mirror of
https://github.com/Ponce/slackbuilds
synced 2024-11-24 10:02:29 +01:00
9f74d04686
Signed-off-by: Willy Sudiarto Raharjo <willysr@slackbuilds.org> |
||
---|---|---|
.. | ||
openimagedenoise.info | ||
openimagedenoise.SlackBuild | ||
README | ||
slack-desc |
Intel Open Image Denoise This build does NOT build support for CUDA/Xe/RDNA, patches welcome. Intel Open Image Denoise is an open source library of high-performance, high-quality denoising filters for images rendered with ray tracing. Intel Open Image Denoise is part of the Intel® Rendering Toolkit and is released under the permissive Apache 2.0 license. The purpose of Intel Open Image Denoise is to provide an open, high-quality, efficient, and easy-to-use denoising library that allows one to significantly reduce rendering times in ray tracing based rendering applications. It filters out the Monte Carlo noise inherent to stochastic ray tracing methods like path tracing, reducing the amount of necessary samples per pixel by even multiple orders of magnitude (depending on the desired closeness to the ground truth). A simple but flexible C/C++ API ensures that the library can be easily integrated into most existing or new rendering solutions. At the heart of the Intel Open Image Denoise library is a collection of efficient deep learning based denoising filters, which were trained to handle a wide range of samples per pixel (spp), from 1 spp to almost fully converged. Thus it is suitable for both preview and final-frame rendering. The filters can denoise images either using only the noisy color (beauty) buffer, or, to preserve as much detail as possible, can optionally utilize auxiliary feature buffers as well (e.g. albedo, normal). Such buffers are supported by most renderers as arbitrary output variables (AOVs) or can be usually implemented with little effort. Although the library ships with a set of pre-trained filter models, it is not mandatory to use these. To optimize a filter for a specific renderer, sample count, content type, scene, etc., it is possible to train the model using the included training toolkit and user-provided image datasets.