xwords/xwords4/dawg/dict2dawg.cpp

1320 lines
39 KiB
C++
Raw Normal View History

/* -*- compile-command: "g++ -DDEBUG -O0 -Wall -g -o dict2dawg dict2dawg.cpp"; -*- */
/*************************************************************************
* adapted from perl code that was itself adapted from C++ code
* Copyright (C) 2000 Falk Hueffner
* This version Copyright (C) 2002,2006-2009 Eric House
* (xwords@eehouse.org)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
* USA
**************************************************************************
* inputs: 0. Name of file mapping letters to 0..31 values. In English
* case just contains A..Z. This will be used to translate the tries
* on output.
* 1. Max number of bytes per binary output file.
*
* 2. Basename of binary files for output.
* 3. Name of file to which to write the number of the
* startNode, since I'm not rewriting a bunch of code to expect Falk's
* '*' node at the start.
*
* In STDIN, the text file to be compressed. It absolutely
* must be sorted. The sort doesn't have to follow the order in the
* map file, however.
* This is meant eventually to be runnable as part of a cgi system for
* letting users generate Crosswords dicts online.
**************************************************************************/
#include <stdio.h>
#include <stdarg.h>
#include <stdlib.h>
#include <string.h>
#include <netinet/in.h>
#include <assert.h>
#include <errno.h>
#include <algorithm>
#include <string>
#include <map>
#include <vector>
#include <list>
typedef unsigned char Letter; // range 1..26 for English, always < 64
typedef unsigned int Node;
typedef std::vector<Node> NodeList;
typedef std::vector<Letter*> WordList;
#define VERSION_STR "$Rev$"
#define MAX_WORD_LEN 15
#define T2ABUFLEN(s) (((s)*4)+3)
int gFirstDiff;
static Letter gCurrentWordBuf[MAX_WORD_LEN+1] = { '\0' };
// this will never change for non-sort case
static Letter* gCurrentWord = gCurrentWordBuf;
static int gCurrentWordLen;
static bool gDone = false;
static unsigned int gNextWordIndex;
static void (*gReadWordProc)(void) = NULL;
static NodeList gNodes; // final array of nodes
static unsigned int gNBytesPerOutfile = 0xFFFFFFFF;
static char* gTableFile = NULL;
static bool gIsMultibyte = true; // always true
static const char* gEncoding = NULL;
static char* gOutFileBase = NULL;
static char* gStartNodeOut = NULL;
static FILE* gInFile = NULL;
static bool gKillIfMissing = true;
static char gTermChar = '\n';
static bool gDumpText = false; // dump the dict as text after?
static char* gCountFile = NULL;
static const char* gLang = NULL;
static char* gBytesPerNodeFile = NULL; // where to write whether node
// size 3 or 4
int gWordCount = 0;
std::map<wchar_t,Letter> gTableHash;
int gBlankIndex;
std::vector<wchar_t> gRevMap;
#ifdef DEBUG
bool gDebug = false;
#endif
std::map<NodeList, int> gSubsHash;
bool gForceFour = false; // use four bytes regardless of need?
static int gFileSize = 0;
int gNBytesPerNode;
bool gUseUnicode;
int gLimLow = 2;
int gLimHigh = MAX_WORD_LEN;
// OWL is 1.7M
#define MAX_POOL_SIZE (10 * 0x100000 * sizeof(wchar_t))
#define ERROR_EXIT(...) error_exit( __LINE__, __VA_ARGS__ );
#define VSIZE(a) (sizeof(a)/sizeof(a[0]))
static char* parseARGV( int argc, char** argv, const char** inFileName );
static void usage( const char* name );
static void error_exit( int line, const char* fmt, ... );
static void makeTableHash( void );
static void printTableHash( void );
static WordList* parseAndSort( void );
static void printWords( WordList* strings );
static bool firstBeforeSecond( const Letter* lhs, const Letter* rhs );
static wchar_t* tilesToText( wchar_t* out, int outLen, const Letter* in );
static int buildNode( int depth );
static void TrieNodeSetIsLastSibling( Node* nodeR, bool isLastSibling );
static int addNodes( NodeList& newedgesR );
static void TrieNodeSetIsTerminal( Node* nodeR, bool isTerminal );
static bool TrieNodeGetIsTerminal( Node node );
static void TrieNodeSetIsLastSibling( Node* nodeR, bool isLastSibling );
static bool TrieNodeGetIsLastSibling( Node node );
static void TrieNodeSetLetter( Node* nodeR, Letter letter );
static Letter TrieNodeGetLetter( Node node );
static void TrieNodeSetFirstChildOffset( Node* nodeR, int fco );
static int TrieNodeGetFirstChildOffset( Node node );
static int findSubArray( NodeList& newedgesR );
static void registerSubArray( NodeList& edgesR, int nodeLoc );
static Node MakeTrieNode( Letter letter, bool isTerminal,
int firstChildOffset, bool isLastSibling );
static void printNodes( NodeList& nodesR );
static void printNode( int index, Node node );
static void moveTopToFront( int* firstRef );
static void writeOutStartNode( const char* startNodeOut,
int firstRootChildOffset );
static void emitNodes( unsigned int nBytesPerOutfile, const char* outFileBase );
static void outputNode( Node node, int nBytes, FILE* outfile );
static void printOneLevel( int index, char* str, int curlen );
static void readFromSortedArray( void );
int
main( int argc, char** argv )
{
gReadWordProc = readFromSortedArray;
const char* inFileName;
if ( NULL == parseARGV( argc, argv, &inFileName ) ) {
usage(argv[0]);
exit(1);
}
try_english:
char buf[32];
const char* locale = "";
if ( !!gLang && !!gEncoding ) {
snprintf( buf, sizeof(buf), "%s.%s", gLang, gEncoding );
locale = buf;
}
char* oldloc = setlocale( LC_ALL, locale );
if ( !oldloc ) {
// special case for spiritone.net, where non-US locale files aren't
// available. Since utf-8 is the same for all locales, we can get by
// with en_US instead
if ( gIsMultibyte && 0 != strcmp( gLang, "en_US" )) {
gLang = "en_US";
goto try_english;
}
ERROR_EXIT( "setlocale(%s) failed, error: %s", locale,
strerror(errno) );
} else {
fprintf( stderr, "old locale: %s\n", oldloc );
}
makeTableHash();
printTableHash();
// Do I need this stupid thing? Better to move the first row to
// the front of the array and patch everything else. Or fix the
// non-palm dictionary format to include the offset of the first
// node.
