#include #include #include #include #include "sway/extensions.h" #include "sway/config.h" #include "sway/container.h" #include "sway/workspace.h" #include "sway/focus.h" #include "sway/output.h" #include "sway/ipc-server.h" #include "sway/border.h" #include "sway/layout.h" #include "list.h" #include "log.h" swayc_t root_container; swayc_t *current_focus; list_t *scratchpad; int min_sane_h = 60; int min_sane_w = 100; void init_layout(void) { root_container.id = 0; // normally assigned in new_swayc() root_container.type = C_ROOT; root_container.layout = L_NONE; root_container.name = strdup("root"); root_container.children = create_list(); root_container.handle = -1; root_container.visible = true; current_focus = &root_container; scratchpad = create_list(); } int index_child(const swayc_t *child) { swayc_t *parent = child->parent; int i, len; if (!child->is_floating) { len = parent->children->length; for (i = 0; i < len; ++i) { if (parent->children->items[i] == child) { break; } } } else { len = parent->floating->length; for (i = 0; i < len; ++i) { if (parent->floating->items[i] == child) { break; } } } if (!sway_assert(i < len, "Stray container")) { return -1; } return i; } void add_child(swayc_t *parent, swayc_t *child) { sway_log(L_DEBUG, "Adding %p (%d, %fx%f) to %p (%d, %fx%f)", child, child->type, child->width, child->height, parent, parent->type, parent->width, parent->height); list_add(parent->children, child); child->parent = parent; // set focus for this container if (!parent->focused) { parent->focused = child; } if (parent->type == C_WORKSPACE && child->type == C_VIEW && (parent->workspace_layout == L_TABBED || parent->workspace_layout == L_STACKED)) { child = new_container(child, parent->workspace_layout); } } void insert_child(swayc_t *parent, swayc_t *child, int index) { if (index > parent->children->length) { index = parent->children->length; } if (index < 0) { index = 0; } list_insert(parent->children, index, child); child->parent = parent; if (!parent->focused) { parent->focused = child; } if (parent->type == C_WORKSPACE && child->type == C_VIEW && (parent->workspace_layout == L_TABBED || parent->workspace_layout == L_STACKED)) { child = new_container(child, parent->workspace_layout); } } void add_floating(swayc_t *ws, swayc_t *child) { sway_log(L_DEBUG, "Adding %p (%d, %fx%f) to %p (%d, %fx%f)", child, child->type, child->width, child->height, ws, ws->type, ws->width, ws->height); if (!sway_assert(ws->type == C_WORKSPACE, "Must be of workspace type")) { return; } list_add(ws->floating, child); child->parent = ws; child->is_floating = true; if (!ws->focused) { ws->focused = child; } ipc_event_window(child, "floating"); } swayc_t *add_sibling(swayc_t *fixed, swayc_t *active) { swayc_t *parent = fixed->parent; if (fixed->is_floating) { if (active->is_floating) { int i = index_child(fixed); list_insert(parent->floating, i + 1, active); } else { list_add(parent->children, active); } } else { if (active->is_floating) { list_add(parent->floating, active); } else { int i = index_child(fixed); if (is_auto_layout(parent->layout)) { list_add(parent->children, active); } else { list_insert(parent->children, i + 1, active); } } } active->parent = parent; // focus new child parent->focused = active; return active->parent; } swayc_t *replace_child(swayc_t *child, swayc_t *new_child) { swayc_t *parent = child->parent; if (parent == NULL) { return NULL; } int i = index_child(child); if (child->is_floating) { parent->floating->items[i] = new_child; } else { parent->children->items[i] = new_child; } // Set parent and focus for new_child new_child->parent = child->parent; if (child->parent->focused == child) { child->parent->focused = new_child; } child->parent = NULL; // Set geometry for new child new_child->x = child->x; new_child->y = child->y; new_child->width = child->width; new_child->height = child->height; // reset geometry for child child->width = 0; child->height = 0; // deactivate child if (child->type == C_VIEW) { wlc_view_set_state(child->handle, WLC_BIT_ACTIVATED, false); } return parent; } swayc_t *remove_child(swayc_t *child) { int i; swayc_t *parent = child->parent; if (child->is_floating) { // Special case for floating views for (i = 0; i < parent->floating->length; ++i) { if (parent->floating->items[i] == child) { list_del(parent->floating, i); break; } } i = 0; } else { for (i = 0; i < parent->children->length; ++i) { if (parent->children->items[i] == child) { list_del(parent->children, i); break; } } } // Set focused to new container if (parent->focused == child) { if (parent->children->length > 0) { parent->focused = parent->children->items[i ? i-1:0]; } else if (parent->floating && parent->floating->length) { parent->focused = parent->floating->items[parent->floating->length - 1]; } else { parent->focused = NULL; } } child->parent = NULL; // deactivate view if (child->type == C_VIEW) { wlc_view_set_state(child->handle, WLC_BIT_ACTIVATED, false); } return parent; } void swap_container(swayc_t *a, swayc_t *b) { if (!sway_assert(a&&b, "parameters must be non null") || !sway_assert(a->parent && b->parent, "containers must have parents")) { return; } size_t a_index = index_child(a); size_t b_index = index_child(b); swayc_t *a_parent = a->parent; swayc_t *b_parent = b->parent; // Swap the pointers if (a->is_floating) { a_parent->floating->items[a_index] = b; } else { a_parent->children->items[a_index] = b; } if (b->is_floating) { b_parent->floating->items[b_index] = a; } else { b_parent->children->items[b_index] = a; } a->parent = b_parent; b->parent = a_parent; if (a_parent->focused == a) { a_parent->focused = b; } // don't want to double switch if (b_parent->focused == b && a_parent != b_parent) { b_parent->focused = a; } } void swap_geometry(swayc_t *a, swayc_t *b) { double x = a->x; double y = a->y; double