;--------------------------------------------------------------------------------------------- ; Scheme library functions ;--------------------------------------------------------------------------------------------- ;--------------------------------------------------------------------------------------------- ; helpers ;--------------------------------------------------------------------------------------------- (define-syntax define-inline (syntax-rules () [(_ (id v ...) rid expr) (begin (define-syntax id (syntax-rules () [(_ v ...) expr] ; NB: do not use the same var twice! [(_ . r) (rid . r)] ; NB: use syntax-error? [_ rid])) (define rid (lambda (v ...) expr)))])) ;--------------------------------------------------------------------------------------------- ; Derived expression types ;--------------------------------------------------------------------------------------------- ;cond ;case ;and ;or ;when ;unless ;cond-expand ;let -- including named let ;let* ;letrec ;letrec* ;let-values ;let*-values ;do ;delay ;delay-force ;--------------------------------------------------------------------------------------------- ; Equivalence predicates ;--------------------------------------------------------------------------------------------- ; integrables: ; ; (eq? x y) ; (eqv? x y) ; (equal? x y) ;--------------------------------------------------------------------------------------------- ; Boxes, aka cells ;--------------------------------------------------------------------------------------------- ; integrables: ; ; (box? x) ; (box x) ; (unbox x) ; (set-box! x y) ;--------------------------------------------------------------------------------------------- ; Exact integer numbers (fixnums) ;--------------------------------------------------------------------------------------------- ; integrables: ; ; (fixnum? x) ; (fxzero? x) ; (fxpositive? x) ; (fxnegative? x) ; (fx+ x ...) ; (fx* x ...) ; (fx- x y ...) ; (fx/ x y ...) ; (fxquotient x y) ; (fxremainder x y) ; (fxmodquo x y) ; (fxmodulo x y) ; (fxeucquo x y) a.k.a. euclidean-quotient, R6RS div ; (fxeucrem x y) a.k.a. euclidean-remainder, R6RS mod ; (fxneg x) ; (fxabs x) ; (fx? x y z ...) ; (fx>=? x y z ...) ; (fx=? x y z ...) ; (fx!=? x y) ; (fxmin x y) ; (fxmax x y) ; (fixnum->flonum x) ;--------------------------------------------------------------------------------------------- ; Inexact floating-point numbers (flonums) ;--------------------------------------------------------------------------------------------- ; integrables: ; ; (flonum? x) ; (flzero? x) ; (flpositive? x) ; (flnegative? x) ; (flinteger? x) ; (flnan? x) ; (flinfinite? x) ; (flfinite? x) ; (fleven? x) ; (flodd? x) ; (fl+ x ...) ; (fl* x ...) ; (fl- x y ...) ; (fl/ x y ...) ; (flneg x) ; (flabs x) ; (fl? x y z ...) ; (fl>=? x y z ...) ; (fl=? x y z ...) ; (fl!=? x y) ; (flmin x y) ; (flmax x y) ; (flonum->fixnum x) ;--------------------------------------------------------------------------------------------- ; Numbers (fixnums or flonums) ;--------------------------------------------------------------------------------------------- ; integrables: ; ; (number? x) ; (integer? x) ; (complex? x) == number? what about inf and nan? ; (real? x) == number? what about inf and nan? ; (rational? x) == number? what about inf and nan? ; (exact-integer? x) == fixnum? ; (exact? x) ; (inexact? x) ; (finite? x) ; (infinite? x) ; (nan? x) ; (zero? x) ; (positive? x) ; (negative? x) ; (even? x) ; (odd? x) ; (+ x ...) ; (* x ...) ; (- x