Node dummyNode = (Node)0xFFFFFFFF;
assert( sizeof(Node) == 4 );
gNodes.push_back(dummyNode);
if ( NULL == inFileName ) {
gInFile = stdin;
} else {
gInFile = fopen( inFileName, "r" );
}
(*gReadWordProc)();
int firstRootChildOffset = buildNode(0);
moveTopToFront( &firstRootChildOffset );
if ( gStartNodeOut ) {
writeOutStartNode( gStartNodeOut, firstRootChildOffset );
}
#ifdef DEBUG
if ( gDebug ) {
fprintf( stderr, "\n... dumping table ...\n" );
printNodes( gNodes );
}
#endif
// write out the number of nodes if requested
if ( gCountFile ) {
FILE* OFILE;
OFILE = fopen( gCountFile, "w" );
unsigned long be = htonl( gWordCount );
fwrite( &be, sizeof(be), 1, OFILE );
fclose( OFILE );
fprintf( stderr, "Wrote %d (word count) to %s\n", gWordCount,
gCountFile );
}
if ( gOutFileBase ) {
emitNodes( gNBytesPerOutfile, gOutFileBase );
}
if ( gDumpText && gNodes.size() > 0 ) {
char buf[(MAX_WORD_LEN*2)+1];
printOneLevel( firstRootChildOffset, buf, 0 );
}
if ( gBytesPerNodeFile ) {
FILE* OFILE = fopen( gBytesPerNodeFile, "w" );
fprintf( OFILE, "%d", gNBytesPerNode );
fclose( OFILE );
}
fprintf( stderr, "Used %d per node.\n", gNBytesPerNode );
if ( NULL != inFileName ) {
fclose( gInFile );
}
} /* main */
// We now have an array of nodes with the last subarray being the
// logical top of the tree. Move them to the start, fixing all fco
// refs, so that legacy code like Palm can assume top==0.
//
// Note: It'd probably be a bit faster to integrate this with emitNodes
// -- unless I need to have an in-memory list that can be used for
// lookups. But that's best for debugging, so keep it this way for now.
//
// Also Note: the first node is a dummy that can and should be tossed
// now.
static void
moveTopToFront( int* firstRef )
{
int firstChild = *firstRef;
*firstRef = 0;
NodeList lastSub;
if ( firstChild > 0 ) {
lastSub.assign( gNodes.begin() + firstChild, gNodes.end() );
gNodes.erase( gNodes.begin() + firstChild, gNodes.end() );
} else if ( gWordCount != 0 ) {
ERROR_EXIT( "there should be no words!!" );
}
// remove the first (garbage) node
gNodes.erase( gNodes.begin() );
int diff;
if ( firstChild > 0 ) {
// -1 because all move down by 1; see prev line
diff = lastSub.size() - 1;
if ( diff < 0 ) {
ERROR_EXIT( "something wrong with lastSub.size()" );
}
} else {
diff = 0;
}
// stick it on the front
gNodes.insert( gNodes.begin(), lastSub.begin(), lastSub.end() );
// We add diff to everything. There's no subtracting because
// nobody had any refs to the top list.
unsigned int ii;
for ( ii = 0; ii < gNodes.size(); ++ii ) {
int fco = TrieNodeGetFirstChildOffset( gNodes[ii] );
if ( fco != 0 ) { // 0 means NONE, not 0th!!
TrieNodeSetFirstChildOffset( &gNodes[ii], fco + diff );
}
}
} // moveTopToFront
static int
buildNode( int depth )
{
if ( gCurrentWordLen == depth ) {
// End of word reached. If the next word isn't a continuation
// of the current one, then we've reached the bottom of the
// recursion tree.
