rpn/src/rpn-branch.cpp
2022-02-16 16:57:56 +01:00

344 lines
11 KiB
C++

#include "program.hpp"
/// @brief if keyword (branch) implementation
///
/// @param myobj the current branch object
/// @return int index of the next object to run in the current program
/// @return -1 the next object index to run in the current program is the current+1
///
int program::rpn_if(branch& myobj) {
// myobj.arg1 = 'if' condition evaluation value
MIN_ARGUMENTS_RET(1, -(int)ret_runtime_error);
ARG_MUST_BE_OF_TYPE_RET(0, cmd_number, -(int)ret_runtime_error);
if (_stack->value<number>(0) != 0)
myobj.arg1 = 1;
else
myobj.arg1 = 0;
_stack->pop();
return -1;
}
/// @brief then keyword (branch) implementation
///
/// @param myobj the current branch object
/// @return int index of the next object to run in the current program
///
int program::rpn_then(branch& myobj) {
// myobj.arg1 = index of then + 1
// myobj.arg2 = index of else + 1 or end + 1
// myobj.arg3 = index of if
// if condition is true -> arg1 (= jump to then + 1)
// else -> arg2 (= jump to else + 1 or end + 1)
branch* if_cmd = (branch*)at(myobj.arg3);
if (if_cmd->arg1 == 1)
return myobj.arg1;
else
return myobj.arg2;
}
/// @brief else keyword (branch) implementation
///
/// @param myobj the current branch object
/// @return int index of the next object to run in the current program
/// @return -1 the next object index to run in the current program is the current+1
///
int program::rpn_else(branch& myobj) {
// myobj.arg1 = index of else + 1
// myobj.arg2 = index of end + 1
// myobj.arg3 = index of if
// if condition was false -> arg1 (= jump to else + 1)
// if condition was true -> arg2 (= jump to end + 1)
branch* if_cmd = (branch*)at(myobj.arg3);
if (if_cmd->arg1 == 1)
return myobj.arg2;
else
return myobj.arg1;
}
/// @brief end keyword (branch) implementation
///
/// @param myobj the current branch object
/// @return int index of the next object to run in the current program
/// @return -1 the next object index to run in the current program is the current+1
///
int program::rpn_end(branch& myobj) {
int ret = -1;
// arg1 = index of do+1 in case of do..unti..end
if (myobj.arg1 != -1) {
// in a template do..unti..end
MIN_ARGUMENTS_RET(1, -(int)ret_runtime_error);
ARG_MUST_BE_OF_TYPE_RET(0, cmd_number, -(int)ret_runtime_error);
// check arg
if (_stack->value<number>(0) == 0) ret = myobj.arg1;
_stack->pop();
}
// arg2 = index of while+1 in case of while..repeat..end
else if (myobj.arg2 != -1)
ret = myobj.arg2;
return ret;
}
/// @brief do keyword (branch) implementation
///
/// @param myobj the current branch object
/// @return int index of the next object to run in the current program
/// @return -1 the next object index to run in the current program is the current+1
///
int program::rpn_do(branch& myobj) {
// nothing
return -1;
}
/// @brief until keyword (branch) implementation
///
/// @param myobj the current branch object
/// @return int index of the next object to run in the current program
/// @return -1 the next object index to run in the current program is the current+1
///
int program::rpn_until(branch& myobj) {
// nothing
return -1;
}
/// @brief ift keyword (branch) implementation
///
/// @param myobj the current branch object
/// @return int index of the next object to run in the current program
/// @return -1 the next object index to run in the current program is the current+1
///
void program::rpn_ift(void) {
MIN_ARGUMENTS(2);
ARG_MUST_BE_OF_TYPE(1, cmd_number);
// check ift arg
// arg is true if number != 0 or if is nan or +/-inf
if (_stack->value<number>(1) != 0) {
_stack->erase(1);
} else {
_stack->pop_front(2);
}
}
/// @brief ifte keyword (branch) implementation
///
/// @param myobj the current branch object
/// @return int index of the next object to run in the current program
/// @return -1 the next object index to run in the current program is the current+1
///
void program::rpn_ifte(void) {
MIN_ARGUMENTS(3);
ARG_MUST_BE_OF_TYPE(2, cmd_number);
// check ifte arg
if (_stack->value<number>(2) != 0) {
_stack->erase(2);
_stack->pop();
} else {
_stack->erase(2);
_stack->erase(1);
}
}
/// @brief while keyword (branch) implementation
///
/// @param myobj the current branch object
/// @return int index of the next object to run in the current program
/// @return -1 the next object index to run in the current program is the current+1
///
int program::rpn_while(branch& myobj) {
// nothing
return -1;
}
/// @brief repeat keyword (branch) implementation
///
/// @param myobj the current branch object
/// @return int index of the next object to run in the current program
/// @return -1 the next object index to run in the current program is the current+1
///
int program::rpn_repeat(branch& myobj) {
int ret = -1;
MIN_ARGUMENTS_RET(1, -(int)ret_runtime_error);
ARG_MUST_BE_OF_TYPE_RET(0, cmd_number, -(int)ret_runtime_error);
// check arg
// myobj.arg1 is end+1
if (_stack->value<number>(0) == 0) ret = myobj.arg1;
