xwords/dawg/dict2dawg.cpp

990 lines
27 KiB
C++
Raw Normal View History

/* -*- compile-command: "g++ -g -o dict2dawg dict2dawg.cpp"; -*- */
/*************************************************************************
* adapted from perl code that was itself adapted from C++ code
* Copyright (C) 2000 Falk Hueffner
* This version Copyright (C) 2002,2006 Eric House (xwords@eehouse.org)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
* USA
**************************************************************************
* inputs: 0. Name of file mapping letters to 0..31 values. In English
* case just contains A..Z. This will be used to translate the tries
* on output.
* 1. Max number of bytes per binary output file.
*
* 2. Basename of binary files for output.
* 3. Name of file to which to write the number of the
* startNode, since I'm not rewriting a bunch of code to expect Falk's
* '*' node at the start.
*
* In STDIN, the text file to be compressed. It absolutely
* must be sorted. The sort doesn't have to follow the order in the
* map file, however.
* This is meant eventually to be runnable as part of a cgi system for
* letting users generate Crosswords dicts online.
**************************************************************************/
#include <stdio.h>
#include <stdarg.h>
#include <string>
#include <map>
#include <vector>
#include <list>
int gFirstDiff;
char* gCurrentWord = "";
char* gCurWord = NULL; // save so can check for sortedness
bool gDone = false;
std::list<char*>* gInputStrings;
bool gNeedsSort = true;
std::vector<unsigned long> gNodes; // final array of nodes
unsigned int gNBytesPerOutfile = 0xFFFFFFFF;
char* gTableFile = NULL;
char* gOutFileBase = NULL;
char* gStartNodeOut = NULL;
char* gInFileName = NULL;
bool gKillIfMissing = true;
char gTermChar = '\n';
bool gDumpText = false; // dump the dict as text after?
char* gCountFile = NULL;
char* gBytesPerNodeFile = NULL; // where to write whether node size 3 or 4
int gWordCount = 0;
std::map<char,int> gTableHash;
int gBlankIndex;
std::vector<char> gRevMap;
bool gDebug = false;
std::map<int,char*> gSubsHash;
bool gForceFour = false; // use four bytes regardless of need?
int gNBytesPerNode;
bool gUseUnicode;
typedef unsigned int Node;
#define MAX_POOL_SIZE 1000000
static char* parseARGV( int argc, char** argv );
static void usage( const char* name );
static void error_exit( const char* fmt, ... );
static char parsechar( const char* in );
static void makeTableHash( void );
static std::list<char*>* parseAndSort( FILE* file );
static void printWords( std::list<char*>* strings );
static void readNextWord( void );
static bool firstBeforeSecond( const char* lhs, const char* rhs );
static char* tileToAscii( char* out, const char* in );
int
main( int argc, char** argv )
{
if ( NULL == parseARGV( argc, argv ) ) {
usage(argv[0]);
exit(1);
}
makeTableHash();
FILE* infile;
if ( gInFileName ) {
infile = fopen( gInFileName, "r" );
} else {
infile = stdin;
}
gInputStrings = parseAndSort( infile );
if ( gInFileName ) {
fclose( infile );
}
printWords( gInputStrings );
// Do I need this stupid thing? Better to move the first row to
// the front of the array and patch everything else. Or fix the
// non-palm dictionary format to include the offset of the first
// node.