(*gReadWordProc)();
if (gFirstDiff < depth || gDone) {
return 0;
}
}
NodeList newedges;
bool wordEnd;
do {
Letter letter = gCurrentWord[depth];
bool isTerminal = (gCurrentWordLen - 1) == depth;
int nodeOffset = buildNode( depth + 1 );
Node newNode = MakeTrieNode( letter, isTerminal, nodeOffset, false );
wordEnd = (gFirstDiff != depth) || gDone;
if ( wordEnd ) {
TrieNodeSetIsLastSibling( &newNode, true );
}
newedges.push_back( newNode );
} while ( !wordEnd );
return addNodes( newedges );
} // buildNode
static int
addNodes( NodeList& newedgesR )
{
int found = findSubArray( newedgesR );
if ( found == 0 ) {
ERROR_EXIT( "0 is an invalid match!!!" );
}
if ( found < 0 ) {
found = gNodes.size();
#if defined DEBUG && defined SEVERE_DEBUG
if ( gDebug ) {
fprintf( stderr, "adding...\n" );
printNodes( newedgesR );
}
#endif
gNodes.insert( gNodes.end(), newedgesR.begin(), newedgesR.end() );
registerSubArray( newedgesR, found );
}
#ifdef DEBUG
if ( gDebug ) {
2007-12-02 20:13:25 +01:00
fprintf( stderr, "%s => %d\n", __func__, found );
}
#endif
return found;
} // addNodes
static void
printNode( int index, Node node )
{
Letter letter = TrieNodeGetLetter(node);
assert( letter < gRevMap.size() );
fprintf( stderr,
"[%d] letter=%d(%c); isTerminal=%s; isLastSib=%s; fco=%d;\n",
index, letter, gRevMap[letter],
TrieNodeGetIsTerminal(node)?"true":"false",
TrieNodeGetIsLastSibling(node)?"true":"false",
TrieNodeGetFirstChildOffset(node));
} // printNode
static void
printNodes( NodeList& nodesR )
{
unsigned int ii;
for ( ii = 0; ii < nodesR.size(); ++ii ) {
Node node = nodesR[ii];
printNode( ii, node );
}
}
// Hashing. We'll keep a hash of offsets into the existing nodes
// array, and as the key use a string that represents the entire sub
// array. Since the key is what we're matching for, there should never
// be more than one value per hash and so we don't need buckets.
// Return -1 if there's no match.
static int
findSubArray( NodeList& newedgesR )
{
std::map<NodeList, int>::iterator iter = gSubsHash.find( newedgesR );
if ( iter != gSubsHash.end() ) {
return iter->second;
} else {
return -1;
}
} // findSubArray
// add to the hash
static void
registerSubArray( NodeList& edgesR, int nodeLoc )
{
#ifdef DEBUG
std::map<NodeList, int>::iterator iter = gSubsHash.find( edgesR );
if ( iter != gSubsHash.end() ) {
ERROR_EXIT( "entry for key shouldn't exist!!" );
}
#endif
gSubsHash[edgesR] = nodeLoc;
} // registerSubArray
static int
wordlen( const Letter* word )
{
const char* str = (const char*)word;
return strlen( str );
}
static void
readFromSortedArray( void )
{
// The first time we need a new word, we read 'em all in.
static WordList* sInputStrings = NULL; // we'll just let this leak
if ( sInputStrings == NULL ) {
sInputStrings = parseAndSort();
gNextWordIndex = 0;
#ifdef DEBUG
if ( gDebug ) {
printWords( sInputStrings );
}
#endif
}
for ( ; ; ) {
Letter* word = (Letter*)"";
if ( !gDone ) {
gDone = gNextWordIndex == sInputStrings->size();
if ( !gDone ) {
word = sInputStrings->at(gNextWordIndex++);
#ifdef DEBUG
} else if ( gDebug ) {
fprintf( stderr, "gDone set to true\n" );
#endif
}
#ifdef DEBUG
if ( gDebug ) {
wchar_t buf[T2ABUFLEN(MAX_WORD_LEN)];
fprintf( stderr, "%s: got word: %ls\n", __func__,
tilesToText( buf, VSIZE(buf), word ) );
}
#endif
}
int numCommonLetters = 0;
int len = wordlen( word );
if ( gCurrentWordLen < len ) {
len = gCurrentWordLen;
}
while ( gCurrentWord[numCommonLetters] == word[numCommonLetters]
&& numCommonLetters < len ) {
++numCommonLetters;
}
gFirstDiff = numCommonLetters;
if ( (gCurrentWordLen > 0) && (wordlen(word) > 0)
&& !firstBeforeSecond( gCurrentWord, word ) ) {
#ifdef DEBUG
if ( gDebug ) {
wchar_t buf1[T2ABUFLEN(MAX_WORD_LEN)];
wchar_t buf2[T2ABUFLEN(MAX_WORD_LEN)];
fprintf( stderr,
"%s: words %ls and %ls are the same or out of order\n",
__func__,
tilesToText( buf1, VSIZE(buf1), gCurrentWord ),
tilesToText( buf2, VSIZE(buf2), word ) );
}
#endif
continue;
}
gCurrentWord = word;
gCurrentWordLen = wordlen(word);
break;
}
#ifdef DEBUG
if ( gDebug ) {
wchar_t buf[T2ABUFLEN(MAX_WORD_LEN)];
fprintf( stderr, "gCurrentWord now %ls\n",
tilesToText( buf, VSIZE(buf), gCurrentWord) );
}
#endif
} // readFromSortedArray
static wchar_t
getWideChar( FILE* file )
{
wchar_t dest;
char src[4] = { '\0' };
const char* srcp = src;
int ii;
mbstate_t ps = {0};
for ( ii = 0; ; ++ii ) {
int byt = getc( file );
size_t siz;
if ( byt == EOF || byt == gTermChar ) {
assert( 0 == ii );
dest = byt;
break;
} else if ( byt < ' ' && 0 == ii ) {
dest = byt;
break;
}
assert( ii < 4 );
src[ii] = byt;
siz = mbsrtowcs( &dest, &srcp, 1, &ps );
if ( siz == (size_t)-1 ) {
continue;
} else if ( siz == 1 ) {
break;
}
}
// fprintf( stderr, "%s=>%lc\n", __func__, dest );
return dest;
} // getWideChar
static Letter*
readOneWord( Letter* wordBuf, const int bufLen, int* lenp, bool* gotEOF )
{
Letter* result = NULL;
int count = 0;
bool dropWord = false;
// for each byte, append to an internal buffer up to size limit.
