mirror of
https://github.com/Ponce/slackbuilds
synced 2024-11-16 19:50:19 +01:00
48c22f9303
This is far from complete. We still need to review and tweak anything with "PYTHON" in the README, as many/most/all of those are telling the user how to build with python3 support. We almost surely want to enable that by default in all of those cases.
230 lines
9.1 KiB
Text
230 lines
9.1 KiB
Text
img2pdf
|
|
|
|
Lossless conversion of raster images to PDF. You should use img2pdf if
|
|
your priorities are (in this order):
|
|
|
|
always lossless: the image embedded in the PDF will always have the
|
|
exact same color information for every pixel as the input small: if
|
|
possible, the difference in filesize between the input image and the
|
|
output PDF will only be the overhead of the PDF container itself fast:
|
|
if possible, the input image is just pasted into the PDF document as-is
|
|
without any CPU hungry re-encoding of the pixel data
|
|
|
|
Conventional conversion software (like ImageMagick) would either:
|
|
|
|
not be lossless because lossy re-encoding to JPEG not be small
|
|
because using wasteful flate encoding of raw pixel data not be fast
|
|
because input data gets re-encoded
|
|
|
|
Another advantage of not having to re-encode the input (in most common
|
|
situations) is, that img2pdf is able to handle much larger input than
|
|
other software, because the raw pixel data never has to be loaded into
|
|
memory.
|
|
|
|
The following table shows how img2pdf handles different input depending
|
|
on the input file format and image color space. Format
|
|
Colorspace Result JPEG any direct JPEG2000 any
|
|
direct PNG (non-interlaced) any direct TIFF (CCITT Group 4)
|
|
monochrome direct any any except CMYK and monochrome PNG
|
|
Paeth any monochrome CCITT Group 4 any CMYK flate
|
|
|
|
For JPEG, JPEG2000, non-interlaced PNG and TIFF images with CCITT Group
|
|
4 encoded data, img2pdf directly embeds the image data into the PDF
|
|
without re-encoding it. It thus treats the PDF format merely as a
|
|
container format for the image data. In these cases, img2pdf only
|
|
increases the filesize by the size of the PDF container (typically
|
|
around 500 to 700 bytes). Since data is only copied and not re-encoded,
|
|
img2pdf is also typically faster than other solutions for these input
|
|
formats.
|
|
|
|
For all other input types, img2pdf first has to transform the pixel data
|
|
to make it compatible with PDF. In most cases, the PNG Paeth filter is
|
|
applied to the pixel data. For monochrome input, CCITT Group 4 is used
|
|
instead. Only for CMYK input no filter is applied before finally
|
|
applying flate compression. Usage
|
|
|
|
The images must be provided as files because img2pdf needs to seek in
|
|
the file descriptor.
|
|
|
|
If no output file is specified with the -o/--output option, output will
|
|
be done to stdout. A typical invocation is:
|
|
|
|
$ img2pdf img1.png img2.jpg -o out.pdf
|
|
|
|
The detailed documentation can be accessed by running:
|
|
|
|
$ img2pdf --help
|
|
|
|
Bugs
|
|
|
|
If you find a JPEG, JPEG2000, PNG or CCITT Group 4 encoded TIFF file
|
|
that, when embedded into the PDF cannot be read by the Adobe Acrobat
|
|
Reader, please contact me.
|
|
|
|
I have not yet figured out how to determine the colorspace of
|
|
JPEG2000 files. Therefore JPEG2000 files use DeviceRGB by default. For
|
|
JPEG2000 files with other colorspaces, you must explicitly specify it
|
|
using the --colorspace option.
|
|
|
|
Input images with alpha channels are not allowed. PDF only supports
|
|
transparency using binary masks but is unable to store 8-bit
|
|
transparency information as part of the image itself. But img2pdf will
|
|
always be lossless and thus, input images must not carry transparency
|
|
information.