Node dummyNode = (Node)0xFFFFFFFF;
assert( sizeof(Node) == 4 );
gNodes.push_back(dummyNode);
readNextWord();
#if 0
int firstRootChildOffset = buildNode(0);
moveTopToFront( \$firstRootChildOffset );
if ( $gStartNodeOut ) {
writeOutStartNode( $gStartNodeOut, $firstRootChildOffset );
}
print STDERR "\n... dumping table ...\n" if $debug;
printNodes( \@gNodes, "done with main" ) if $debug;
// write out the number of nodes if requested
if ( $gCountFile ) {
open OFILE, "> $gCountFile";
print OFILE pack( "N", $gWordCount );
close OFILE;
print STDERR "wrote out: got $gWordCount words\n";
}
if ( $gOutFileBase ) {
emitNodes( $gNBytesPerOutfile, $gOutFileBase );
}
if ( $gDumpText && @gNodes > 0 ) {
printOneLevel( $firstRootChildOffset, "" );
}
if ( $gBytesPerNodeFile ) {
open OFILE, "> $gBytesPerNodeFile";
print OFILE $gNBytesPerNode;
close OFILE;
}
print STDERR "Used $gNBytesPerNode per node.\n";
#endif
} /* main */
#if 0
// We now have an array of nodes with the last subarray being the
// logical top of the tree. Move them to the start, fixing all fco
// refs, so that legacy code like Palm can assume top==0.
//
// Note: It'd probably be a bit faster to integrate this with emitNodes
// -- unless I need to have an in-memory list that can be used for
// lookups. But that's best for debugging, so keep it this way for now.
//
// Also Note: the first node is a dummy that can and should be tossed
// now.
sub moveTopToFront($) {
my ( $firstRef ) = @_;
my $firstChild = ${$firstRef};
${$firstRef} = 0;
my @lastSub;
if ( $firstChild > 0 ) {
// remove the last (the root) subarray
@lastSub = splice( @gNodes, $firstChild );
} else {
die "there should be no words!!" if $gWordCount != 0;
}
// remove the first (garbage) node
shift @gNodes;
my $diff;
if ( $firstChild > 0 ) {
// -1 because all move down by 1; see prev line
$diff = @lastSub - 1;
die "something wrong with len\n" if $diff < 0;
} else {
$diff = 0;
}
// stick it on the front
splice( @gNodes, 0, 0, @lastSub);
// We add $diff to everything. There's no subtracting because
// nobody had any refs to the top list.
for ( my $i = 0; $i < @gNodes; ++$i ) {
my $fco = TrieNodeGetFirstChildOffset( $gNodes[$i] );
if ( $fco != 0 ) { // 0 means NONE, not 0th!!
TrieNodeSetFirstChildOffset( \$gNodes[$i], $fco+$diff );
}
}
} // moveTopToFront
sub buildNode {
my ( $depth ) = @_;
if ( @gCurrentWord == $depth ) {
// End of word reached. If the next word isn't a continuation
// of the current one, then we've reached the bottom of the
// recursion tree.
readNextWord();
if ($gFirstDiff < $depth || $gDone) {
return 0;
}
}
my @newedges;
do {
my $letter = $gCurrentWord[$depth];
my $isTerminal = @gCurrentWord - 1 == $depth ? 1:0;
my $nodeOffset = buildNode($depth+1);
my $newNode = MakeTrieNode($letter, $isTerminal, $nodeOffset);
push( @newedges, $newNode );
} while ( ($gFirstDiff == $depth) && !$gDone);
TrieNodeSetIsLastSibling( \@newedges[@newedges-1], 1 );
return addNodes( \@newedges );
} // buildNode
sub addNodes {
my ( $newedgesR ) = @_;
my $found = findSubArray( $newedgesR );
if ( $found >= 0 ) {
die "0 is an invalid match!!!" if $found == 0;
return $found;
} else {
my $firstFreeIndex = @gNodes;
print STDERR "adding...\n" if $debug;
printNodes( $newedgesR ) if $debug;
push @gNodes, (@{$newedgesR});
registerSubArray( $newedgesR, $firstFreeIndex );
return $firstFreeIndex;
}
} // addNodes
sub printNode {
my ( $index, $node ) = @_;
print STDERR "[$index] ";
printf( STDERR
"letter=%d; isTerminal=%d; isLastSib=%d; fco=%d;\n",
TrieNodeGetLetter($node),
TrieNodeGetIsTerminal($node),
TrieNodeGetIsLastSibling($node),
TrieNodeGetFirstChildOffset($node));
} // printNode
sub printNodes {
my ( $nodesR, $name ) = @_;
my $len = @{$nodesR};
// print "printNodes($name): len = $len\n";
for ( my $i = 0; $i < $len; ++$i ) {
my $node = ${$nodesR}[$i];
printNode( $i, $node );
}
}
// Hashing. We'll keep a hash of offsets into the existing nodes
// array, and as the key use a string that represents the entire sub
// array. Since the key is what we're matching for, there should never
// be more than one value per hash and so we don't need buckets.