// On reaching an end-of-word or EOF, check if the word formed is
// within the length range and contains no unknown chars. If yes,
// return it. If no, start over ONLY IF the terminator was not
// EOF.
for ( ; ; ) {
wchar_t byt = getWideChar( gInFile );
// EOF is special: we don't try for another word even if
// dropWord is true; we must leave now.
if ( byt == EOF || byt == gTermChar ) {
bool isEOF = byt == EOF;
*gotEOF = isEOF;
assert( isEOF || count < bufLen || dropWord );
if ( !dropWord && (count >= gLimLow) && (count <= gLimHigh) ) {
assert( count < bufLen );
wordBuf[count] = '\0';
#ifdef DEBUG
if ( gDebug ) {
wchar_t buf[T2ABUFLEN(count)];
fprintf( stderr, "%s: adding word: %ls\n",
__func__, tilesToText( buf, VSIZE(buf), wordBuf ) );
}
#endif
result = wordBuf;
*lenp = count;
if ( count > 0 ) {
++gWordCount;
}
break;
} else if ( isEOF ) {
assert( !result );
break;
}
#ifdef DEBUG
if ( gDebug ) {
wchar_t buf[T2ABUFLEN(count)];
wordBuf[count] = '\0';
fprintf( stderr, "%s: dropping word (len %d >%d or <%d or "
"dropWord:%d): %ls\n", __func__, count, gLimHigh,
gLimLow, (int)dropWord,
tilesToText( buf, VSIZE(buf), wordBuf ) );
}
#endif
count = 0; // we'll start over
dropWord = false;
} else if ( count >= bufLen ) {
// Just drop it...
assert(0); // Fix this -- but need to warn when out of
// memory!!!
dropWord = true;
// Don't call into the hashtable twice here!!
} else {
std::map<wchar_t,Letter>::iterator iter = gTableHash.find(byt);
if ( iter != gTableHash.end() ) {
assert( count < bufLen );
wordBuf[count++] = iter->second;
if ( count >= bufLen ) {
dropWord = true;
}
} else if ( gKillIfMissing || !dropWord ) {
wchar_t buf[T2ABUFLEN(count)];
wordBuf[count] = '\0';
tilesToText( buf, VSIZE(buf), wordBuf );
if ( gKillIfMissing ) {
ERROR_EXIT( "chr %lc (%d/0x%x) not in map file %s\n"
"last word was %ls\n",
byt, (int)byt, (int)byt, gTableFile, buf );
} else if ( !dropWord ) {
#ifdef DEBUG
if ( gDebug ) {
fprintf( stderr, "%s: chr %lc (%d) not in map file %s\n"
"dropping partial word %ls\n", __func__,
byt, (int)byt, gTableFile, buf );
}
#endif
dropWord = true;
}
}
}
} // for
return result;
} // readOneWord
static void
readFromFile( void )
{
Letter wordBuf[MAX_WORD_LEN+1];
2006-06-28 16:11:46 +02:00
static bool s_eof = false;
Letter* word;
int len;
gDone = s_eof;
// Repeat until we get a new word that's not "out-of-order". When
// we see this the problem isn't failure to sort, it's duplicates.