|
|
|
|
img2pdf uses PIL (or Pillow) to obtain image meta data and to
|
|
convert the input if necessary. To prevent decompression bomb denial of
|
|
service attacks, Pillow limits the maximum number of pixels an input
|
|
image is allowed to have. If you are sure that you know what you are
|
|
doing, then you can disable this safeguard by passing the
|
|
--pillow-limit-break option to img2pdf. This allows one to process even
|
|
very large input images.
|
|
|
|
Installation
|
|
|
|
On a Debian- and Ubuntu-based systems, img2pdf can be installed from the
|
|
official repositories:
|
|
|
|
$ apt install img2pdf
|
|
|
|
If you want to install it using pip, you can run:
|
|
|
|
$ pip3 install img2pdf
|
|
|
|
If you prefer to install from source code use:
|
|
|
|
$ cd img2pdf/ $ pip3 install .
|
|
|
|
To test the console script without installing the package on your
|
|
system, use virtualenv:
|
|
|
|
$ cd img2pdf/ $ virtualenv ve $ ve/bin/pip3 install .
|
|
|
|
You can then test the converter using:
|
|
|
|
$ ve/bin/img2pdf -o test.pdf src/tests/test.jpg
|
|
|
|
For Microsoft Windows users, PyInstaller based .exe files are produced
|
|
by appveyor. If you don't want to install Python before using img2pdf
|
|
you can head to appveyor and click on "Artifacts" to download the latest
|
|
version: https://ci.appveyor.com/project/josch/img2pdf GUI
|
|
|
|
There exists an experimental GUI with all settings currently disabled.
|
|
You can directly convert images to PDF but you cannot set any options
|
|
via the GUI yet. If you are interested in adding more features to the
|
|
PDF, please submit a merge request. The GUI is based on tkinter and
|
|
works on Linux, Windows and MacOS.
|
|
|
|
Library
|
|
|
|
The package can also be used as a library:
|
|
|
|
import img2pdf
|
|
|
|
# opening from filename with open("name.pdf","wb") as f:
|
|
f.write(img2pdf.convert('test.jpg'))
|
|
|
|
# opening from file handle with open("name.pdf","wb") as f1,
|
|
open("test.jpg") as f2: f1.write(img2pdf.convert(f2))
|
|
|
|
# using in-memory image data with open("name.pdf","wb") as f:
|
|
f.write(img2pdf.convert("\x89PNG...")
|
|
|
|
# multiple inputs (variant 1) with open("name.pdf","wb") as f:
|
|
f.write(img2pdf.convert("test1.jpg", "test2.png"))
|
|
|
|
# multiple inputs (variant 2) with open("name.pdf","wb") as f:
|
|
f.write(img2pdf.convert(["test1.jpg", "test2.png"]))
|
|
|
|
# convert all files ending in .jpg inside a directory dirname =
|
|
"/path/to/images" with open("name.pdf","wb") as f: imgs = [] for fname
|
|
in os.listdir(dirname): if not fname.endswith(".jpg"): continue path =
|
|
os.path.join(dirname, fname) if os.path.isdir(path): continue
|
|
imgs.append(path) f.write(img2pdf.convert(imgs))
|
|
|
|
# convert all files ending in .jpg in a directory and its subdirectories
|
|
dirname = "/path/to/images" with open("name.pdf","wb") as f: imgs = []
|
|
for r, _, f in os.walk(dirname): for fname in f: if not
|
|
fname.endswith(".jpg"): continue imgs.append(os.path.join(r, fname))
|
|
f.write(img2pdf.convert(imgs))
|
|
|
|
|
|
# convert all files matching a glob import glob with
|
|
open("name.pdf","wb") as f:
|
|
f.write(img2pdf.convert(glob.glob("/path/to/*.jpg")))
|
|
|
|
# writing to file descriptor with open("name.pdf","wb") as f1,
|
|
open("test.jpg") as f2: img2pdf.convert(f2, outputstream=f1)
|
|
|
|
# specify paper size (A4) a4inpt =
|
|
(img2pdf.mm_to_pt(210),img2pdf.mm_to_pt(297)) layout_fun =
|
|
img2pdf.get_layout_fun(a4inpt) with open("name.pdf","wb") as f:
|
|
f.write(img2pdf.convert('test.jpg', layout_fun=layout_fun))
|
|
|
|
Comparison to ImageMagick
|
|
|
|
Create a large test image:
|
|
|
|
$ convert logo: -resize 8000x original.jpg
|
|
|
|
Convert it into PDF using ImageMagick and img2pdf:
|
|
|
|
$ time img2pdf original.jpg -o img2pdf.pdf $ time convert original.jpg
|
|
imagemagick.pdf
|
|
|
|
Notice how ImageMagick took an order of magnitude longer to do the
|
|
conversion than img2pdf. It also used twice the memory.
