Handles case where the app receives only a subset of the SMS messages
into which a larger game-level message has been broken. Now when it
restarts and the remaining parts come in the whole can be reassembled.
And use in linux client. Goal here is to reproduce then improve the
Android SMS pre- and post-processing stuff with a common/ implementation
that can be tested on linux and used wherever.
So now all jni code uses a single dutil context, but also a single
mempool and jniutil instance instead of new instances of the latter two
per game and dict-iteration.
Trying to separate what's game-specific from what can be app/device
specific (i.e. with a long lifespan, and available when a game isn't
open.)
Android will be broken after this commit and fixed after the next
Once the pool count drops to 0, start showing the number of tiles left
in the user's tray. This prevents there being a long time when nothing
seems to be changing *and* the script from exiting early because it
thinks all games are hung.
Got a report of crashes due to corrupt move records. Given I rarely see
them I wondered if it's because the hint- and robot-generated moves I
work with have tiles in order. So now on debug builds tiles in moves
from those sources are randomly rearranged (as if the user had formed
the word in random order.) The bug isn't showing up, but I figure the
test's worth keeping.
The fix I made earlier for this relied on a callback that was skipped in
release builds. Now always take the path that involves making the
callback when one is provided. Also remove an optimization that was
trying to eliminate possible moves based on scores prior to doing the
more expensive full check. In 2018 I prefer simplicity, and can make the
remaining code faster if that's required.
I *think* the reason I'm occasionally seeing toasts about not finding a
move is that when the engine's interrupted by there being a UI event in
the queue that error is posted. Instead try posting only when at the end
of the search nothing's been found.
Ideally the comms module wouldn't go through its connecting routine in
order to join a game. To that end I added a join() method to relay.py
and code to call it. Joins happen (pairing games, starting new ones,
etc.), but after that communication doesn't. First part of fixing that
would be to make cookieID persistent and transmit it back with the rest
of what join sends (since it's used by all the messages currently sent
in a connected state), but I suspect there's more to be done, and even
that requires a fair number of changes on the relay side. So all that's
wrapped in #ifdef RELAY_VIA_HTTP (and turned off.)
If I want to move relaycon into common so Android can use it (assuming
the jni code starts including json-c and libcurl so it can handle
networking) I'll need a replacement for GSList. This is a start.
I'm seeing assertions when a game gets into a state I don't fully
understand: host receives messages that need a channelNo assigned but
the game's full. With luck they're duplicates and can be ignored,
because that's all I can do.
New classes implement custom alert and its view, where most of the logic
for putting up one button per tile, hiding and showing buttons based on
what's left, etc. lives. Rough, but works well until rotated, when gets
redrawn without spaces for the buttons that could come back.
Got a crash opening games where tile pick was on and first player was a
robot. Cause: non-robot player's tiles were being assigned before the
robot's, and the move stack didn't like the out-of-order assignments.
Now we assign tiles in order as before, but pause each time we find a
non-robot that needs to pick its own.
Make face-up tile picker util method return void and add mechanism for
passing in selected tiles asynchronously, as has been done recently with
the rest of the once-blocking util callbacks. Works perfectly in the gtk
case. Likely crashes in curses (if picking face-up option is on.) In
java all the callbacks are there but rather than put up a UI we pretend
the user says "pick 'em for me" each time. Putting up a UI is next.
Back in August I "fixed" timers running after the board was cleared but
didn't realize that util contexts were shared by snapshot
boards. Clearing those timers when the board's destroyed was stopping
timers for a visible board as well. So I added a boolean indicating
whether to clear timers. Ref counting or similar would be better, but a
lot of work given the concept isn't really in the common/ code at
all (outside of dicts...)
Continue conversion of alerts that required blocking the JNI thread. Now
board_commitTurn() takes a second boolean indicating whether phonies
found have been approved by user. Common code informs user, and if he
approves client code calls board_commitTurn() again. In case where
turn's lost there's no call to make back, but there's the undesirable
change that if a robot moves next its move will be reported on top of
the turn-lost alert. Ideally new alerts would appear under, not on top
of, those that have not yet been dismissed.
Next step in converting util_ methods that required blocking: blank tile
assignment. Now post a query and add a method that the client code can
call when the user's decided. Include enough state (col, row, and
playerNum) so that it's probably pretty safe.