// So dropping is ok. The alternative would be detecting dupes
// during the sort. This seems easier.
for ( ; ; ) {
if ( !gDone ) {
word = readOneWord( wordBuf, VSIZE(wordBuf), &len, &s_eof );
gDone = NULL == word;
}
if ( gDone ) {
word = (Letter*)"";
len = 0;
}
int numCommonLetters = 0;
if ( gCurrentWordLen < len ) {
len = gCurrentWordLen;
}
while ( gCurrentWord[numCommonLetters] == word[numCommonLetters]
&& numCommonLetters < len ) {
++numCommonLetters;
}
gFirstDiff = numCommonLetters;
if ( (gCurrentWordLen > 0) && (wordlen(word) > 0)
&& !firstBeforeSecond( gCurrentWord, word ) ) {
#ifdef DEBUG
if ( gDebug ) {
wchar_t buf1[T2ABUFLEN(MAX_WORD_LEN)];
wchar_t buf2[T2ABUFLEN(MAX_WORD_LEN)];
fprintf( stderr,
"%s: words %ls and %ls are the smae or out of order\n",
__func__,
tilesToText( buf1, VSIZE(buf1), gCurrentWord ),
tilesToText( buf2, VSIZE(buf2), word ) );
}
#endif
continue;
}
break;
}
gCurrentWordLen = wordlen(word);
strncpy( (char*)gCurrentWordBuf, (char*)word, sizeof(gCurrentWordBuf) );
#ifdef DEBUG
if ( gDebug ) {
wchar_t buf[T2ABUFLEN(MAX_WORD_LEN)];
fprintf( stderr, "gCurrentWord now %ls\n",
tilesToText( buf, VSIZE(buf), gCurrentWord) );
}
#endif
} // readFromFile
static bool
firstBeforeSecond( const Letter* lhs, const Letter* rhs )
{
bool gt = 0 > strcmp( (char*)lhs, (char*)rhs );
return gt;
}
static wchar_t*
tilesToText( wchar_t* out, int outSize, const Letter* in )
{
wchar_t tiles[outSize];
wchar_t* orig = out;
int tilesLen = 0;
tiles[tilesLen++] = L'[';
for ( ; ; ) {
Letter ch = *in++;
if ( '\0' == ch ) {
break;
}
assert( ch < gRevMap.size() );
*out++ = gRevMap[ch];
tilesLen += swprintf( &tiles[tilesLen], outSize-tilesLen, L"%d,", ch );
assert( (out - orig) < outSize );
}
assert( tilesLen+1 < outSize );
tiles[tilesLen] = L']';
tiles[tilesLen+1] = L'\0';
wcscpy( out, tiles );
return orig;
}
static WordList*
parseAndSort( void )
{
WordList* wordlist = new WordList;
// allocate storage for the actual chars. wordlist's char*
// elements will point into this. It'll leak. So what.
int memleft = gFileSize;
if ( memleft == 0 ) {
memleft = MAX_POOL_SIZE;
}
Letter* str = (Letter*)malloc( memleft );
if ( NULL == str ) {
ERROR_EXIT( "can't allocate main string storage" );
}
bool eof = false;
for ( ; ; ) {
int len;
Letter* word = readOneWord( str, memleft, &len, &eof );
if ( NULL == word ) {
break;
}
wordlist->push_back( str );
++len; // include null byte
str += len;
memleft -= len;
if ( eof ) {
break;
}
if ( memleft < 0 ) {
ERROR_EXIT( "no memory left\n" );
}
}
if ( gWordCount > 1 ) {
#ifdef DEBUG
if ( gDebug ) {
fprintf( stderr, "starting sort...\n" );
}
#endif
std::sort( wordlist->begin(), wordlist->end(), firstBeforeSecond );
#ifdef DEBUG
if ( gDebug ) {
fprintf( stderr, "sort finished\n" );
}
#endif
}
return wordlist;
} // parseAndSort
static void
printWords( WordList* strings )
{
std::vector<Letter*>::iterator iter = strings->begin();
while ( iter != strings->end() ) {
wchar_t buf[T2ABUFLEN(MAX_WORD_LEN)];
tilesToText( buf, VSIZE(buf), *iter );
fprintf( stderr, "%ls\n", buf );
++iter;
}
}
/*****************************************************************************
* Little node-field setters and getters to hide what bits represent
* what.
* high bit (31) is ACCEPTING bit
* next bit (30) is LAST_SIBLING bit
* next 6 bits (29-24) are tile bit (allowing alphabets of 64 letters)
* final 24 bits (23-0) are the index of the first child (fco)
******************************************************************************/
static void
TrieNodeSetIsTerminal( Node* nodeR, bool isTerminal )
{
if ( isTerminal ) {
*nodeR |= (1 << 31);
} else {
*nodeR &= ~(1 << 31);
}
}
static bool
TrieNodeGetIsTerminal( Node node )
{
return (node & (1 << 31)) != 0;
}
static void
TrieNodeSetIsLastSibling( Node* nodeR, bool isLastSibling )
{
if ( isLastSibling ) {
*nodeR |= (1 << 30);
} else {
*nodeR &= ~(1 << 30);
}
}
static bool
TrieNodeGetIsLastSibling( Node node )
{
return (node & (1 << 30)) != 0;
}
static void
TrieNodeSetLetter( Node* nodeR, Letter letter )
{
if ( letter >= 64 ) {
ERROR_EXIT( "letter %d too big", letter );
}
int mask = ~(0x3F << 24);
*nodeR &= mask; // clear all the bits
*nodeR |= (letter << 24); // set new ones
}
static Letter
TrieNodeGetLetter( Node node )
{
node >>= 24;
node &= 0x3F; // is 3f ok for 3-byte case???