// Return -1 if there's no match.
sub findSubArray {
my ( $newedgesR ) = @_;
my $key = join('', @{$newedgesR});
if ( exists( $gSubsHash{$key} ) ) {
return $gSubsHash{$key};
} else {
return -1;
}
} // findSubArray
// add to the hash
sub registerSubArray {
my ( $edgesR, $nodeLoc ) = @_;
my $key = join( '', @{$edgesR} );
if ( exists $gSubsHash{$key} ) {
die "entry for key shouldn't exist!!";
} else {
$gSubsHash{$key} = $nodeLoc;
}
} // registerSubArray
sub toWord($) {
my ( $tileARef ) = @_;
my $word = "";
foreach my $tile (@$tileARef) {
foreach my $letter (keys (%gTableHash) ) {
if ( $tile == $gTableHash{$letter} ) {
$word .= $letter;
last;
}
}
}
return $word;
}
#endif
static void
readNextWord( void )
{
char* word;
if ( !gDone ) {
gDone = gInputStrings->size() == 0;
if ( !gDone ) {
word = gInputStrings->front();
gInputStrings->pop_front();
} else if ( gDebug ) {
fprintf( stderr, "gDone set to true\n" );
}
if ( gDebug ) {
fprintf( stderr, "got word: %s\n", word );
}
}
int numCommonLetters = 0;
int len = strlen( word );
int curWordLen = strlen(gCurrentWord);
if ( curWordLen < len ) {
len = curWordLen;
}
while ( gCurrentWord[numCommonLetters] == word[numCommonLetters]
&& numCommonLetters < len ) {
++numCommonLetters;
}
gFirstDiff = numCommonLetters;
if ( (curWordLen > 0) && (strlen(word) > 0)
&& !firstBeforeSecond( gCurrentWord, word ) ) {
char buf1[16];
char buf2[16];
tileToAscii( buf1, gCurrentWord );
tileToAscii( buf1, word );
error_exit( "words %s and %s are out of order\n",
buf1, buf2 );
}
gCurrentWord = word;
char buf[16];
fprintf( stderr, "gCurrentWord now %s\n", tileToAscii(buf, gCurrentWord) );
} // readNextWord
static bool
firstBeforeSecond( const char* lhs, const char* rhs )
{
char sl[16];
char sr[16];
tileToAscii( sl, lhs );
tileToAscii( sr, rhs );
bool gt = 0 > strcmp( lhs, rhs );
fprintf( stderr, "comparing %s, %s; returning %s\n",
sl, sr, gt?"true":"false" );
return gt;
}
#if 0
// passed to sort. Should remain unprototyped for effeciency's sake
sub cmpWords {
my $lenA = @{$a};
my $lenB = @{$b};
my $min = $lenA > $lenB? $lenB: $lenA;
for ( my $i = 0; $i < $min; ++$i ) {
my $ac = ${$a}[$i];
my $bc = ${$b}[$i];
my $res = $ac <=> $bc;
if ( $res != 0 ) {
return $res; // we're done
}
}
// If we got here, they match up to their common length. Longer is
// greater.
my $res = @{$a} <=> @{$b};
return $res; // which is longer?
} // cmpWords
#endif
static char*
tileToAscii( char* out, const char* in )
{
char* orig = out;
for ( ; ; ) {
char ch = *in++;
if ( '\0' == ch ) {
*out = '\0';
break;
}
*out++ = gRevMap[ch];
}
return orig;
}
static std::list<char*>*
parseAndSort( FILE* infile )
{
std::list<char*>* wordlist = new std::list<char*>;
// allocate storage for the actual chars. wordlist's char*
// elements will point into this. It'll leak. So what.
