
HP-28S

HP-28S Quick Reference
General

List of
contents

See at the end of this document.

HP-28S Famous calculator made by Hewlett-Packard from 1988 – 1992.
Memory 32768 bytes for stack, programs and data.

Approximately 31.6 kBytes available to the user.
Contrast
adjustment

Press and hold ON then press + or – to change the contrast.

Number
resolution

• 56 bit for real numbers, 12 decimal digits of precision, exponent
range ±499

• 64 bit for binary numbers
The Stack The HP-28S is a stack-based calculator.

For details on using the stack see STACK Menu.
Commands
and Menus

• Commands can be entered by typing their name explcitly.
• Most commands and functions are organized in menus, some are

directly available on the keyboard. See Direct Key Commands.
• SYSEVAL is the only command which neither accessible thru the

keyboard not thru a menu. See System Operations.
• Some commands are present in multiple menus.

Endless-loop
interruption

See System Operations. Note that a program or other lengthy
operations can usually be interrupted by pressing "ON".

Audible
feedback

Can be turned off by clearing flag 51, see Flags.

HP-28C The main difference is the smaller memory of only 2 kByte.
And whereas the HP-28S comes with a software version "2BB" it is
"1BB" for the HP-28C.

Manuals At least four editions of the Reference Manual exist: Version 1 dated
October 1987 to version 4 dated November 1988.
This Quick Reference is based on my experience with a HP-28S version
"2BB". It is best described by edition 4 of the Reference Manual.

Author A. Thimet, V1.0, © 2003, all right reserved.

1

HP-28S

Direct-Key Commands

General The following section gives a description of useful commands that are
directly accessible from the keyboard.
• Commands are listed in the order as they show up on the calculator

keyboard, from top left ("A") to bottom right ("+").
• On the calculator menus are generally indicated by a white label

backround.
• In the following text menus are indicated by bold-faced print in the left

column.
• References to other sections of this Quick Reference are also printed

bold-faced.
• When a menu key is pressed it displays six "soft labels" on the bottom

of the LCD screen which are associated with the white top row keys
below the display. Pressing one of these keys will activate the
command written on the soft label.

• Pressing "<>" to the right of the red SHIFT key will remove the soft
labels from the LCD display and the white keys beneath will resume
their cursor-control meanings printed in white above the buttons.
See CURSOR Menu.

Command
line
editin
g

Pressing a command key performs different actions depending on the
current input mode:
• If no command line is currently being edited and Alpha Mode (see

below) is not active the command is immediately applied to the stack
contents.

• If command line editing is in progress some commands will evaluate
the entire command line and produce immediate results. These
commands (ie. STO) perform an implicit ENTER.

• If Alpha-Mode is active or if a command is typed in explicitly or if a
command key is pressed which doesn't perform an implicit ENTER (ie.
"+") then the command word or symbol is appended to the command
line.

To abort editing without executing any commands press ON.
ARRAY Vector and matrix creation, manipulation and operations.

See ARRAY Menu.
BINARY Binary number bases (bin, dec, oct, hex) and operations including rotation.

See BINARY Menu.
COMPLX Complex number creation and operations. See COMPLX Menu.
STRING String functions and conversions. See STRING Menu.
LIST List creation and manipulation. See LIST Menu.
e When 'e' (lower case E) is converted into a number using →NUM it

evaluates to 2.71828…
If flag 35 is clear then 'e' immediately evaluates to its numeric value.
See Flags and Evaluation Rules.

2

HP-28S

REAL Functions for real number arguments. See REAL Menu.
STACK Stack manipulation. See STACK Menu.
STORE Storage arithmetic. See STORE Menu.
MEMORY Memory display, MENU management, paths and directories.

See MEMORY Menu.
i When 'i' (lower case I) is converted into a number using →NUM it

evaluates to the complex number (0,1).
If flag 35 is clear then 'i' immediately evaluates to its numeric value.
See Flags and Evaluation Rules.

ALGEBRA Symbolic formulae manipulation and Taylor series expansion.
See ALGEBRA Menu.