return node;
}
static void
TrieNodeSetFirstChildOffset( Node* nodeR, int fco )
{
if ( (fco & 0xFF000000) != 0 ) {
ERROR_EXIT( "%x larger than 24 bits", fco );
}
int mask = ~0x00FFFFFF;
*nodeR &= mask; // clear all the bits
*nodeR |= fco; // set new ones
}
static int
TrieNodeGetFirstChildOffset( Node node )
{
node &= 0x00FFFFFF; // 24 bits
return node;
}
static Node
MakeTrieNode( Letter letter, bool isTerminal, int firstChildOffset,
bool isLastSibling )
{
Node result = 0;
TrieNodeSetIsTerminal( &result, isTerminal );
TrieNodeSetIsLastSibling( &result, isLastSibling );
TrieNodeSetLetter( &result, letter );
TrieNodeSetFirstChildOffset( &result, firstChildOffset );
return result;
} // MakeTrieNode
// Caller may need to know the offset of the first top-level node.
// Write it here.
static void
writeOutStartNode( const char* startNodeOut, int firstRootChildOffset )
{
FILE* nodeout;
nodeout = fopen( startNodeOut, "w" );
unsigned long be = htonl( firstRootChildOffset );
(void)fwrite( &be, sizeof(be), 1, nodeout );
fclose( nodeout );
} // writeOutStartNode
// build the hash for translating. I'm using a hash assuming it'll be fast.
// Key is the letter; value is the 0..31 value to be output. Note that input
// may be in the format "A a" rather than just "A"
static void
makeTableHash( void )
{
int ii;
FILE* TABLEFILE = fopen( gTableFile, "r" );
if ( NULL == TABLEFILE ) {
ERROR_EXIT( "unable to open %s\n", gTableFile );
}
// Fill the 0th space since references are one-based
gRevMap.push_back(0);
for ( ii = 0; ; ) {
wchar_t ch = getWideChar( TABLEFILE );
if ( EOF == ch ) {
break;
}
if ( ' ' == ch ) {
// discard a synonym
(void)getWideChar( TABLEFILE );
continue;
}
fprintf( stderr, "adding %lc/%x\n", ch, ch );
gRevMap.push_back(ch);
if ( ch == 0 ) { // blank
// we want to increment i when blank seen since it is a
// tile value
gBlankIndex = ii++;
continue;
}
// die "$0: $gTableFile too large\n"
assert( ii < 64 );
// die "$0: only blank (0) can be 64th char\n" ;
assert( ii < 64 || ch == 0 );
// Add 1 to i so no tile-strings contain 0 and we can treat as
// null-terminated. The 1 is subtracted again in
// outputNode().
gTableHash[ch] = ++ii;
}
fclose( TABLEFILE );
} // makeTableHash
static void
printTableHash( void )
{
2013-10-10 06:02:15 +02:00
#ifdef DEBUG
if ( gDebug ) {
std::vector<wchar_t>::iterator iter = gRevMap.begin();
int count = 0; // 0th entry is 0
while ( iter != gRevMap.end() ) {
wchar_t ch = *iter;
if ( 0 != ch ) {
fprintf( stderr, "%s: gRevMap[%d]: %lc\n", __func__, count, ch );
fprintf( stderr, "%s: gTableHash[%lc]: %d\n", __func__, ch,
gTableHash[ch] );
assert( gTableHash[ch] == count );
}
++iter;
++count;
}
}
2013-10-10 06:02:15 +02:00
#endif
}
// emitNodes. "input" is $gNodes. From it we write up to
// $nBytesPerOutfile to files named $outFileBase0..n, mapping the
// letter field down to 5 bits with a hash built from $tableFile. If
// at any point we encounter a letter not in the hash we fail with an
// error.
static void
emitNodes( unsigned int nBytesPerOutfile, const char* outFileBase )
{
// now do the emit.
// is 17 bits enough?
fprintf( stderr, "There are %d (0x%x) nodes in this DAWG.\n",
gNodes.size(), gNodes.size() );
int nTiles = gTableHash.size(); // blank is not included in this count!
if ( gNodes.size() > 0x1FFFF || gForceFour || nTiles > 32 ) {
gNBytesPerNode = 4;
} else if ( nTiles < 32 ) {
gNBytesPerNode = 3;
} else {
if ( gBlankIndex == 32 ) { // blank
gNBytesPerNode = 3;
} else {
ERROR_EXIT( "move blank to last position in info.txt "
"for smaller DAWG." );
}
}
unsigned int nextIndex = 0;
int nextFileNum;
for ( nextFileNum = 0; ; ++nextFileNum ) {
if ( nextIndex >= gNodes.size() ) {
break; // we're done
}
if ( nextFileNum > 99 ) {
ERROR_EXIT( "Too many outfiles; infinite loop?" );
}
char outName[256];
snprintf( outName, sizeof(outName), "%s_%03d.bin",
outFileBase, nextFileNum);
FILE* OUTFILE = fopen( outName, "w" );
assert( OUTFILE );
unsigned int curSize = 0;
while ( nextIndex < gNodes.size() ) {
// scan to find the next terminal
unsigned int ii;
for ( ii = nextIndex; !TrieNodeGetIsLastSibling(gNodes[ii]); ++ii ) {
// do nothing but a sanity check
if ( ii >= gNodes.size() ) {
ERROR_EXIT( "bad trie format: last node not last sibling" );
}
}
++ii; // move beyond the terminal
int nextSize = (ii - nextIndex) * gNBytesPerNode;
if (curSize + nextSize > nBytesPerOutfile ) {
break;
} else {
// emit the subarray
while ( nextIndex < ii ) {
outputNode( gNodes[nextIndex], gNBytesPerNode, OUTFILE );
++nextIndex;
}
curSize += nextSize;
}
}
fclose( OUTFILE );
}
} // emitNodes
// print out the entire dictionary, as text, to STDERR.