// void* pool = malloc( MAX_POOL_SIZE );
// assert( NULL != pool );
// memset( pool, 0, MAX_POOL_SIZE );
std::string word;
std::string asciiWord;
for ( ; ; ) {
bool dropWord = false;
word.clear();
// for each byte
for ( ; ; ) {
int byt = getc( infile );
if ( byt == EOF ) {
goto done;
} else if ( byt == gTermChar ) {
if ( !dropWord ) {
int len = word.length() + 1;
char* str = (char*)malloc( len );
assert( str );
memcpy( str, word.c_str(), word.length());
str[len] = '\0';
wordlist->push_back( str );
++gWordCount;
}
asciiWord = "";
break;
} else if ( gTableHash.find(byt) != gTableHash.end() ) {
if ( !dropWord ) {
fprintf( stderr, "adding %d for %c\n",
gTableHash[byt], (char)byt );
word += (char)gTableHash[byt];
assert( word.size() <= 15 );
if ( gKillIfMissing ) {
asciiWord += byt;
}
}
} else if ( gKillIfMissing ) {
error_exit( "chr %c (%d) not in map file %s\n"
"last word was %s\n",
byt, (int)byt, gTableFile, asciiWord.c_str() );
} else {
dropWord = true;
word = ""; // lose anything we already have
}
}
}
done:
if ( gNeedsSort && (gWordCount > 1) ) {
if ( gDebug ) {
fprintf( stderr, "starting sort...\n" );
}
// std::sort( wordlist->begin(), wordlist->end(), firstBeforeSecond );
if ( gDebug ) {
fprintf( stderr, "sort finished\n" );
}
}
if ( gDebug ) {
fprintf( stderr, "length of list is %d.\n", wordlist->size() );
}
return wordlist;
} // parseAndSort
static void
printWords( std::list<char*>* strings )
{
std::list<char*>::iterator iter = strings->begin();
while ( iter != strings->end() ) {
char buf[16];
tileToAscii( buf, *iter );
fprintf( stderr, "%s\n", buf );
++iter;
}
// for ( int i = 0; i < strings->size(); ++i ) {
// char* str = strings[i];
// }
}
#if 0
// Print binary representation of trie array. This isn't used yet, but
// eventually it'll want to dump to multiple files appropriate for Palm
// that can be catenated together on other platforms. There'll need to
// be a file giving the offset of the first node too. Also, might want
// to move to 4-byte representation when the input can't otherwise be
// handled.
sub dumpNodes {
for ( my $i = 0; $i < @gNodes; ++$i ) {
my $node = $gNodes[$i];
my $bstr = pack( "I", $node );
print STDOUT $bstr;
}
}
/*****************************************************************************
* Little node-field setters and getters to hide what bits represent
* what.
* high bit (31) is ACCEPTING bit
* next bit (30) is LAST_SIBLING bit
* next 6 bits (29-24) are tile bit (allowing alphabets of 64 letters)
* final 24 bits (23-0) are the index of the first child (fco)
******************************************************************************/
sub TrieNodeSetIsTerminal {
my ( $nodeR, $isTerminal ) = @_;
if ( $isTerminal ) {
${$nodeR} |= (1 << 31);
} else {
${$nodeR} &= ~(1 << 31);
}
}
sub TrieNodeGetIsTerminal {
my ( $node ) = @_;
return ($node & (1 << 31)) != 0;
}
sub TrieNodeSetIsLastSibling {
my ( $nodeR, $isLastSibling ) = @_;
if ( $isLastSibling ) {
${$nodeR} |= (1 << 30);
} else {
${$nodeR} &= ~(1 << 30);
}
}
sub TrieNodeGetIsLastSibling {
my ( $node ) = @_;
return ($node & (1 << 30)) != 0;
}
sub TrieNodeSetLetter {
my ( $nodeR, $letter ) = @_;
die "$0: letter ", $letter, " too big" if $letter >= 64;
my $mask = ~(0x3F << 24);
${$nodeR} &= $mask; // clear all the bits
${$nodeR} |= ($letter << 24); // set new ones
}
sub TrieNodeGetLetter {
my ( $node ) = @_;
$node >>= 24;
$node &= 0x3F; // is 3f ok for 3-byte case???