_stack->pop();
return ret;
}
/// @brief start keyword (branch) implementation
///
/// @param myobj the current branch object
/// @return int index of the next object to run in the current program
/// @return -1 the next object index to run in the current program is the current+1
///
int program::rpn_start(branch& myobj) {
int ret = -1;
MIN_ARGUMENTS_RET(2, -(int)ret_runtime_error);
ARG_MUST_BE_OF_TYPE_RET(0, cmd_number, -(int)ret_runtime_error);
ARG_MUST_BE_OF_TYPE_RET(1, cmd_number, -(int)ret_runtime_error);
// loop boundaries
myobj.firstIndex = _stack->value<number>(1);
myobj.lastIndex = _stack->value<number>(0);
_stack->pop_front(2);
// test value
if (myobj.firstIndex > myobj.lastIndex)
// last boundary lower than first boundary
// -> next command shall be after 'next'
// arg2 holds index of 'next'
ret = myobj.arg2 + 1;
return ret;
}
/// @brief for keyword (branch) implementation
///
/// @param myobj the current branch object
/// @return int index of the next object to run in the current program
/// @return -1 the next object index to run in the current program is the current+1
///
int program::rpn_for(branch& myobj) {
int ret;
MIN_ARGUMENTS_RET(2, -(int)ret_runtime_error);
ARG_MUST_BE_OF_TYPE_RET(0, cmd_number, -(int)ret_runtime_error);
ARG_MUST_BE_OF_TYPE_RET(1, cmd_number, -(int)ret_runtime_error);
symbol* sym = (symbol*)at(myobj.arg1); // arg1 = loop variable index
// loop boundaries
myobj.firstIndex = _stack->value<number>(1);
myobj.lastIndex = _stack->value<number>(0);
// test value
if (myobj.firstIndex > myobj.lastIndex)
// last boundary lower than first boundary
// -> next command shall be after 'next'
// arg2 holds index of 'next'
ret = myobj.arg2 + 1;
else {
// store symbol with first value
auto it = _local_heap.find(sym->value);
if (it != _local_heap.end()) {
delete it->second;
_local_heap.erase(it);
}
_local_heap[sym->value] = _stack->obj<number>(1)->clone();
ret = myobj.arg1 + 1;
}
_stack->pop_front(2);
return ret;
}
/// @brief next keyword (branch) implementation
///
/// @param myobj the current branch object
/// @return int index of the next object to run in the current program
/// @return -1 the next object index to run in the current program is the current+1
///
int program::rpn_next(branch& myobj) {
// arg1 = loop variable index
// firstIndex = current point in the loop
branch* start_or_for = (branch*)at(myobj.arg1);
if (!myobj.arg_bool) {
myobj.arg_bool = true;
myobj.firstIndex = start_or_for->firstIndex;
}
// increment then test
// carefull: round toward minus infinity to avoid missing last boundary (because growing step)
mpfr_add(myobj.firstIndex.mpfr_ptr(), myobj.firstIndex.mpfr_srcptr(), mpreal(1).mpfr_srcptr(), MPFR_RNDD);
// for command: increment symbol too
if (start_or_for->arg1 != -1) {
object* obj;
unsigned int size;
symbol* var = (symbol*)at(start_or_for->arg1);
// store symbol variable (asserted existing in the local heap)
((number*)_local_heap[var->value])->value = myobj.firstIndex;
}
// test value
if (myobj.firstIndex > start_or_for->lastIndex) {
// end of loop
myobj.arg_bool = false; // init again next time
return -1;
} else {
// for command: next instruction will be after symbol variable
if (start_or_for->arg1 != -1) return start_or_for->arg1 + 1;
// start command: next instruction will be after start command
else
return myobj.arg1 + 1;
}
}
/// @brief step keyword (branch) implementation
///
/// @param myobj the current branch object
/// @return int index of the next object to run in the current program
/// @return -1 the next object index to run in the current program is the current+1
///
int program::rpn_step(branch& myobj) {
int ret;
MIN_ARGUMENTS_RET(1, -(int)ret_runtime_error);
ARG_MUST_BE_OF_TYPE_RET(0, cmd_number, -(int)ret_runtime_error);
mpreal step = _stack->value<number>(0);
_stack->pop();
// end of loop if step is negative or zero
if (step <= 0)
ret = -1;
else {
// arg1 = loop variable index
// firstIndex = current count
branch* start_or_for = (branch*)at(myobj.arg1);
if (!myobj.arg_bool) {
myobj.arg_bool = true;
myobj.firstIndex = start_or_for->firstIndex;
}
// increment then test
// carefull: round toward minus infinity to avoid missing last boundary (because growing step)
mpfr_add(myobj.firstIndex.mpfr_ptr(), myobj.firstIndex.mpfr_srcptr(), step.mpfr_srcptr(), MPFR_RNDD);
// for command: increment symbol too
if (start_or_for->arg1 != -1) {
object* obj;
unsigned int size;
symbol* var = (symbol*)at(start_or_for->arg1);
// increase symbol variable
((number*)_local_heap[var->value])->value = myobj.firstIndex;
}
// test loop value is out of range
if (myobj.firstIndex > start_or_for->lastIndex) {
// end of loop
myobj.arg_bool = false; // init again next time
ret = -1;
} else {
// for command: next instruction will be after symbol variable
if (start_or_for->arg1 != -1) ret = start_or_for->arg1 + 1;
// start command: next instruction will be after start command
else
ret = myobj.arg1 + 1;
}
}
return ret;
}