static void
printOneLevel( int index, char* str, int curlen )
{
int inlen = curlen;
for ( ; ; ) {
Node node = gNodes[index++];
assert( TrieNodeGetLetter(node) < gRevMap.size() );
char lindx = gRevMap[TrieNodeGetLetter(node)];
if ( (int)lindx >= 0x20 ) {
str[curlen++] = lindx;
} else {
#ifdef DEBUG
if ( gDebug ) {
fprintf( stderr, "sub space\n" );
}
#endif
str[curlen++] = '\\';
str[curlen++] = '0' + lindx;
}
str[curlen] = '\0';
if ( TrieNodeGetIsTerminal(node) ) {
fprintf( stderr, "%s\n", str );
}
int fco = TrieNodeGetFirstChildOffset( node );
if ( fco != 0 ) {
printOneLevel( fco, str, curlen );
}
if ( TrieNodeGetIsLastSibling(node) ) {
break;
}
curlen = inlen;
}
str[inlen] = '\0';
}
static void
outputNode( Node node, int nBytes, FILE* outfile )
{
unsigned int fco = TrieNodeGetFirstChildOffset(node);
unsigned int fourthByte = 0;
assert( ((3 == nBytes) && (fco < (1<<17)))
|| ((4 == nBytes) && (fco < (1<<24))) );
if ( nBytes == 4 ) {
fourthByte = fco >> 16;
if ( fourthByte > 0xFF ) {
ERROR_EXIT( "fco too big" );
}
fco &= 0xFFFF;
}
// Formats are different depending on whether it's to have 3- or
// 4-byte nodes.
// Here's what the three-byte node looks like. 16 bits plus one
// burried in the last byte for the next node address, five for a
// character/tile and one each for accepting and last-edge.
// 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
// |-------- 16 bits of next node address -------| | | | |-tile indx-|
// | | |
// accepting bit ---+ | |
// last edge bit ------+ |
// ---- last bit (17th of next node addr)---------+
// The four-byte format adds a byte at the right end for
// addressing, but removes the extra bit (5) in order to let the
// chars field be six bits. Bits 7 and 6 remain the same.
// write the fco (less that one bit). We want two bytes worth
// in three-byte mode, and three in four-byte mode
// first two bytes are low-word of fco, regardless of format
for ( int i = 1; i >= 0; --i ) {
unsigned char tmp = (fco >> (i * 8)) & 0xFF;
fwrite( &tmp, 1, 1, outfile );
}
fco >>= 16; // it should now be 1 or 0
if ( fco > 1 ) {
ERROR_EXIT( "fco not 1 or 0" );
}
// - 1 below reverses + 1 in makeTableHash()
unsigned char chIn5 = TrieNodeGetLetter(node) - 1;
unsigned char bits = chIn5;
if ( bits > 0x1F && nBytes == 3 ) {
ERROR_EXIT( "char %d too big", bits );
}
if ( TrieNodeGetIsLastSibling(node) ) {
bits |= 0x40;
}
if ( TrieNodeGetIsTerminal(node) ) {
bits |= 0x80;
}
// We set the 17th next-node bit only in 3-byte case (where char is
// 5 bits)
if ( nBytes == 3 && fco != 0 ) {
bits |= 0x20;
}
fwrite( &bits, 1, 1, outfile );
// the final byte, if in use
if ( nBytes == 4 ) {
unsigned char tmp = (unsigned char)fourthByte;
fwrite( &tmp, 1, 1, outfile );
}
} // outputNode
static void
usage( const char* name )
{
fprintf( stderr, "usage: %s \n"
"\t[-v] # print version and exit\n"
"\t[-poolsize] # print hardcoded size of pool and exit\n"
"\t[-b bytesPerFile]# for Palm only (default = 0xFFFFFFFF)\n"
"\t[-min <0<=num<=15># min length word to keep\n"
"\t[-max <0<=num<=15># max length word to keep\n"
"\t-m mapFile\n"
"\t-mn mapFile # 16 bits per entry\n"
"\t-ob outFileBase\n"
"\t-sn # start node out file\n"
"\t[-if input_file] # default = stdin\n"
"\t[-term ch] # word terminator; default = '\\0'\n"
"\t[-nosort] # input already sorted in accord with -m\n"
"\t # default=sort'\n"
"\t[-dump] # write dictionary as text to STDERR \n"
"\t # for testing\n"
#ifdef DEBUG