w = a->width; double h = a->height; a->x = b->x; a->y = b->y; a->width = b->width; a->height = b->height; b->x = x; b->y = y; b->width = w; b->height = h; } void move_container(swayc_t *container, enum movement_direction dir) { enum swayc_layouts layout = L_NONE; swayc_t *parent = container->parent; if (container->is_floating || (container->type != C_VIEW && container->type != C_CONTAINER)) { return; } if (dir == MOVE_UP || dir == MOVE_DOWN) { layout = L_VERT; } else if (dir == MOVE_LEFT || dir == MOVE_RIGHT) { layout = L_HORIZ; } else if (dir == MOVE_FIRST) { // swap first child in auto layout with currently focused child if (is_auto_layout(parent->layout)) { int focused_idx = index_child(container); swayc_t *first = parent->children->items[0]; if (focused_idx > 0) { list_swap(parent->children, 0, focused_idx); swap_geometry(first, container); } arrange_windows(parent->parent, -1, -1); ipc_event_window(container, "move"); set_focused_container_for(parent->parent, container); } return; } else if (! (dir == MOVE_NEXT || dir == MOVE_PREV)) { return; } swayc_t *child = container; bool ascended = false; // View is wrapped in intermediate container which is needed for displaying // the titlebar. Moving only the view outside of its parent container would just // wrap it again under worspace. There would effectively be no movement, // just a change of wrapping container. if (child->type == C_VIEW && parent->type == C_CONTAINER && parent->children->length == 1 && parent->parent->type == C_WORKSPACE) { child = parent; parent = parent->parent; } while (true) { sway_log(L_DEBUG, "container:%p, parent:%p, child %p,", container,parent,child); if (parent->layout == layout || layout == L_NONE /* accept any layout for next/prev direction */ || (parent->layout == L_TABBED && layout == L_HORIZ) || (parent->layout == L_STACKED && layout == L_VERT) || is_auto_layout(parent->layout)) { int diff; // If it has ascended (parent has moved up), no container is removed // so insert it at index, or index+1. // if it has not, the moved container is removed, so it needs to be // inserted at index-1, or index+1 if (ascended) { diff = dir == MOVE_LEFT || dir == MOVE_UP || dir == MOVE_PREV ? 0 : 1; } else { diff = dir == MOVE_LEFT || dir == MOVE_UP || dir == MOVE_PREV ? -1 : 1; } int idx = index_child(child); int desired = idx + diff; if (dir == MOVE_NEXT || dir == MOVE_PREV) { // Next/Prev always wrap. if (desired < 0) { desired += parent->children->length; } else if (desired >= parent->children->length) { desired = 0; } // if move command makes container change from master to slave // (or the contrary), reset its geometry an the one of the replaced item. if (parent->nb_master && (size_t) parent->children->length > parent->nb_master) { swayc_t *swap_geom = NULL; // if child is being promoted/demoted, it will swap geometry // with the sibling being demoted/promoted. if ((dir == MOVE_NEXT && desired == 0) || (dir == MOVE_PREV && (size_t) desired == parent->nb_master - 1)) { swap_geom = parent->children->items[parent->nb_master - 1]; } else if ((dir == MOVE_NEXT && (size_t) desired == parent->nb_master) || (dir == MOVE_PREV && desired == parent->children->length - 1)) { swap_geom = parent->children->items[parent->nb_master]; } if (swap_geom) { double h = child->height; double w = child->width; child->width = swap_geom->width; child->height = swap_geom->height; swap_geom->width = w; swap_geom->height = h; } } } // when it has ascended, legal insertion position is 0:len // when it has not, legal insertion position is 0:len-1 if (desired >= 0 && desired - ascended < parent->children->length) { if (!ascended) { child = parent->children->items[desired]; // Move container into sibling container if (child->type == C_CONTAINER) { parent = child; // Insert it in first/last if matching layout, otherwise // insert it next to focused container if (parent->layout == layout || (parent->layout == L_TABBED && layout == L_HORIZ) || (parent->layout == L_STACKED && layout == L_VERT) || is_auto_layout(parent->layout)) { desired = (diff < 0) * parent->children->length; } else { desired = index_child(child->focused) + 1; } //reset geometry container->width = container->height = 0; } } swayc_t *old_parent = remove_child(container); insert_child(parent, container, desired); destroy_container(old_parent); sway_log(L_DEBUG,"Moving to %p %d", parent, desired); break; } } // Change parent layout if we need to if (parent->children->length == 1 && parent->layout != layout && layout != L_NONE) { /* swayc_change_layout(parent, layout); */ parent->layout = layout; continue; } if (parent->type == C_WORKSPACE) { // If moving to an adjacent output we need a starting position (since this // output might border to multiple outputs). struct wlc_point abs_pos; get_absolute_center_position(container, &abs_pos); swayc_t *output = swayc_adjacent_output(parent->parent, dir, &abs_pos, true); if (output) { sway_log(L_DEBUG, "Moving between outputs"); swayc_t *old_parent = remove_child(container); destroy_container(old_parent); swayc_t *dest = output->focused; switch (dir) { case MOVE_LEFT: case MOVE_UP: // reset container geometry container->width = container->height = 0; add_child(dest, container); break; case MOVE_RIGHT: case MOVE_DOWN: // reset container geometry container->width = container->height = 0; insert_child(dest, container, 0); break; default: break; } // arrange new workspace arrange_windows(dest, -1, -1); set_focused_container(container); break; } // We simply cannot move any further. if (parent->layout == layout) { break; } // Create container around workspace to insert child into parent = new_container(parent, layout); // Previous line set the resulting container's layout to // workspace_layout. It should have been just layout. parent->layout = parent->parent->layout; } ascended = true; child = parent; parent = child->parent; } arrange_windows(parent->parent, -1, -1); ipc_event_window(container, "move"); set_focused_container_for(parent->parent, container); } void move_container_to(swayc_t* container, swayc_t* destination) { if (container == destination || swayc_is_parent_of(container, destination)) { return; } swayc_t *parent = remove_child(container); // Send to new destination if (container->is_floating) { swayc_t *ws = swayc_active_workspace_for(destination); add_floating(ws, container); // If the workspace only has one child after adding one, it // means that the workspace was just initialized. if (ws->children->length + ws->floating->length == 1) { ipc_event_workspace(NULL, ws, "init"); } } else if (destination->type == C_WORKSPACE) { // reset container geometry container->width = container->height = 0; add_child(destination, container); // If the workspace only has one child after adding one, it // means that the workspace was just initialized. if (destination->children->length + destination->floating->length == 1) { ipc_event_workspace(NULL, destination, "init"); } } else { // reset container geometry container->width = container->height = 0; add_sibling(destination, container); } // Destroy old container if we need to parent = destroy_container(parent); // Refocus swayc_t *op1 = swayc_parent_by_type(destination, C_OUTPUT); swayc_t *op2 = swayc_parent_by_type(parent, C_OUTPUT); set_focused_container(get_focused_view(op1)); arrange_windows(op1, -1, -1); update_visibility(op1); if (op1 != op2) { set_focused_container(get_focused_view(op2)); arrange_windows(op2, -1, -1); update_visibility(op2); } } void move_workspace_to(swayc_t* workspace, swayc_t* destination) { if (workspace == destination || swayc_is_parent_of(workspace, destination)) { return; } swayc_t *src_op = remove_child(workspace); // reset container geometry workspace->width = workspace->height = 0; add_child(destination, workspace); sort_workspaces(destination); // Refocus destination (change to new workspace) set_focused_container(get_focused_view(workspace)); arrange_windows(destination, -1, -1); update_visibility(destination); // make sure source output has a workspace if (src_op->children->length == 0) { char *ws_name = workspace_next_name(src_op->name); swayc_t *ws = new_workspace(src_op, ws_name); ws->is_focused = true; free(ws_name); } set_focused_container(get_focused_view(src_op)); update_visibility(src_op); } static void adjust_border_geometry(swayc_t *c, struct wlc_geometry *g, const struct wlc_size *res, int left, int right, int top, int bottom) { g->size.w += left + right; if (g->origin.x - left < 0) { g->size.w += g->origin.x - left; } else if (g->origin.x + g->size.w - right > res->w) { g->size.w = res->w - g->origin.x + right; } g->size.h += top + bottom; if (g->origin.y - top < 0) { g->size.h += g->origin.y - top; } else if (g->origin.y + g->size.h - top > res->h) { g->size.h = res->h - g->origin.y + top; } g->origin.x = MIN((uint32_t)MAX(g->origin.x - left, 0), res->w); g->origin.y = MIN((uint32_t)MAX(g->origin.y - top, 0), res->h); } static void update_border_geometry_floating(swayc_t *c, struct wlc_geometry *geometry) { struct wlc_geometry g = *geometry; c->actual_geometry = g; swayc_t *output = swayc_parent_by_type(c, C_OUTPUT); struct wlc_size res; output_get_scaled_size(output->handle, &res); switch (c->border_type) { case B_NONE: break; case B_PIXEL: adjust_border_geometry(c, &g, &res, c->border_thickness, c->border_thickness, c->border_thickness, c->border_thickness); break; case B_NORMAL: { int title_bar_height = config->font_height + 4; // borders + padding adjust_border_geometry(c, &g, &res, c->border_thickness, c->border_thickness, title_bar_height, c->border_thickness); struct wlc_geometry title_bar = { .origin = { .x = c->actual_geometry.origin.x - c->border_thickness, .y = c->actual_geometry.origin.y - title_bar_height }, .size = { .w = c->actual_geometry.size.w + (2 * c->border_thickness), .h = title_bar_height } }; c->title_bar_geometry = title_bar; break; } } c->border_geometry = g; *geometry = c->actual_geometry; update_container_border(c); } void update_layout_geometry(swayc_t *parent, enum swayc_layouts prev_layout) { switch (parent->layout) { case L_TABBED: case L_STACKED: if (prev_layout != L_TABBED && prev_layout != L_STACKED) { // cache current geometry for all non-float children int i; for (i = 0; i < parent->children->length; ++i) { swayc_t *child = parent->children->items[i]; child->cached_geometry.origin.x = child->x; child->cached_geometry.origin.y = child->y; child->cached_geometry.size.w = child->width; child->cached_geometry.size.h = child->height; } } break; default: if (prev_layout == L_TABBED || prev_layout == L_STACKED) { // recover cached geometry for all non-float children int i; for (i = 0; i < parent->children->length; ++i) { swayc_t *child = parent->children->items[i]; // only recoverer cached geometry if non-zero if (!wlc_geometry_equals(&child->cached_geometry, &wlc_geometry_zero)) { child->x = child->cached_geometry.origin.x; child->y = child->cached_geometry.origin.y; child->width = child->cached_geometry.size.w; child->height = child->cached_geometry.size.h; } } } break; } } static int update_gap_geometry(swayc_t *container, struct wlc_geometry *g) { swayc_t *ws = swayc_parent_by_type(container, C_WORKSPACE); swayc_t *op = ws->parent; int gap = container->is_floating ? 