y ...) ; (/ x y ...) ; (< x y z ...) ; (<= x y z ...) ; (> x y z ...) ; (>= x y z ...) ; (= x y z ...) ; (abs x) ; (truncate-quotient x y) ; (truncate-remainder x y) ; (quotient x y) == truncate-quotient ; (remainder x y) == truncate-remainder ; (floor-quotient x y) ; (floor-remainder x y) ; (modulo x y) = floor-remainder (define (floor/ x y) (values (floor-quotient x y) (floor-remainder x y))) (define (truncate/ x y) (values (truncate-quotient x y) (truncate-remainder x y))) ;--------------------------------------------------------------------------------------------- ; Booleans ;--------------------------------------------------------------------------------------------- ; integrables: ; ; (boolean? x) ; (not x) ;--------------------------------------------------------------------------------------------- ; Characters ;--------------------------------------------------------------------------------------------- ; (char? x) ; (char-cmp c1 c2) ; (char=? c1 c2 c ...) ; (char? c1 c2 c ...) ; (char<=? c1 c2 c ...) ; (char>=? c1 c2 c ...) ; (char-ci-cmp c1 c2) ; (char-ci=? c1 c2 c ...) ; (char-ci? c1 c2 c ...) ; (char-ci<=? c1 c2 c ...) ; (char-ci>=? c1 c2 c ...) ; (char-alphabetic? c) ; (char-numeric? x) ; (char-whitespace? c) ; (char-upper-case? c) ; (char-lower-case? c) ; (char-upcase c) ; (char-downcase c) ; (char->integer c) ; (integer->char n) ;char-foldcase ;digit-value ;--------------------------------------------------------------------------------------------- ; Symbols ;--------------------------------------------------------------------------------------------- ; (symbol? x) ; (symbol->string y) ; (string->symbol s) ;--------------------------------------------------------------------------------------------- ; Null and Pairs ;--------------------------------------------------------------------------------------------- ; integrables: ; ; (null? x) ; (pair? x) ; (car x) ; (set-car! x v) ; (cdr x) ; (set-cdr! x v) ; (caar x) ... (cddddr x) ; (cons x y) ;--------------------------------------------------------------------------------------------- ; Lists ;--------------------------------------------------------------------------------------------- ; (list? x) ; (list x ...) ; (make-list n (i #f)) ; (length l) ; (list-ref l i) ; (list-set! l i x) ; (list-cat l1 l2) (define (%append . args) (let loop ([args args]) (cond [(null? args) '()] [(null? (cdr args)) (car args)] [else (list-cat (car args) (loop (cdr args)))]))) (define-syntax append (syntax-rules () [(_) '()] [(_ x) x] [(_ x y) (list-cat x y)] [(_ x y z ...) (list-cat x (append y z ...))] [_ %append])) ; (memq v l) ; (memv v l) ; TODO: make sure memv checks list ; (meme v l) ; TODO: make sure meme checks list (define (%member v l . ?eq) (if (null? ?eq) (meme v l) (let loop ([v v] [l l] [eq (car ?eq)]) (and (pair? l) (if (eq v (car l)) l (loop v (cdr l) eq)))))) (define-syntax member (syntax-rules () [(_ v l) (meme v l)] [(_ . args) (%member . args)] [_ %member])) ; (assq v y) ; (assv v y) ; TODO: make sure assv checks list ; (asse v y) ; TODO: make sure asse checks list (define (%assoc v al . ?eq) (if (null? ?eq) (asse v al) (let loop ([v v] [al al] [eq (car ?eq)]) (and (pair? al) (if (eq v (caar al)) (car al) (loop v (cdr al) eq)))))) (define-syntax assoc (syntax-rules () [(_ v al) (asse v al)] [(_ . args) (%assoc . args)] [_ %assoc])) (define-inline (list-copy x) %residual-list-copy (%lcat x '())) ; (list-tail l i) ; (last-pair l) ; (reverse l) ; (reverse! l) (define (%list* x . l) (let loop ([x x] [l l]) (if (null? l) x (cons x (loop (car l) (cdr l)))))) (define-syntax list* (syntax-rules () [(_ x) x] [(_ x y) (cons x y)] [(_ x y z ...) (cons x (list* y z ...))] [(_ . args) (%list* . args)] [_ %list*])) (define-syntax cons* list*) ;--------------------------------------------------------------------------------------------- ; Vectors ;--------------------------------------------------------------------------------------------- ; (vector? x) ; (vector x ...) ; (make-vector n (i #f)) ; (vector-length v) ; (vector-ref v i) ; (vector-set! v i x) ; (list->vector x) ; (vector-cat v1 v2) (define (subvector->list vec start end) (let loop ([i (fx- end 1)] [l '()]) (if (fxlist (case-lambda [(vec) (%vector->list1 vec)] [(vec start) (subvector->list vec start (vector-length vec))] [(vec start end) (subvector->list vec start end)])) (define-syntax vector->list (syntax-rules () [(_ x) (%vector->list1 x)] [(_ . r) (%vector->list . r)] [_ %vector->list])) (define (subvector-copy! to at from start end) (let ([limit (fxmin end (fx+ start (fx- (vector-length to) at)))]) (if (fx<=? at start) (do ([i at (fx+ i 1)] [j start (fx+ j 1)]) [(fx>=? j limit)] (vector-set! to i (vector-ref from j))) (do ([i (fx+ at (fx- (fx- end start) 1)) (fx- i 1)] [j (fx- limit 1) (fx- j 1)]) [(fx=? i end)] (vector-set! vec i x))) (define vector-fill! (case-lambda [(vec x) (subvector-fill! vec x 0 (vector-length vec))] [(vec x start) (subvector-fill! vec x start (vector-length vec))] [(vec x start end) (subvector-fill! vec x start end)])) (define (subvector-string-copy! to at from start end) (let ([limit (fxmin end (fx+ start (fx- (string-length to) at)))]) (do ([i at (fx+ i 1)] [j start (fx+ j 1)]) [(fx>=? j limit) to] (string-set! to i (vector-ref from j))))) (define (subvector->string vec start end) (subvector-string-copy! (make-string (fx- end start)) 0 vec start end)) (define vector->string (case-lambda [(vec) (subvector->string vec 0 (vector-length vec))] [(vec start) (subvector->string vec start (vector-length vec))] [(vec start end) (subvector->string vec start end)])) (define (vectors-sum-length vecs) (let loop ([vecs vecs] [l 0]) (if (null? vecs) l (loop (cdr vecs) (fx+ l (vector-length (car vecs))))))) (define (vectors-copy-into! to vecs) (let loop ([vecs vecs] [i 0]) (if (null? vecs) to (let ([vec (car vecs)] [vecs (cdr vecs)]) (let ([len (vector-length vec)]) (subvector-copy! to i vec 0 len) (loop vecs (fx+ i len))))))) (define (%vector-append . vecs) (vectors-copy-into! (make-vector (vectors-sum-length vecs)) vecs)) (define-syntax vector-append (syntax-rules () [(_) '#()] [(_ x) (%ckv x)] [(_ x y) (vector-cat x y)] [(_ . r) (%vector-append . r)] [_ %vector-append])) ;--------------------------------------------------------------------------------------------- ; Strings ;--------------------------------------------------------------------------------------------- ; (string? x) ; (string c ...) ; (make-string n (i #\space)) ; (string-length s) ; (string-ref x i) ; (string-set! x i v) ; (list->string l) ; (string-cat s1 s2) ; (substring s from to) (define (substring->list str start end) (let loop ([i (fx- end 1)] [l '()]) (if (fxlist (case-lambda [(str) (%string->list1 str)] [(str start) (substring->list str start (string-length str))] [(str start end) (substring->list str start end)])) (define-syntax string->list (syntax-rules () [(_ x) (%string->list1 x)] [(_ . r) (%string->list . r)] [_ %string->list])) (define (substring-copy! to at