%d, data=%p)", position, depth, data ); */ ASSERT_INITED( iter ); const DictionaryCtxt* dict = iter->dict; XP_U32 wordCount; XP_Bool validWord = 0 < iter->nEdges; if ( validWord ) { /* uninitialized */ wordCount = iter->nWords; DI_ASSERT( wordCount == di_countWords( iter, NULL ) ); } else { wordCount = dict_getWordCount( dict, xwe ); } XP_Bool success = position < wordCount; if ( success ) { /* super common cases first */ success = XP_FALSE; if ( validWord ) { if ( iter->position == position ) { success = XP_TRUE; /* do nothing; we're done */ } else if ( iter->position == position - 1 ) { success = di_getNextWord( iter ); } else if ( iter->position == position + 1 ) { success = di_getPrevWord( iter ); } } if ( !success ) { XP_U32 wordIndex; if ( !!data && !!data->prefixes && !!data->indices ) { wordIndex = placeWordClose( iter, position, depth, data ); } else { wordCount /= 2; /* mid-point */ /* If word's inited but farther from target than either endpoint, better to start with an endpoint */ if ( validWord && XP_ABS( position - iter->position ) > wordCount ) { validWord = XP_FALSE; } if ( !validWord ) { if ( position >= wordCount ) { di_lastWord( iter ); } else { di_firstWord( iter ); } } wordIndex = iter->position; } XP_Bool (*finder)( DictIter* iter, XP_Bool log ) = NULL;/* stupid compiler */ XP_U32 repeats = 0; if ( wordIndex < position ) { finder = nextWord; repeats = position - wordIndex; } else if ( wordIndex > position ) { finder = prevWord; repeats = wordIndex - position; } while ( repeats-- ) { if ( !(*finder)( iter, XP_FALSE ) ) { XP_ASSERT(0); break; /* prevents crash on release builds? */ } } iter->position = position; success = XP_TRUE; } } return success; } /* di_getNthWord */ XP_U32 di_getNWords( const DictIter* iter ) { return iter->nWords; } void di_getMinMax( const DictIter* iter, XP_U16* min, XP_U16* max ) { *min = iter->min; *max = iter->max; } void di_wordToString( const DictIter* iter, XP_UCHAR* buf, XP_U16 buflen, const XP_UCHAR* delim ) { ASSERT_INITED( iter ); iterToString( iter, buf, buflen, delim ); #ifdef DEBUG // If there's no delim, debug string should be same if ( !delim || '\0' != *delim ) { XP_ASSERT( 0 == XP_STRCMP( buf, iter->curWord ) ); } #endif } DictPosition di_getPosition( const DictIter* iter ) { ASSERT_INITED( iter ); return iter->position; } #ifdef CPLUS } #endif #endif /* XWFEATURE_WALKDICT */