0 : swayc_gap(container); if (gap % 2 != 0) { // because gaps are implemented as "half sized margins" it's currently // not possible to align views properly with odd sized gaps. gap -= 1; } g->origin.x = container->x + gap/2 < op->width ? container->x + gap/2 : op->width-1; g->origin.y = container->y + gap/2 < op->height ? container->y + gap/2 : op->height-1; g->size.w = container->width > gap ? container->width - gap : 1; g->size.h = container->height > gap ? container->height - gap : 1; if ((!config->edge_gaps && gap > 0) || (config->smart_gaps && ws->children->length == 1)) { // Remove gap against the workspace edges. Because a pixel is not // divisable, depending on gap size and the number of siblings our view // might be at the workspace edge without being exactly so (thus test // with gap, and align correctly). if (container->x - gap <= ws->x) { g->origin.x = ws->x; g->size.w = container->width - gap/2; } if (container->y - gap <= ws->y) { g->origin.y = ws->y; g->size.h = container->height - gap/2; } if (container->x + container->width + gap >= ws->x + ws->width) { g->size.w = ws->x + ws->width - g->origin.x; } if (container->y + container->height + gap >= ws->y + ws->height) { g->size.h = ws->y + ws->height - g->origin.y; } } return gap; } void update_geometry(swayc_t *container) { if (container->type != C_VIEW && container->type != C_CONTAINER) { return; } swayc_t *workspace = swayc_parent_by_type(container, C_WORKSPACE); swayc_t *op = workspace->parent; swayc_t *parent = container->parent; struct wlc_geometry geometry = { .origin = { .x = container->x < op->width ? container->x : op->width-1, .y = container->y < op->height ? container->y : op->height-1 }, .size = { .w = container->width, .h = container->height, } }; int gap = 0; // apply inner gaps to non-tabbed/stacked containers swayc_t *p = swayc_tabbed_stacked_ancestor(container); if (p == NULL) { gap = update_gap_geometry(container, &geometry); } swayc_t *output = swayc_parent_by_type(container, C_OUTPUT); struct wlc_size size; output_get_scaled_size(output->handle, &size); if (swayc_is_fullscreen(container)) { geometry.origin.x = 0; geometry.origin.y = 0; geometry.size.w = size.w; geometry.size.h = size.h; if (op->focused == workspace) { wlc_view_bring_to_front(container->handle); } container->border_geometry = wlc_geometry_zero; container->title_bar_geometry = wlc_geometry_zero; border_clear(container->border); } else if (container->is_floating) { // allocate border for floating window update_border_geometry_floating(container, &geometry); } else if (!container->is_floating) { // allocate border for titled window container->border_geometry = geometry; int border_top = container->border_thickness; int border_bottom = container->border_thickness; int border_left = container->border_thickness; int border_right = container->border_thickness; // handle hide_edge_borders if (config->hide_edge_borders != E_NONE && (gap <= 0 || (config->smart_gaps && workspace->children->length == 1))) { if (config->hide_edge_borders == E_VERTICAL || config->hide_edge_borders == E_BOTH) { if (geometry.origin.x == workspace->x) { border_left = 0; } if (geometry.origin.x + geometry.size.w == workspace->x + workspace->width) { border_right = 0; } } if (config->hide_edge_borders == E_HORIZONTAL || config->hide_edge_borders == E_BOTH) { if (geometry.origin.y == workspace->y || should_hide_top_border(container, geometry.origin.y)) { border_top = 0; } if (geometry.origin.y + geometry.size.h == workspace->y + workspace->height) { border_bottom = 0; } } } int title_bar_height = config->font_height + 4; //borders + padding if (parent->layout == L_TABBED && parent->children->length > 1) { int i, x = 0, w, l, r; l = parent->children->length; w = geometry.size.w / l; r = geometry.size.w % l; for (i = 0; i < parent->children->length; ++i) { swayc_t *view = parent->children->items[i]; if (view == container) { x = w * i; if (i == l - 1) { w += r; } break; } } struct wlc_geometry title_bar = { .origin = { .x = container->border_geometry.origin.x + x, .y = container->border_geometry.origin.y }, .size = { .w = w, .h = title_bar_height } }; geometry.origin.x += border_left; geometry.origin.y += title_bar.size.h; geometry.size.w -= (border_left + border_right); geometry.size.h -= (border_bottom + title_bar.size.h); container->title_bar_geometry = title_bar; } else if (parent->layout == L_STACKED && parent->children->length > 1) { int i, y = 0; for (i = 0; i < parent->children->length; ++i) { swayc_t *view = parent->children->items[i]; if (view == container) { y = title_bar_height * i; } } struct wlc_geometry title_bar = { .origin = { .x = container->border_geometry.origin.x, .y = container->border_geometry.origin.y + y }, .size = { .w = container->border_geometry.size.w, .h = title_bar_height } }; title_bar_height = title_bar_height * parent->children->length; geometry.origin.x += border_left; geometry.origin.y += title_bar_height; geometry.size.w -= (border_left + border_right); geometry.size.h -= (border_bottom + title_bar_height); container->title_bar_geometry = title_bar; } else { switch (container->border_type) { case B_NONE: break; case B_PIXEL: geometry.origin.x += border_left; geometry.origin.y += border_top; geometry.size.w -= (border_left + border_right); geometry.size.h -= (border_top + border_bottom); break; case B_NORMAL: { struct wlc_geometry title_bar = { .origin = { .x = container->border_geometry.origin.x, .y = container->border_geometry.origin.y }, .size = { .w = container->border_geometry.size.w, .h = title_bar_height } }; geometry.origin.x += border_left; geometry.origin.y += title_bar.size.h; geometry.size.w -= (border_left + border_right); geometry.size.h -= (border_bottom + title_bar.size.h); container->title_bar_geometry = title_bar; break; } } } container->actual_geometry = geometry; if (container->type == C_VIEW) { update_container_border(container); } } if (container->type == C_VIEW) { wlc_view_set_geometry(container->handle, 0, &geometry); } } /** * Layout application prototypes */ static void apply_horiz_layout(swayc_t *container, const double x, const double y, const double width, const double height, const int start, const int end); static void apply_vert_layout(swayc_t *container, const double x, const double y, const double width, const double height, const int start, const int end); static void apply_tabbed_or_stacked_layout(swayc_t *container, double x, double y, double width, double height); static void apply_auto_layout(swayc_t *container, const double x, const double y, const double width, const double height, enum swayc_layouts group_layout, bool master_first); static void arrange_windows_r(swayc_t *container, double width, double height) { int i; if (width == -1 || height == -1) { swayc_log(L_DEBUG, container, "Arranging layout for %p", container); width = container->width; height = container->height; } // pixels are indivisible. if we don't round the pixels, then the view // calculations will be off (e.g. 50.5 + 50.5 = 101, but in reality it's // 50 + 50 = 100). doing it here cascades properly to all width/height/x/y. width = floor(width); height = floor(height); sway_log(L_DEBUG, "Arranging layout for %p %s %fx%f+%f,%f", container, container->name, container->width, container->height, container->x, container->y); double x = 0, y = 0; switch (container->type) { case C_ROOT: for (i = 0; i < container->children->length; ++i) { swayc_t *output = container->children->items[i]; sway_log(L_DEBUG, "Arranging output '%s' at %f,%f", output->name, output->x, output->y); arrange_windows_r(output, -1, -1); } return; case C_OUTPUT: { struct wlc_size resolution; output_get_scaled_size(container->handle, &resolution); width = resolution.w; height = resolution.h; // output must have correct size due to e.g. seamless mouse, // but a workspace might be smaller depending on panels. container->width = width; container->height = height; } // arrange all workspaces: for (i = 0; i < container->children->length; ++i) { swayc_t *child = container->children->items[i]; arrange_windows_r(child, -1, -1); } // Bring all unmanaged views to the front for (i = 0; i < container->unmanaged->length; ++i) { wlc_handle *handle = container->unmanaged->items[i]; wlc_view_bring_to_front(*handle); } return; case C_WORKSPACE: { swayc_t *output = swayc_parent_by_type(container, C_OUTPUT); width = output->width, height = output->height; for (i = 0; i < desktop_shell.panels->length; ++i) { struct panel_config *config = desktop_shell.panels->items[i]; if (config->output == output->handle) { struct wlc_size size = *wlc_surface_get_size(config->surface); sway_log(L_DEBUG, "-> Found panel for this workspace: %ux%u, position: %u", size.w, size.h, config->panel_position); switch (config->panel_position) { case DESKTOP_SHELL_PANEL_POSITION_TOP: y += size.h; height -= size.h; break; case DESKTOP_SHELL_PANEL_POSITION_BOTTOM: height -= size.h; break; case DESKTOP_SHELL_PANEL_POSITION_LEFT: x += size.w; width -= size.w; break; case DESKTOP_SHELL_PANEL_POSITION_RIGHT: width -= size.w; break; } } } int gap = swayc_gap(container); x = container->x = x + gap; y = container->y = y + gap; width = container->width = width - gap * 2; height = container->height = height - gap * 2; sway_log(L_DEBUG, "Arranging workspace '%s' at %f, %f", container->name, container->x, container->y); } // children are properly handled below break; case C_VIEW: { container->width = width; container->height = height; update_geometry(container); sway_log(L_DEBUG, "Set view to %.f x %.f @ %.f, %.f", container->width, container->height, container->x, container->y); } return; default: container->width = width; container->height = height; x = container->x; y = container->y; // add gaps to top level tapped/stacked container if (container->parent->type == C_WORKSPACE && (container->layout == L_TABBED || container->layout == L_STACKED)) { update_geometry(container); width = container->border_geometry.size.w; height = container->border_geometry.size.h; x = container->border_geometry.origin.x; y = container->border_geometry.origin.y; } // update container size if it's a direct child in a tabbed/stacked layout // if parent is a workspace, its actual_geometry won't be initialized if (swayc_tabbed_stacked_parent(container) != NULL && container->parent->type != C_WORKSPACE) { // Use parent actual_geometry as a base for calculating // container geometry container->width = container->parent->actual_geometry.size.w; container->height = container->parent->actual_geometry.size.h; container->x = container->parent->actual_geometry.origin.x; container->y = container->parent->actual_geometry.origin.y; update_geometry(container); width = container->width = container->actual_geometry.size.w; height = container->height = container->actual_geometry.size.h; x = container->x = container->actual_geometry.origin.x; y = container->y = container->actual_geometry.origin.y; } break; } switch (container->layout) { case L_HORIZ: default: apply_horiz_layout(container, x, y, width, height, 0, container->children->length); break; case L_VERT: apply_vert_layout(container, x, y, width, height, 0, container->children->length); break; case L_TABBED: case L_STACKED: apply_tabbed_or_stacked_layout(container, x, y, width, height); break; case L_AUTO_LEFT: apply_auto_layout(container, x, y, width, height, L_VERT, true); break; case L_AUTO_RIGHT: apply_auto_layout(container, x, y, width, height, L_VERT, false); break; case L_AUTO_TOP: apply_auto_layout(container, x, y, width, height, L_HORIZ, true); break; case L_AUTO_BOTTOM: apply_auto_layout(container, x, y, width, height, L_HORIZ, false); break; } // Arrage floating layouts for workspaces last if (container->type == C_WORKSPACE) { for (int i = 0; i < container->floating->length; ++i) { swayc_t *view = container->floating->items[i]; if (view->type == C_VIEW) { update_geometry(view); sway_log(L_DEBUG, "Set floating view to %.f x %.f @ %.f, %.f", view->width, view->height, view->x, view->y); if (swayc_is_fullscreen(view)) { wlc_view_bring_to_front(view->handle); } else