from start end) (let ([limit (fxmin end (fx+ start (fx- (string-length to) at)))]) (if (fx<=? at start) (do ([i at (fx+ i 1)] [j start (fx+ j 1)]) [(fx>=? j limit)] (string-set! to i (string-ref from j))) (do ([i (fx+ at (fx- (fx- end start) 1)) (fx- i 1)] [j (fx- limit 1) (fx- j 1)]) [(fx=? i end)] (string-set! str i c))) (define string-fill! (case-lambda [(str c) (substring-fill! str c 0 (string-length str))] [(str c start) (substring-fill! str c start (string-length str))] [(str c start end) (substring-fill! str c start end)])) (define (substring-vector-copy! to at from start end) (let ([limit (fxmin end (fx+ start (fx- (vector-length to) at)))]) (do ([i at (fx+ i 1)] [j start (fx+ j 1)]) [(fx>=? j limit) to] (vector-set! to i (string-ref from j))))) (define (substring->vector str start end) (substring-vector-copy! (make-vector (fx- end start)) 0 str start end)) (define string->vector (case-lambda [(str) (substring->vector str 0 (string-length str))] [(str start) (substring->vector str start (string-length str))] [(str start end) (substring->vector str start end)])) (define (strings-sum-length strs) (let loop ([strs strs] [l 0]) (if (null? strs) l (loop (cdr strs) (fx+ l (string-length (car strs))))))) (define (strings-copy-into! to strs) (let loop ([strs strs] [i 0]) (if (null? strs) to (let ([str (car strs)] [strs (cdr strs)]) (let ([len (string-length str)]) (substring-copy! to i str 0 len) (loop strs (fx+ i len))))))) (define (%string-append . strs) (strings-copy-into! (make-string (strings-sum-length strs)) strs)) (define-syntax string-append (syntax-rules () [(_) ""] [(_ x) (%cks x)] [(_ x y) (string-cat x y)] [(_ . r) (%string-append . r)] [_ %string-append])) ; (string-cmp s1 s2) ; (string=? s1 s2 s ...) ; (string? s1 s2 s ...) ; (string<=? s1 s2 s ...) ; (string>=? s1 s2 s ...) ; (string-ci-cmp s1 s2) ; (string-ci=? s1 s2 s ...) ; (string-ci? s1 s2 s ...) ; (string-ci<=? s1 s2 s ...) ; (string-ci>=? s1 s2 s ...) ;string-upcase ;string-downcase ;string-foldcase ;--------------------------------------------------------------------------------------------- ; Conversions ;--------------------------------------------------------------------------------------------- ; (fixnum->string x (r 10)) ; (string->fixnum s (r 10)) ; (flonum->string x) ; (string->flonum s) ; (number->string x (r 10)) ; (string->number s (r 10)) ;--------------------------------------------------------------------------------------------- ; Control features ;--------------------------------------------------------------------------------------------- ; (procedure? x) (define (%apply p x . l) (apply-to-list p (let loop ([x x] [l l]) (if (null? l) x (cons x (loop (car l) (cdr l))))))) (define-syntax apply (syntax-rules () [(_ p l) (apply-to-list p l)] [(_ p a b ... l) (apply-to-list p (list* a b ... l))] [(_ . args) (%apply . args)] [_ %apply])) ; (%call/cc p) (define-syntax call/cc (syntax-rules () [(_ p) (letcc k (p k))] [(_ . args) (%call/cc . args)] [_ %call/cc])) (define-syntax call-with-current-continuation call/cc) ; (values x ...) ; (call-with-values thunk receiver) (define (%map1 p l) (let loop ([l l] [r '()]) (if (pair? l) (loop (cdr l) (cons (p (car l)) r)) (reverse! r)))) (define (%map2 p l1 l2) (let loop ([l1 l1] [l2 l2] [r '()]) (if (and (pair? l1) (pair? l2)) (loop (cdr l1) (cdr l2) (cons (p (car l1) (car l2)) r)) (reverse! r)))) (define (%map p l . l*) (cond [(null? l*) (%map1 p l)] [(null? (cdr l*)) (%map2 p l (car l*))] [else (let loop ([l* (cons