xwords/xwords4/relay/udpqueue.cpp

201 lines
6.2 KiB
C++
Raw Normal View History

/* -*- compile-command: "make -k -j3"; -*- */
/*
* Copyright 2010-2012 by Eric House (xwords@eehouse.org). All rights
* reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include <errno.h>
#include "udpqueue.h"
#include "mlock.h"
static UdpQueue* s_instance = NULL;
void
UdpThreadClosure::logStats()
{
time_t now = time( NULL );
if ( 1 < now - m_created ) {
logf( XW_LOGERROR, "packet waited %d s for processing which then took %d s",
m_dequed - m_created, now - m_dequed );
}
}
UdpQueue::UdpQueue()
{
m_nextID = 0;
pthread_mutex_init ( &m_queueMutex, NULL );
pthread_cond_init( &m_queueCondVar, NULL );
pthread_t thread;
int result = pthread_create( &thread, NULL, thread_main_static, this );
assert( result == 0 );
result = pthread_detach( thread );
assert( result == 0 );
}
UdpQueue::~UdpQueue()
{
pthread_cond_destroy( &m_queueCondVar );
pthread_mutex_destroy ( &m_queueMutex );
}
UdpQueue*
UdpQueue::get()
{
if ( s_instance == NULL ) {
s_instance = new UdpQueue();
}
return s_instance;
}
bool
UdpQueue::handle( const AddrInfo* addr, QueueCallback cb )
{
bool success = false;
int sock = addr->socket();
unsigned short msgLen;
ssize_t nRead = recv( sock, &msgLen, sizeof(msgLen), MSG_WAITALL );
if ( 0 == nRead ) {
logf( XW_LOGINFO, "%s: recv(sock=%d) => 0: remote closed", __func__, sock );
} else if ( nRead != sizeof(msgLen) ) {
logf( XW_LOGERROR, "%s: first recv => %d: %s", __func__,
nRead, strerror(errno) );
} else {
msgLen = ntohs( msgLen );
if ( MAX_MSG_LEN <= msgLen ) {
logf( XW_LOGERROR, "%s: message of len %d too large; dropping", __func__, msgLen );
} else {
unsigned char buf[msgLen];
nRead = recv( sock, buf, msgLen, MSG_WAITALL );
if ( nRead == msgLen ) {
logf( XW_LOGINFO, "%s: read %d bytes on socket %d", __func__, nRead, sock );
handle( addr, buf, msgLen, cb );
success = true;
} else {
logf( XW_LOGERROR, "%s: second recv failed: %s", __func__,
strerror(errno) );
}
}
}
return success;
}
void
UdpQueue::handle( const AddrInfo* addr, unsigned char* buf, int len,
QueueCallback cb )
{
UdpThreadClosure* utc = new UdpThreadClosure( addr, buf, len, cb );
MutexLock ml( &m_queueMutex );
int id = ++m_nextID;
utc->setID( id );
logf( XW_LOGINFO, "%s: enqueuing packet %d", __func__, id );
m_queue.push_back( utc );
int sock = addr->socket();
map<int, vector<UdpThreadClosure*> >::iterator iter = m_bySocket.find( sock );
if ( iter == m_bySocket.end() ) {
logf( XW_LOGINFO, "%s: creating vector for socket %d", __func__, sock );
vector<UdpThreadClosure*> vect;
vect.push_back( utc );
m_bySocket.insert( pair<int, vector<UdpThreadClosure*> >(sock, vect) );
} else {
iter->second.push_back( utc );
logf( XW_LOGINFO, "%s: now have %d packets for socket %d",
__func__, iter->second.size(), sock );
}
pthread_cond_signal( &m_queueCondVar );
}
void
UdpQueue::forgetSocket( const AddrInfo* addr )
{
assert( addr->isTCP() );
int sock = addr->socket();
MutexLock ml( &m_queueMutex );
map<int, vector<UdpThreadClosure*> >::iterator iter = m_bySocket.find( sock );
if ( m_bySocket.end() != iter ) {
vector<UdpThreadClosure*>& vect = iter->second;
vector<UdpThreadClosure*>::iterator iter2;
for ( iter2 = vect.begin(); vect.end() != iter2; ++ iter2 ) {
UdpThreadClosure* utc = *iter2;
assert( -1 != utc->addr()->socket() );
utc->invalSocket();
logf( XW_LOGINFO, "%s: invalidating socket %d in packet %d",
__func__, sock, utc->getID() );
// vect.erase( iter2 );
}
vect.clear();
}
// deque<UdpThreadClosure*>::iterator iter;
// for ( iter = m_queue.begin(); iter != m_queue.end(); ++iter ) {
// const AddrInfo* addr = (*iter)->addr();
// if ( sock == addr->socket() ) {
// logf( XW_LOGINFO, "%s: invalidating socket %d in packet %d",
// __func__, sock, (*iter)->getID() );
// (*iter)->invalSocket();
// }
// }
}
void*
UdpQueue::thread_main()
{
for ( ; ; ) {
pthread_mutex_lock( &m_queueMutex );
while ( m_queue.size() == 0 ) {
pthread_cond_wait( &m_queueCondVar, &m_queueMutex );
}
UdpThreadClosure* utc = m_queue.front();
m_queue.pop_front();
int sock = utc->addr()->socket();
if ( -1 != sock ) {
map<int, vector<UdpThreadClosure*> >::iterator iter = m_bySocket.find( sock );
assert ( iter != m_bySocket.end() );
vector<UdpThreadClosure*>& vect = iter->second;
assert( utc == *vect.begin() );
vect.erase( vect.begin() );
logf( XW_LOGINFO, "%s: %d packets remaining for socket %d",
__func__, vect.size(), sock );
}
pthread_mutex_unlock( &m_queueMutex );
utc->noteDequeued();
logf( XW_LOGINFO, "%s: dispatching packet %d", __func__, utc->getID() );
(*utc->cb())( utc );
utc->logStats();
delete utc;
}
return NULL;
}
/* static */ void*
UdpQueue::thread_main_static( void* closure )
{
blockSignals();
UdpQueue* me = (UdpQueue*)closure;
return me->thread_main();
}