STAT Summation and statistics. See STAT Menu.
PRINT Printing and printer control. See PRINT Menu.
CONTRL Programming: Control functions, text display, sound. See CONTRL Menu.
BRANCH Programming: Branch and loop instructions. See BRANCH Menu.
TEST Programming: Flag manipulation and various tests. See TEST Menu.
CATALOG Displays a list of all built-in functions. See CATALOG Menu.
UNITS Displays a list of all built-in units. See UNITS Menu.
≤ ≥ < >
== ≠

Comparisn operators. See TEST Menu.

→ The right arrow key above the character U is used to store local variables
in a program, see Programs.

" { } []
() << >>

Delimiters required to enter certain kinds of data types.
Note that trailing delimiters are automatically added. See Data Types.

NEWLINE Used to insert a line break in a program (ENTER cannot be used because it
would push the progam onto the stack)

LC Toggle between lower and upper case characters
α Alpha-Mode:

While editing the command line many command keys will immediately
evaluate the command line and produce a result (implicit execution of
ENTER). However, in Alpha-Mode the command key symbols will be added
to the command line und evaluation occurs only when pressing the ENTER
key explicitly.

MENUS Menu-lock.
• When active, pressing a character key with an associated menu

activates the menu (ie. pressing "F" activates the REAL menu). To
select the character, press shift-key.

• When inactive pressing a character will return the character and shift-
key activates the menu.

Note that the status of Menu-lock is not indicated in the LCD display!
INS Toggle command line editing mode between insert and overwrite.

Default is overwrite. See CURSOR Menu.
DEL Delete character under cursor in editing mode. See CURSOR Menu.
← → ↑ ↓ Cursor movement in editing mode. See CURSOR Menu.
<> Activates the CURSOR Menu, see there.
MODE Display and angle modes and various general settings. See MODE Menu.
TRIG Trigonometric functions. See TRIG Menu.
LOGS Logarithms and exponential functions. See LOGS Menu.

3

HP-28S

SOLV Numerical solver and root finder. Symbolic solver for quadratic formulas.
See SOLV Menu.

PLOT Plotting curves on the LCD display. See PLOT Menu.
USER Display user variables and progams in the current directory.

See USER Menu.
CUSTOM Custom menu. See CUSTOM Menu.
NEXT, PREV Display next or previous set of menu soft-labels if a menu is active.

These soft-labels are displayed on the bottom of the LCD screen. When a
menu is active the cursor keys printed above of the top row of white keys
beneath the LCD display are not available. Rather, the command indicated
by the soft-label will be executed when the corresponding white key is
pressed.

ENTER • When a command line is present its contents are evaluated and
commands executed.

• Without a command line this performs a DUP and pushes the stack.
See STACK Menu.

• Note that ENTER is not a command! It cannot be used in a program. It
is only a command to the calculator to evaluate the command line.

EDIT Edit the contents of stack level 1.
After pressing ENTER the modified data overwrites the old contents.

CHS Change sign of number.
In a program enter NEG to negate stack level 1.

VIEW↑ Change the visible section of the stack so that higher stack contents are
visible. Useful when the stack contains many elements.
Cannot be used in programs.

EEX Enter exponent for number.
If not in edit mode "1E" is put into the command line.

VIEW↓ Change the visible section of the stack so the lower stack contents are
visible. Cannot be used in programs.

DROP Drop the stack and discard contents of stack level 1. See STACK Menu.
ROLL Move a specified stack object to level 1. See STACK Menu.
⇐ Delete character to the left in editing mode.

This does never delete the element in stack level 1.
SWAP Exchange stack level 1 and 2. See STACK Menu.
' Name or equation delimiter. See Data Types.

Note that trailing delimiters are automatically added.
VISIT • Put the contents of a variable for editing into the command line. Ie.

'A' VISIT puts the contents of variable A into the command line for
editing.

• If the argument is a number the contents of the corresponding stack
level are retrieved for editing. Ie. 3 "A" 2 1 3 VISIT puts the
contents of stack level 3 ("A") into the command line for editing.

To abort the VISIT operation press ON. To keep modifications press
ENTER. This will store the modified data in the variable or the earlier
specified stack level.

COMMAND ENTER (or any other command that involves execution of ENTER) stores a
copy of the current command line provided MODE CMD has been activated
(see MODE Menu).

4

HP-28S

COMMAND can be used to retrieve this stored command line for editing.
UNDO ENTER (or any other command that involves execution of ENTER) stores a

copy of the current stack before it executes provided MODE UNDO has
been activated (see MODE Menu).
UNDO recalls the previousely stored stack layout.
Note that this feature potentially requires a lot of memory!