l l*)] [r '()]) (if (let lp ([l* l*]) (or (null? l*) (and (pair? (car l*)) (lp (cdr l*))))) (loop (%map1 cdr l*) (cons (apply p (%map1 car l*)) r)) (reverse! r)))])) (define-syntax map (syntax-rules () [(_ p l) (%map1 p l)] [(_ p l1 l2) (%map2 p l1 l2)] [(_ . args) (%map . args)] [_ %map])) (define (%for-each1 p l) (let loop ([l l]) (if (pair? l) (begin (p (car l)) (loop (cdr l)))))) (define (%for-each2 p l1 l2) (let loop ([l1 l1] [l2 l2]) (if (and (pair? l1) (pair? l2)) (begin (p (car l1) (car l2)) (loop (cdr l1) (cdr l2)))))) (define (%for-each p l . l*) (cond [(null? l*) (%for-each1 p l)] [(null? (cdr l*)) (%for-each2 p l (car l*))] [else (let loop ([l* (cons l l*)]) (if (let lp ([l* l*]) (or (null? l*) (and (pair? (car l*)) (lp (cdr l*))))) (begin (apply p (map car l*)) (loop (map cdr l*)))))])) (define-syntax for-each (syntax-rules () [(_ p l) (%for-each1 p l)] [(_ p l1 l2) (%for-each2 p l1 l2)] [(_ . args) (%for-each . args)] [_ %for-each])) (define (string-map p s . s*) (if (null? s*) (let* ([len (string-length s)] [res (make-string len)]) (do ([i 0 (fx+ i 1)]) [(fx>=? i len) res] (string-set! res i (p (string-ref s i))))) (list->string (apply map p (map string->list (cons s s*)))))) (define (vector-map p v . v*) (if (null? v*) (let* ([len (vector-length v)] [res (make-vector len)]) (do ([i 0 (fx+ i 1)]) [(fx>=? i len) res] (vector-set! res i (p (vector-ref v i))))) (list->vector (apply map p (map vector->list (cons v v*)))))) (define (string-for-each p s . s*) (if (null? s*) (let ([len (string-length s)]) (do ([i 0 (fx+ i 1)]) [(fx>=? i len)] (p (string-ref s i)))) (apply for-each p (map string->list (cons s s*))))) (define (vector-for-each p v . v*) (if (null? v*) (let ([len (vector-length v)]) (do ([i 0 (fx+ i 1)]) [(fx>=? i len)] (p (vector-ref v i)))) (apply for-each p (map vector->list (cons v v*))))) ;--------------------------------------------------------------------------------------------- ; I/O Ports ;--------------------------------------------------------------------------------------------- ; (input-port? x) ; (output-port? x) ; (input-port-open? p) ; (output-port-open? p) ; (current-input-port) ; (current-output-port) ; (current-error-port) ; (open-output-string) ; (open-input-file s) ; (open-output-file x) ; (open-input-string x) ; (close-input-port x) ; (close-output-port x) ; (get-output-string x) (define (port? x) (or (input-port? x) (output-port? x))) (define (close-port p) (if (input-port? p) (close-input-port p)) (if (output-port? p) (close-output-port p))) (define (call-with-port port proc) (call-with-values (lambda () (proc port)) (lambda vals (close-port port) (apply values vals)))) (define (call-with-input-file fname proc) (call-with-port (open-input-file fname) proc)) (define (call-with-output-file fname proc) (call-with-port (open-output-file fname) proc)) ;with-input-from-file -- requires parameterize ;with-output-to-file -- requires parameterize ;open-binary-input-file ;open-binary-output-file ;open-input-bytevector ;open-output-bytevector ;get-output-bytevector ;--------------------------------------------------------------------------------------------- ; Input ;--------------------------------------------------------------------------------------------- ; (read-char (p (current-input-port))) ; (peek-char (p (current-input-port))) ; (char-ready? (p (current-input-port))) (define (read-line . ?p) (let ([p (if (null? ?p) (current-input-port) (car ?p))] [op (open-output-string)]) (let loop ([read-nothing? #t]) (let ([c (read-char p)]) (cond [(or (eof-object? c) (char=? c #\newline)) (if (and (eof-object? c) read-nothing?) c (let ([s (get-output-string op)]) (close-output-port op) s))] [(char=? c #\return) (loop #f)] [else (write-char c op) (loop #f)]))))) ; (eof-object? x) ; (eof-object) ;read ;read-string ;read-u8 ;peek-u8 ;u8-ready? ;read-bytevector ;read-bytevector! ;--------------------------------------------------------------------------------------------- ; Output ;--------------------------------------------------------------------------------------------- ; (write-char c (p (current-output-port))) ; (write-string s (p (current-output-port))) ; (display x (p (current-output-port))) ; (write x (p (current-output-port))) ; (newline (p (current-output-port))) ; (write-shared x (p (current-output-port))) ; (write-simple x (p (current-output-port))) ;flush-output-port ;--------------------------------------------------------------------------------------------- ; System interface ;--------------------------------------------------------------------------------------------- ;load ;file-exists? ;delete-file ;command-line ;exit ;emergency-exit ;get-environment-variable ;get-environment-variables ;current-second ;current-jiffy ;jiffies-per-second ;features ;--------------------------------------------------------------------------------------------- ; Residual versions of vararg procedures ;--------------------------------------------------------------------------------------------- (define-syntax nullary-unary-adaptor (syntax-rules () [(_ f) (lambda args (if (null? args) (f) (f (car args))))])) (define-syntax nullary-unary-binary-adaptor (syntax-rules () [(_ f) (lambda args (if (null? args) (f) (if (null? (cdr args)) (f (car args)) (f (car args) (cadr args)))))])) (define-syntax unary-binary-adaptor (syntax-rules () [(_ f) (lambda (x . args) (if (null? args) (f x) (f x (car args))))])) (define-syntax unary-binary-ternary-adaptor (syntax-rules () [(_ f) (lambda (x . args) (if (null? args) (f x) (if (null? (cdr args)) (f x (car args)) (f x (car args) (cadr args)))))])) (define-syntax unary-binary-ternary-quaternary-adaptor (syntax-rules () [(_ f) (lambda (x . args) (if (null? args) (f x) (if (null? (cdr args)) (f x (car args)) (if (null? (cddr args)) (f x (car args) (cadr args)) (f x (car args) (cadr args) (caddr args))))))])) (define-syntax binary-ternary-adaptor (syntax-rules () [(_ f) (lambda (x y . args) (if (null? args) (f x y) (f x y (car args))))])) (define-syntax cmp-reducer (syntax-rules () [(_ f) (lambda args (or (null? args) (let loop ([x (car args)] [args (cdr args)]) (or (null? args) (let ([y (car args)]) (and (f x y) (loop y (cdr args))))))))])) (define-syntax minmax-reducer (syntax-rules () [(_ f) (lambda (x . args) (let loop ([x x] [args args]) (if (null? args) x (loop (f x (car args)) (cdr args)))))])) (define-syntax addmul-reducer (syntax-rules () [(_ f s) (lambda args (if (null? args) s (let loop ([x (car args)] [args (cdr args)]) (if (null? args) x (loop (f x (car args)) (cdr args))))))])) (define-syntax subdiv-reducer (syntax-rules () [(_ f) (lambda (x . args) (if (null? args) (f x) (let loop ([x x] [args args]) (if (null? args) x (loop (f x (car args)) (cdr args))))))])) (define-syntax append-reducer (syntax-rules () [(_ f s) (lambda args (let loop ([args args]) (cond [(null? args) s] [(null? (cdr args)) (car args)] [else (f (car args) (loop (cdr args)))])))])) (define %residual-append (append-reducer append '()))