return $node;
}
sub TrieNodeSetFirstChildOffset {
my ( $nodeR, $fco ) = @_;
die "$0: $fco larger than 24 bits" if ($fco & 0xFF000000) != 0;
my $mask = ~0x00FFFFFF;
${$nodeR} &= $mask; // clear all the bits
${$nodeR} |= $fco; // set new ones
}
sub TrieNodeGetFirstChildOffset {
my ( $node ) = @_;
$node &= 0x00FFFFFF; // 24 bits
return $node;
}
sub MakeTrieNode {
my ( $letter, $isTerminal, $firstChildOffset, $isLastSibling ) = @_;
my $result = 0;
TrieNodeSetIsTerminal( \$result, $isTerminal );
TrieNodeSetIsLastSibling( \$result, $isLastSibling );
TrieNodeSetLetter( \$result, $letter );
TrieNodeSetFirstChildOffset( \$result, $firstChildOffset );
return $result;
} // MakeTrieNode
// Caller may need to know the offset of the first top-level node.
// Write it here.
sub writeOutStartNode {
my ( $startNodeOut, $firstRootChildOffset ) = @_;
open NODEOUT, ">$startNodeOut";
print NODEOUT pack( "N", $firstRootChildOffset );
close NODEOUT;
} // writeOutStartNode
#endif
// build the hash for translating. I'm using a hash assuming it'll be
// fast. Key is the letter; value is the 0..31 value to be output.
static void
makeTableHash( void )
{
int i;
FILE* TABLEFILE = fopen( gTableFile, "r" );
// open TABLEFILE, "< $gTableFile";
//splice @gRevMap; // empty it
for ( i = 0; ; ++i ) {
int ch = getc(TABLEFILE);
if ( ch == EOF ) {
break;
}
if ( gUseUnicode ) { // skip the first byte each time: tmp HACK!!!
ch = getc(TABLEFILE);
}
if ( ch == EOF ) {
break;
}
// push @gRevMap, $ch;
gRevMap.push_back(ch);
if ( ch == 0 ) { // blank
gBlankIndex = i;
// we want to increment i when blank seen since it is a
// tile value
continue;
}
// die "$0: $gTableFile too large\n"
assert( i < 64 );
// die "$0: only blank (0) can be 64th char\n" ;
assert( i < 64 || ch == 0 );
gTableHash[ch] = i;
}
fclose( TABLEFILE );
} // makeTableHash
#if 0
// emitNodes. "input" is $gNodes. From it we write up to
// $nBytesPerOutfile to files named $outFileBase0..n, mapping the
// letter field down to 5 bits with a hash built from $tableFile. If
// at any point we encounter a letter not in the hash we fail with an
// error.
sub emitNodes($$) {
my ( $nBytesPerOutfile, $outFileBase ) = @_;
// now do the emit.
// is 17 bits enough?
printf STDERR ("There are %d (0x%x) nodes in this DAWG.\n",
0 + @gNodes, 0 + @gNodes );
my $nTiles = 0 + keys(%gTableHash); // blank is not included in this count!