|
|
|
|
Now extract the image data from both PDF documents and compare it to the
|
|
original:
|
|
|
|
$ pdfimages -all img2pdf.pdf tmp $ compare -metric AE original.jpg
|
|
tmp-000.jpg null: 0 $ pdfimages -all imagemagick.pdf tmp $ compare
|
|
-metric AE original.jpg tmp-000.jpg null: 118716
|
|
|
|
To get lossless output with ImageMagick we can use Zip compression but
|
|
that unnecessarily increases the size of the output:
|
|
|
|
$ convert original.jpg -compress Zip imagemagick.pdf $ pdfimages -all
|
|
imagemagick.pdf tmp $ compare -metric AE original.jpg tmp-000.png null:
|
|
0 $ stat --format="%s %n" original.jpg img2pdf.pdf imagemagick.pdf
|
|
1535837 original.jpg 1536683 img2pdf.pdf 9397809 imagemagick.pdf
|
|
|
|
Comparison to pdfLaTeX
|
|
|
|
pdfLaTeX performs a lossless conversion from included images to PDF by
|
|
default. If the input is a JPEG, then it simply embeds the JPEG into the
|
|
PDF in the same way as img2pdf does it. But for other image formats it
|
|
uses flate compression of the plain pixel data and thus needlessly
|
|
increases the output file size:
|
|
|
|
$ convert logo: -resize 8000x original.png $ cat << END > pdflatex.tex
|
|
\documentclass{article} \usepackage{graphicx} \begin{document}
|
|
\includegraphics{original.png} \end{document} END $ pdflatex
|
|
pdflatex.tex $ stat --format="%s %n" original.png pdflatex.pdf 4500182
|
|
original.png 9318120 pdflatex.pdf
|
|
|
|
Comparison to podofoimg2pdf
|
|
|
|
Like pdfLaTeX, podofoimg2pdf is able to perform a lossless conversion
|
|
from JPEG to PDF by plainly embedding the JPEG data into the pdf
|
|
container. But just like pdfLaTeX it uses flate compression for all
|
|
other file formats, thus sometimes resulting in larger files than
|
|
necessary.
|
|
|
|
$ convert logo: -resize 8000x original.png $ podofoimg2pdf out.pdf
|
|
original.png stat --format="%s %n" original.png out.pdf 4500181
|
|
original.png 9335629 out.pdf
|
|
|
|
It also only supports JPEG, PNG and TIF as input and lacks many of the
|
|
convenience features of img2pdf like page sizes, borders, rotation and
|
|
metadata. Comparison to Tesseract OCR
|
|
|
|
Tesseract OCR comes closest to the functionality img2pdf provides. It is
|
|
able to convert JPEG and PNG input to PDF without needlessly increasing
|
|
the filesize and is at the same time lossless. So if your input is JPEG
|
|
and PNG images, then you should safely be able to use Tesseract instead
|
|
of img2pdf. For other input, Tesseract might not do a lossless
|
|
conversion. For example it converts CMYK input to RGB and removes the
|
|
alpha channel from images with transparency. For multipage TIFF or
|
|
animated GIF, it will only convert the first frame.
|