"\t[-debug] # turn on verbose output\n"
#endif
"\t[-force4] # always use 4 bytes per node\n"
"\t[-lang lang] # e.g. en_US\n"
"\t[-fsize nBytes] # max buffer [default %d]\n"
"\t[-r] # drop words with letters not in mapfile\n"
"\t[-k] # (default) exit on any letter not in mapfile \n",
name, MAX_POOL_SIZE
);
} // usage
static void
error_exit( int line, const char* fmt, ... )
{
fprintf( stderr, "Error on line %d: ", line );
va_list ap;
va_start( ap, fmt );
vfprintf( stderr, fmt, ap );
va_end( ap );
fprintf( stderr, "\n" );
exit( 1 );
}
static char*
parseARGV( int argc, char** argv, const char** inFileName )
{
*inFileName = NULL;
int index = 1;
const char* enc = NULL;
while ( index < argc ) {
char* arg = argv[index++];
if ( 0 == strcmp( arg, "-v" ) ) {
fprintf( stderr, "%s (Subversion revision %s)\n", argv[0],
VERSION_STR );
exit( 0 );
} else if ( 0 == strcmp( arg, "-poolsize" ) ) {
printf( "%d", MAX_POOL_SIZE );
exit( 0 );
} else if ( 0 == strcmp( arg, "-b" ) ) {
gNBytesPerOutfile = atol( argv[index++] );
} else if ( 0 == strcmp( arg, "-mn" ) ) {
gTableFile = argv[index++];
gUseUnicode = true;
} else if ( 0 == strcmp( arg, "-min" ) ) {
gLimLow = atoi(argv[index++]);
} else if ( 0 == strcmp( arg, "-max" ) ) {
gLimHigh = atoi(argv[index++]);
} else if ( 0 == strcmp( arg, "-m" ) ) {
gTableFile = argv[index++];
} else if ( 0 == strcmp( arg, "-ob" ) ) {
gOutFileBase = argv[index++];
} else if ( 0 == strcmp( arg, "-enc" ) ) {
enc = argv[index++];
} else if ( 0 == strcmp( arg, "-sn" ) ) {
gStartNodeOut = argv[index++];
} else if ( 0 == strcmp( arg, "-if" ) ) {
*inFileName = argv[index++];
} else if ( 0 == strcmp( arg, "-r" ) ) {
gKillIfMissing = false;
} else if ( 0 == strcmp( arg, "-k" ) ) {
gKillIfMissing = true;
} else if ( 0 == strcmp( arg, "-term" ) ) {
gTermChar = (char)atoi(argv[index++]);
} else if ( 0 == strcmp( arg, "-dump" ) ) {
gDumpText = true;
} else if ( 0 == strcmp( arg, "-nosort" ) ) {
gReadWordProc = readFromFile;
} else if ( 0 == strcmp( arg, "-wc" ) ) {
gCountFile = argv[index++];
} else if ( 0 == strcmp( arg, "-ns" ) ) {
gBytesPerNodeFile = argv[index++];
} else if ( 0 == strcmp( arg, "-force4" ) ) {
gForceFour = true;
} else if ( 0 == strcmp( arg, "-fsize" ) ) {
2006-06-28 16:11:46 +02:00
gFileSize = atoi(argv[index++]);
} else if ( 0 == strcmp( arg, "-lang" ) ) {
gLang = argv[index++];
#ifdef DEBUG
} else if ( 0 == strcmp( arg, "-debug" ) ) {
gDebug = true;
#endif
} else {
ERROR_EXIT( "%s: unexpected arg %s", __func__, arg );
}
}
if ( gLimHigh > MAX_WORD_LEN || gLimLow > MAX_WORD_LEN ) {
usage( argv[0] );
exit(1);
}
if ( !!enc ) {
if ( !strcasecmp( enc, "UTF-8" ) ) {
// gIsMultibyte = true;
} else if ( !strcasecmp( enc, "iso-8859-1" ) ) {
// gIsMultibyte = false;
} else if ( !strcasecmp( enc, "iso-latin-1" ) ) {
// gIsMultibyte = false;
} else if ( !strcasecmp( enc, "ISO-8859-2" ) ) {
// gIsMultibyte = false;
} else {
ERROR_EXIT( "%s: unknown encoding %s", __func__, enc );
}
gEncoding = enc;
}
#ifdef DEBUG
if ( gDebug ) {
fprintf( stderr, "gNBytesPerOutfile=%d\n", gNBytesPerOutfile );
fprintf( stderr, "gTableFile=%s\n", gTableFile );
fprintf( stderr, "gOutFileBase=%s\n", gOutFileBase );
fprintf( stderr, "gStartNodeOut=%s\n", gStartNodeOut );
fprintf( stderr, "gTermChar=%c(%d)\n", gTermChar, (int)gTermChar );
fprintf( stderr, "gFileSize=%d\n", gFileSize );
fprintf( stderr, "gLimLow=%d\n", gLimLow );
fprintf( stderr, "gLimHigh=%d\n", gLimHigh );
}
#endif
return gTableFile;
} // parseARGV