if (!container->focused || !swayc_is_fullscreen(container->focused)) { wlc_view_bring_to_front(view->handle); } } } } } void apply_horiz_layout(swayc_t *container, const double x, const double y, const double width, const double height, const int start, const int end) { double scale = 0; // Calculate total width for (int i = start; i < end; ++i) { double *old_width = &((swayc_t *)container->children->items[i])->width; if (*old_width <= 0) { if (end - start > 1) { *old_width = width / (end - start - 1); } else { *old_width = width; } } scale += *old_width; } scale = width / scale; // Resize windows double child_x = x; if (scale > 0.1) { sway_log(L_DEBUG, "Arranging %p horizontally", container); swayc_t *focused = NULL; for (int i = start; i < end; ++i) { swayc_t *child = container->children->items[i]; sway_log(L_DEBUG, "Calculating arrangement for %p:%d (will scale %f by %f)", child, child->type, width, scale); child->x = child_x; child->y = y; if (child == container->focused) { focused = child; } if (i == end - 1) { double remaining_width = x + width - child_x; arrange_windows_r(child, remaining_width, height); } else { arrange_windows_r(child, child->width * scale, height); } child_x += child->width; } // update focused view border last because it may // depend on the title bar geometry of its siblings. if (focused && container->children->length > 1) { update_container_border(focused); } } } void apply_vert_layout(swayc_t *container, const double x, const double y, const double width, const double height, const int start, const int end) { int i; double scale = 0; // Calculate total height for (i = start; i < end; ++i) { double *old_height = &((swayc_t *)container->children->items[i])->height; if (*old_height <= 0) { if (end - start > 1) { *old_height = height / (end - start - 1); } else { *old_height = height; } } scale += *old_height; } scale = height / scale; // Resize double child_y = y; if (scale > 0.1) { sway_log(L_DEBUG, "Arranging %p vertically", container); swayc_t *focused = NULL; for (i = start; i < end; ++i) { swayc_t *child = container->children->items[i]; sway_log(L_DEBUG, "Calculating arrangement for %p:%d (will scale %f by %f)", child, child->type, height, scale); child->x = x; child->y = child_y; if (child == container->focused) { focused = child; } if (i == end - 1) { double remaining_height = y + height - child_y; arrange_windows_r(child, width, remaining_height); } else { arrange_windows_r(child, width, child->height * scale); } child_y += child->height; } // update focused view border last because it may // depend on the title bar geometry of its siblings. if (focused && container->children->length > 1) { update_container_border(focused); } } } void apply_tabbed_or_stacked_layout(swayc_t *container, double x, double y, double width, double height) { int i; swayc_t *focused = NULL; for (i = 0; i < container->children->length; ++i) { swayc_t *child = container->children->items[i]; child->x = x; child->y = y; if (child == container->focused) { focused = child; } else { arrange_windows_r(child, width, height); } } if (focused) { arrange_windows_r(focused, width, height); } } void apply_auto_layout(swayc_t *container, const double x, const double y, const double width, const double height, enum swayc_layouts group_layout, bool master_first) { // Auto layout "container" in width x height @ x, y // using "group_layout" for each of the groups in the container. // There is one "master" group, plus container->nb_slave_groups. // Each group is layed out side by side following the "major" axis. // The direction of the layout used for groups is the "minor" axis. // Example: // // ---- major axis --> // +---------+-----------+ // | | | | // | master | slave 1 | | // | +-----------+ | minor axis (direction of group_layout) // | | | | // | | slave 2 | V // +---------+-----------+ // // container with three children (one master and two slaves) and // a single slave group (containing slave 1 and 2). The master // group and slave group are layed out using L_VERT. size_t nb_groups = auto_group_count(container); // the target dimension of the container along the "major" axis, each // group in the container will be layed out using "group_layout" along // the "minor" axis. double dim_maj; double pos_maj; // x and y coords for the next group to be laid out. const double *group_x, *group_y; // pos of the next group to layout along the major axis double pos; // size of the next group along the major axis. double group_dim; // height and width of next group to be laid out. const double *group_h, *group_w; switch (group_layout) { default: sway_log(L_DEBUG, "Unknown layout type (%d) used in %s()", group_layout, __func__); /* fall through */ case L_VERT: dim_maj = width; pos_maj = x; group_x = &pos; group_y = &y; group_w = &group_dim; group_h = &height; break; case L_HORIZ: dim_maj = height; pos_maj = y; group_x = &x; group_y = &pos; group_w = &width; group_h = &group_dim; break; } /* Determine the dimension of each of the groups in the layout. * Dimension will be width for a VERT layout and height for a HORIZ * layout. */ double old_group_dim[nb_groups]; double old_dim = 0; for (size_t group = 0; group < nb_groups; ++group) { int idx; if (auto_group_bounds(container, group, &idx, NULL)) { swayc_t *child = container->children->items[idx]; double *dim = group_layout == L_HORIZ ? &child->height : &child->width; if (*dim <= 0) { // New child with uninitialized dimension *dim = dim_maj; if (nb_groups > 1) { // child gets a dimension proportional to existing groups, // it will be later scaled based on to the available size // in the major axis. *dim /= (nb_groups - 1); } } old_dim += *dim; old_group_dim[group] = *dim; } } double scale = dim_maj / old_dim; /* Apply layout to each group */ pos = pos_maj; for (size_t group = 0; group < nb_groups; ++group) { int start, end; // index of first (inclusive) and last (exclusive) child in the group if (auto_group_bounds(container, group, &start, &end)) { // adjusted size of the group group_dim = old_group_dim[group] * scale; if (group == nb_groups - 1) { group_dim = pos_maj + dim_maj - pos; // remaining width } sway_log(L_DEBUG, "Arranging container %p column %zu, children [%d,%d[ (%fx%f+%f,%f)", container, group, start, end, *group_w, *group_h, *group_x, *group_y); switch (group_layout) { default: case L_VERT: apply_vert_layout(container, *group_x, *group_y, *group_w, *group_h, start, end); break; case L_HORIZ: apply_horiz_layout(container, *group_x, *group_y, *group_w, *group_h, start, end); break; } /* update position for next group */ pos += group_dim; } } } void arrange_windows(swayc_t *container, double width, double height) { update_visibility(container); arrange_windows_r(container, width, height); layout_log(&root_container, 0); } void arrange_backgrounds(void) { struct background_config *bg; for (int i = 0; i < desktop_shell.backgrounds->length; ++i) { bg = desktop_shell.backgrounds->items[i]; wlc_view_send_to_back(bg->handle); } } /** * Get swayc in the direction of newly entered output. */ static swayc_t *get_swayc_in_output_direction(swayc_t *output, enum movement_direction dir) { if (!output) { return NULL; } swayc_t *ws = swayc_focus_by_type(output, C_WORKSPACE); if (ws && ws->children->length > 0) { switch (dir) { case MOVE_LEFT: // get most right child of new output return ws->children->items[ws->children->length-1]; case MOVE_RIGHT: // get most left child of new output return ws->children->items[0]; case MOVE_UP: case MOVE_DOWN: { swayc_t *focused_view = swayc_focus_by_type(ws, C_VIEW); if (focused_view && focused_view->parent) { swayc_t *parent = focused_view->parent; if (parent->layout == L_VERT) { if (dir == MOVE_UP) { // get child furthest down on new output return parent->children->items[parent->children->length-1]; } else if (dir == MOVE_DOWN) { // get child furthest up on new output return parent->children->items[0]; } } return focused_view; } break; } default: break; } } return output; } swayc_t *get_swayc_in_direction_under(swayc_t *container, enum movement_direction dir, swayc_t *limit) { if (dir == MOVE_CHILD) { return container->focused; } swayc_t *parent = container->parent; if (dir == MOVE_PARENT) { if (parent->type == C_OUTPUT) { return NULL; } else { return parent; } } if (dir == MOVE_PREV || dir == MOVE_NEXT) { int focused_idx = index_child(container); if (focused_idx == -1) { return NULL; } else { int desired = (focused_idx + (dir == MOVE_NEXT ? 1 : -1)) % parent->children->length; if (desired < 0) { desired += parent->children->length; } return parent->children->items[desired]; } } // If moving to an adjacent output we need a starting position (since this // output might border to multiple outputs). struct wlc_point abs_pos; get_absolute_center_position(container, &abs_pos); if (container->type == C_VIEW && swayc_is_fullscreen(container)) { sway_log(L_DEBUG, "Moving from fullscreen view, skipping to output"); container = swayc_parent_by_type(container, C_OUTPUT); get_absolute_center_position(container, &abs_pos); swayc_t *output = swayc_adjacent_output(container, dir, &abs_pos, true); return get_swayc_in_output_direction(output, dir); } if (container->type == C_WORKSPACE && container->fullscreen) { sway_log(L_DEBUG, "Moving to fullscreen view"); return container->fullscreen; } swayc_t *wrap_candidate = NULL; while (true) { // Test if we can even make a difference here bool can_move = false; int diff = 0; if (parent->type == C_ROOT) { swayc_t *output = swayc_adjacent_output(container, dir, &abs_pos, true); if (!output || output == container) { return wrap_candidate; } sway_log(L_DEBUG, "Moving between outputs"); return get_swayc_in_output_direction(output, dir); } else { if (dir == MOVE_LEFT || dir == MOVE_RIGHT) { if (parent->layout == L_HORIZ || parent->layout == L_TABBED) { can_move = true; diff = dir == MOVE_LEFT ? -1 : 1; } } else { if (parent->layout == L_VERT || parent->layout == L_STACKED) { can_move = true; diff = dir == MOVE_UP ? -1 : 1; } } } if (can_move) { int desired = index_child(container) + diff; if (container->is_floating) { if (desired < 0) { wrap_candidate = parent->floating->items[parent->floating->length-1]; } else if (desired >= parent->floating->length){ wrap_candidate = parent->floating->items[0]; } else { wrap_candidate = parent->floating->items[desired]; } if (wrap_candidate) { wlc_view_bring_to_front(wrap_candidate->handle); } return wrap_candidate; } else if (desired < 0 || desired >= parent->children->length) { can_move = false; int len = parent->children->length; if (!wrap_candidate && len > 1) { if (desired < 0) { wrap_candidate = parent->children->items[len-1]; } else { wrap_candidate = parent->children->items[0]; } if (config->force_focus_wrapping) { return wrap_candidate; } } } else { return parent->children->items[desired]; } } if (!can_move) { container = parent; parent = parent->parent; if (!parent || container == limit) { // wrapping is the last chance return wrap_candidate; } } } } swayc_t *get_swayc_in_direction(swayc_t *container, enum movement_direction dir) { return get_swayc_in_direction_under(container, dir, NULL); } void recursive_resize(swayc_t *container, double amount, enum wlc_resize_edge edge) { int i; bool layout_match = true; sway_log(L_DEBUG, "Resizing %p with amount: %f", container, amount); if (edge == WLC_RESIZE_EDGE_LEFT || edge == WLC_RESIZE_EDGE_RIGHT) { container->width += amount; layout_match = container->layout == L_HORIZ; } else if (edge == WLC_RESIZE_EDGE_TOP || edge == WLC_RESIZE_EDGE_BOTTOM) { container->height += amount; layout_match = container->layout == L_VERT; } if (container->type == C_VIEW) { update_geometry(container); return; } if (layout_match) { for (i = 0; i < container->children->length; i++) { recursive_resize(container->children->items[i], amount/container->children->length, edge); } } else { for (i = 0; i < container->children->length; i++) { recursive_resize(container->children->items[i], amount, edge); } } } enum swayc_layouts default_layout(swayc_t *output) { if (config->default_layout != L_NONE) { return config->default_layout; } else if (config->default_orientation != L_NONE) { return config->default_orientation; } else if (output->width >= output->height) { return L_HORIZ; } else { return L_VERT; } } bool is_auto_layout(enum swayc_layouts layout) { return (layout >= L_AUTO_FIRST) && (layout <= L_AUTO_LAST); } /** * Return the number of master elements in a container */ static inline size_t auto_master_count(const swayc_t *container) { return MIN(container->nb_master, container->children->length); } /** * Return the number of children in the slave groups. This corresponds to the children * that are not members of the master group. */ static inline size_t auto_slave_count(const swayc_t *container) { return container->children->length - auto_master_count(container); } /** * Return the number of slave groups in the container. */ size_t auto_slave_group_count(const swayc_t *container) { return MIN(container->nb_slave_groups, auto_slave_count(container)); } /** * Return the combined number of master and slave groups in the container. */ size_t auto_group_count(const swayc_t *container) { return auto_slave_group_count(container) + (container->nb_master ? 1 : 0); } /** * given the index of a container's child, return the index of the first child of the group * which index is a member of. */ int auto_group_start_index(const swayc_t *container, int index) { if (index < 0 || ! is_auto_layout(container->layout) || (size_t) index < container->nb_master) { return 0; } else { size_t nb_slaves = auto_slave_count(container); size_t nb_slave_grp = auto_slave_group_count(container); size_t grp_sz = nb_slaves / nb_slave_grp; size_t remainder = nb_slaves % nb_slave_grp; int idx2 = (nb_slave_grp - remainder) * grp_sz + container->nb_master; int start_idx; if (index < idx2) { start_idx = ((index - container->nb_master) / grp_sz) * grp_sz + container->nb_master; } else { start_idx = idx2 + ((index - idx2) / (grp_sz + 1)) * (grp_sz + 1); } return MIN(start_idx, container->children->length); } } /** * given the index of a container's child, return the index of the first child of the group * that follows the one which index is a member of. * This makes the function usable to walk through the groups in a container. */ int auto_group_end_index(const swayc_t *container, int index) { if (index < 0 || ! is_auto_layout(container->layout)) { return container->children->length; } else { int nxt_idx; if ((size_t)index < container->nb_master) { nxt_idx = auto_master_count(container); } else { size_t nb_slaves = auto_slave_count(container); size_t nb_slave_grp = auto_slave_group_count(container); size_t grp_sz = nb_slaves / nb_slave_grp; size_t remainder = nb_slaves % nb_slave_grp; int idx2 = (nb_slave_grp - remainder) * grp_sz + container->nb_master; if (index < idx2) { nxt_idx = ((index - container->nb_master) / grp_sz + 1) * grp_sz + container->nb_master; } else { nxt_idx = idx2 + ((index - idx2) / (grp_sz + 1) + 1) * (grp_sz + 1); } } return MIN(nxt_idx, container->children->length); } } /** * return the index of the Group containing th child of . * The index is the order of the group along the container's major axis (starting at 0). */ size_t auto_group_index(const swayc_t *container, int index) { if (index < 0) { return 0; } bool master_first = (container->layout == L_AUTO_LEFT || container->layout == L_AUTO_TOP); size_t nb_slaves = auto_slave_count(container); if ((size_t) index < container->nb_master) { if (master_first || nb_slaves <= 0) { return 0; } else { return auto_slave_group_count(container); } } else { size_t nb_slave_grp = auto_slave_group_count(container); size_t grp_sz = nb_slaves / nb_slave_grp; size_t remainder = nb_slaves % nb_slave_grp; int idx2 = (nb_slave_grp - remainder) * grp_sz + container->nb_master; size_t grp_idx; if (index < idx2) { grp_idx = (index - container->nb_master) / grp_sz; } else { grp_idx = (nb_slave_grp - remainder) + (index - idx2) / (grp_sz + 1) ; } return grp_idx + (master_first ? 1 : 0); } } /** * Return the first index (inclusive) and last index (exclusive) of the elements of a group in * an auto layout. * If the bounds of the given group can be calculated, they are returned in the start/end * parameters (int pointers) and the return value will be true. * The indexes are passed by reference and can be NULL. */ bool auto_group_bounds(const swayc_t *container, size_t group_index, int *start, int *end) { size_t nb_grp = auto_group_count(container); if (group_index >= nb_grp) { return false; } bool master_first = (container->layout == L_AUTO_LEFT || container->layout == L_AUTO_TOP); size_t nb_master = auto_master_count(container); size_t nb_slave_grp = auto_slave_group_count(container); int g_start, g_end; if (nb_master && (master_first ? group_index == 0 : group_index == nb_grp - 1)) { g_start = 0; g_end = nb_master; } else { size_t nb_slaves = auto_slave_count(container); size_t grp_sz = nb_slaves / nb_slave_grp; size_t remainder = nb_slaves % nb_slave_grp; size_t g0 = master_first && container->nb_master ? 1 : 0; size_t g1 = g0 + nb_slave_grp - remainder; if (group_index < g1) { g_start = container->nb_master + (group_index - g0) * grp_sz; g_end = g_start + grp_sz; } else { size_t g2 = group_index - g1; g_start = container->nb_master + (nb_slave_grp - remainder) * grp_sz + g2 * (grp_sz + 1); g_end = g_start + grp_sz + 1; } } if (start) { *start = g_start; } if (end) { *end = g_end; } return true; }