if ( @gNodes > 0x1FFFF || $gForceFour || $nTiles > 32 ) {
$gNBytesPerNode = 4;
} elsif ( $nTiles < 32 ) {
$gNBytesPerNode = 3;
} else {
if ( $gBlankIndex == 32 ) { // blank
print STDERR "blank's at 32; 3-byte-nodes still ok\n";
$gNBytesPerNode = 3;
} else {
die "$0: move blank to last position in info.txt for smaller DAWG";
}
}
my $nextIndex = 0;
my $nextFileNum = 0;
for ( $nextFileNum = 0; ; ++$nextFileNum ) {
if ( $nextIndex >= @gNodes ) {
last; // we're done
}
die "Too many outfiles; infinite loop?" if $nextFileNum > 99;
my $outName = sprintf("${outFileBase}_%03d.bin", $nextFileNum);
open OUTFILE, "> $outName";
binmode( OUTFILE );
my $curSize = 0;
while ( $nextIndex < @gNodes ) {
// scan to find the next terminal
my $i;
for ( $i = $nextIndex;
!TrieNodeGetIsLastSibling($gNodes[$i]);
++$i ) {
// do nothing but a sanity check
if ( $i >= @gNodes) {
die "bad trie format: last node not last sibling" ;
}
}
++$i; // move beyond the terminal
my $nextSize = ($i - $nextIndex) * $gNBytesPerNode;
if ($curSize + $nextSize > $nBytesPerOutfile) {
last;
} else {
// emit the subarray
while ( $nextIndex < $i ) {
outputNode( $gNodes[$nextIndex], $gNBytesPerNode,
\*OUTFILE );
++$nextIndex;
}
$curSize += $nextSize;
}
}
close OUTFILE;
}
} // emitNodes
sub printWord {
my ( $str ) = @_;
print STDERR "$str\n";
}
// print out the entire dictionary, as text, to STDERR.
sub printOneLevel {
my ( $index, $str ) = @_;
for ( ; ; ) {
my $newStr = $str;
my $node = $gNodes[$index++];
my $lindx = $gRevMap[TrieNodeGetLetter($node)];
if ( ord($lindx) >= 0x20 ) {
$newStr .= "$lindx";
} else {
print STDERR "sub space" if $debug;
$newStr .= "\\" . chr('0'+$lindx);
}
if ( TrieNodeGetIsTerminal($node) ) {
printWord( $newStr );
}
my $fco = TrieNodeGetFirstChildOffset( $node );
if ( $fco != 0 ) {
printOneLevel( $fco, $newStr );
}
if ( TrieNodeGetIsLastSibling($node) ) {
last;
}
}
}
sub outputNode ($$$) {
my ( $node, $nBytes, $outfile ) = @_;
my $fco = TrieNodeGetFirstChildOffset($node);
my $fourthByte;
if ( $nBytes == 4 ) {
$fourthByte = $fco >> 16;
die "$0: fco too big" if $fourthByte > 0xFF;
$fco &= 0xFFFF;
}
// Formats are different depending on whether it's to have 3- or
// 4-byte nodes.
// Here's what the three-byte node looks like. 16 bits plus one
// burried in the last byte for the next node address, five for a
// character/tile and one each for accepting and last-edge.
// 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
// |-------- 16 bits of next node address -------| | | | |-tile indx-|
// | | |
// accepting bit ---+ | |
// last edge bit ------+ |
// ---- last bit (17th on next node addr)---------+
// The four-byte format adds a byte at the right end for
// addressing, but removes the extra bit (5) in order to let the
// chars field be six bits. Bits 7 and 6 remain the same.
