[WebAssembly](https://webassembly.org). You can see it in a demo
[here](https://el-tramo.be/waforth/).
It is (almost) entirely written in WebAssembly and Forth, and the compiler generates
WebAssembly code on the fly. The only parts for which it relies on external
(JavaScript) code is the dynamic loader (since WebAssembly [doesn't support JIT
yet](https://webassembly.org/docs/future-features/#platform-independent-just-in-time-jit-compilation)), and the I/O primitives to read and write a character.
The implementation was influenced by [jonesforth](http://git.annexia.org/?p=jonesforth.git;a=summary),
and I shamelessly stole the Forth implementation of some of its high-level words.
WAForth is still just an experiment, and doesn't implement all the ANS standard words yet.
## Install Dependencies
The build uses [Racket](https://racket-lang.org) for processing the WebAssembly code,
the [WebAssembly Binary Toolkit](https://github.com/WebAssembly/wabt) for converting it in binary
format,and [Yarn](https://yarnpkg.com) for managing the dependencies of the shell.
The WAForth core is written as [a single module](https://github.com/remko/waforth/blob/master/src/waforth.wat) in WebAssembly's [text format](https://webassembly.github.io/spec/core/text/index.html). The
text format isn't really meant for writing code in, so it has no facilities like a real assembler
(e.g. constant definitions, macro expansion, ...) However, since the text format uses S-expressions,
you can do some small modifications to make it extensible with Lisp-style macros.
I added some Racket macros to the module definition, and implemented [a mini
calls and indirect calls (see below) to execute words.
### The Compiler
While in compile mode for a word, the compiler generates WebAssembly instructions in
binary format (since there is no assembler infrastructure in the browser). Since WebAssembly
[doesn't support JIT compilation yet](https://webassembly.org/docs/future-features/#platform-independent-just-in-time-jit-compilation), a finished word is bundled into a separate binary WebAssembly module, and
sent to the loader, which dynamically loads it and registers it with a shared
[function table](https://webassembly.github.io/spec/core/valid/modules.html#tables) at the
next offset, which in turn is recorded in the word dictionary.
Because words reside in different modules, all calls to and from the words need to happen as
indirect `call_indirect` calls through the shared function table. This of course introduces
some overhead, although it seems limited.
As WebAssembly doesn't support unstructured jumps, control flow words (`IF/ELSE/THEN`,
`LOOP`, `REPEAT`, ...) can't be implemented in terms of more basic words, unlike in jonesforth.
However, since Forth only requires structured jumps, the compiler can easily be implemented
using the loop and branch instructions available in WebAssembly.
Finally, the compiler adds minimal debug information about the compiled word in
the [name section](https://github.com/WebAssembly/design/blob/master/BinaryEncoding.md#name-section), making it easier for doing some debugging in the browser.
![Debugger view of a compiled word](https://el-tramo.be/blog/waforth/debugger.png "Debugger view of a compiled word")
The loader is a small bit of JavaScript that uses the [WebAssembly JavaScript API](https://webassembly.github.io/spec/js-api/index.html) to dynamically load a compiled word (in the form of a WebAssembly module), and ensuring that the shared function table is large enough for the module to