// write the fco (less that one bit). We want two bytes worth
// in three-byte mode, and three in four-byte mode
// first two bytes are low-word of fco, regardless of format
for ( my $i = 1; $i >= 0; --$i ) {
my $tmp = ($fco >> ($i * 8)) & 0xFF;
print $outfile pack( "C", $tmp );
}
$fco >>= 16; // it should now be 1 or 0
die "fco not 1 or 0" if $fco > 1;
my $chIn5 = TrieNodeGetLetter($node);
my $bits = $chIn5;
die "$0: char $bits too big" if $bits > 0x1F && $nBytes == 3;
if ( TrieNodeGetIsLastSibling($node) ) {
$bits |= 0x40;
}
if ( TrieNodeGetIsTerminal($node) ) {
$bits |= 0x80;
}
// We set the 17th next-node bit only in 3-byte case (where char is
// 5 bits)
if ( $nBytes == 3 && $fco != 0 ) {
$bits |= 0x20;
}
print $outfile pack( "C", $bits );
// the final byte, if in use
if ( $nBytes == 4 ) {
print $outfile pack( "C", $fourthByte );
}
} // outputNode
#endif
static void
usage( const char* name )
{
fprintf( stderr, "usage: %s \n"
"\t[-b bytesPerFile] (default = 0xFFFFFFFF)\n"
"\t-m mapFile\n"
"\t-mn mapFile (unicode)\n"
"\t-ob outFileBase\n"
"\t-sn start node out file\n"
"\t[-if input file name] -- default = stdin\n"
"\t[-term ch] (word terminator -- default = '\\0'\n"
"\t[-nosort] (input already sorted in accord with -m; "
" default=sort'\n"
"\t[-dump] (write dictionary as text to STDERR for testing)\n"
"\t[-debug] (turn on verbose output)\n"
"\t[-force4](use 4 bytes per node regardless of need)\n"
"\t[-r] (reject words with letters not in mapfile)\n"
"\t[-k] (kill if any letters not in mapfile -- default)\n",
name
);
} // usage
static void
error_exit( const char* fmt, ... )
{
va_list ap;
va_start( ap, fmt );
vfprintf( stderr, fmt, ap );
va_end( ap );
exit( 1 );
}
static char
parsechar( const char* in )
{
char result = *in++;
if ( '\\' == result ) {
switch ( *in ) {
case 'n':
result = '\n';
break;
case '0':
result = '\0';
break;
default:
assert(0);
break;
}
}
return result;
}
static char*
parseARGV( int argc, char** argv )
{
int index = 1;
while ( index < argc ) {
char* arg = argv[index++];
if ( 0 == strcmp( arg, "-b" ) ) {
gNBytesPerOutfile = atol( argv[index++] );
} else if ( 0 == strcmp( arg, "-mn" ) ) {
gTableFile = argv[index++];
gUseUnicode = true;
} else if ( 0 == strcmp( arg, "-m" ) ) {
gTableFile = argv[index++];
} else if ( 0 == strcmp( arg, "-ob" ) ) {
gOutFileBase = argv[index++];
} else if ( 0 == strcmp( arg, "-sn" ) ) {
gStartNodeOut = argv[index++];
} else if ( 0 == strcmp( arg, "-if" ) ) {
gInFileName = argv[index++];
} else if ( 0 == strcmp( arg, "-r" ) ) {
gKillIfMissing = false;
} else if ( 0 == strcmp( arg, "-k" ) ) {
gKillIfMissing = true;
} else if ( 0 == strcmp( arg, "-term" ) ) {
gTermChar = parsechar(argv[index++]);
} else if ( 0 == strcmp( arg, "-dump" ) ) {
gDumpText = true;
} else if ( 0 == strcmp( arg, "-nosort" ) ) {
gNeedsSort = false;
} else if ( 0 == strcmp( arg, "-wc" ) ) {
gCountFile = argv[index++];
} else if ( 0 == strcmp( arg, "-ns" ) ) {
gBytesPerNodeFile = argv[index++];
} else if ( 0 == strcmp( arg, "-force4" ) ) {
gForceFour = true;
} else if ( 0 == strcmp( arg, "-debug" ) ) {
gDebug = true;
} else {
error_exit( "unexpected arg %s", arg );
}
}
if ( gDebug ) {
fprintf( stderr, "gNBytesPerOutfile=$gNBytesPerOutfile\n" );
fprintf( stderr, "gTableFile=$gTableFile\n" );
fprintf( stderr, "gOutFileBase=$gOutFileBase\n" );
fprintf( stderr, "gStartNodeOut=$gStartNodeOut\n" );
fprintf( stderr, "gTermChar=%c(%d)\n", gTermChar, (int)gTermChar );
}
return gTableFile;
} // parseARGV