LAST When a command takes arguments from the stack those arguments will be
saved provided MODE LAST has been specified (see MODE Menu).
LAST retrieves these saved arguments and pushes them back onto the
stack. Note that the number of saved stack arguments depends on the
command.
If MODE LAST is active and a command produces an error then the stack is
automatically restored. If MODE LAST is not active these arguments are
lost.

1/x Reciprocal of numbers or matrices.
Displayed in equations and programs using the INV() function notation.

STO Stores the object in stack level 2 in the variable who's quoted name is
given in stack level 1. Ie. 5 'A' STO stores 5 in variable A and drops both
objects from the stack. See STORE Menu.

RCL Recall variable and push it onto the stack. This does not evaluate the
contents of the variable or execute a program. The quoted variable name
is replaced by the recalled object. See STORE Menu.

PURGE Delete variable or program who's name is given in stack level 1. This
command can operate on lists of names! To erase all variables of the
current directory use MEMORY VARS PURGE
Warning: VARS also returns subdirectory names so in the above example
all subdirectories will be returned as well!!
See STORE Menu.

∫ Numeric or symbolic integration. See Integration.
d/dx Symbolic differentiation. See Differentiation.
^ Exponential function. Ie. –2 3 ^ returns –8 in stack level 1.

Accepts real and complex numbers.
EVAL Evaluate quoted name or program in stack level 1. See Evaluation Rules.
→NUM Same as EVAL but also converts a symbolic name into a number.

Ie. 3 π * results in '3*π' and →NUM converts this into 9.424…
CONT Continue an interrupted program. See Programs.
% Percentage.

Note that different from other HP calculators this does drop the stack.
%CH Percentual difference from contents in stack level 2 to contents in stack

level 1.
√X Square root. Displayed in equations and programs using the square root

symbol "√".
ON Turns calculator on, clears errors displays, aborts command line editing,

interrupts programs. ON never discards data from the stack.
OFF Turns calculator off.

It automatically turns itself off after a few minutes of inactivity.
CLEAR Clear the stack. See STACK Menu.
CONVERT Convert between different units. See UNITS menu.

5

HP-28S

Data Types

General • All of the data types described below can be stored on the stack
and in variables.

• Special delimiters are used to denote different kinds of data types.
• Each data type has a type-identifier, see TEST Menu.

Real numbers 3.4567E12 See REAL Menu.
Complex
numbers

(2.3,4.5) where 4.5 is the imaginary part. See COMPLX Menu.
• When using a comma as decimal separator this must be

entered as (2,3.4,5)
• Instead of the separator symbol a SPACE can be used!
• Note that it is not possible to refer to variables when

constructing a complex number: (X Y) will cause an error.
Binary numbers #123456 See BINARY Menu.
Strings "This is a string!" See STRING Menu.
Real fields [1,2,3,4] or [[1,2] [3,4]]

• Can be a vector or matrix. See ARRAY Menu.
• Note that it is not possible to refer to variables when

constructing a field: [X Y] will cause an error.
Complex field [(1,2) (3,4) (4,5)] or [[(1,2) (2,3)] [(4,5) (5,6)]]

Can be a vector or matrix. See ARRAY Menu.
List { 1 A B "String" }

A list of objects. See LIST Menu.
Note that almost everything can be put in a list: {* = ^}
This is important when doing symbolic manipulations on
equations, see ALGEBRA Menu.
Object delimiters cannot be put in a list.

Names 'X2'
Used to reference stored variables of the above data types. When
a number is put in single quotes the plain number is used. Other
data types cannot be put in quotes, ie. '[1]' ENTER will cause
an error but '1.5E3' will not.

Expressions 'A+B' or 'C=A+B'
Note that like other data objects expressions can be stored in
variables!

Program << 3 * >>
A series of program instructions. See Programs.

6

HP-28S

Programs

General • A program is a series of commands surrounded by << and >>
brackets. These symbols are located next to the SPACE key.

• The programming language is called RPL: Reverse Polish Lisp. It
is stack based with a support for many data types. The HP-28C/S
was the first calculator to use RPL. Later models like the HP-48
and HP-49 used it as well.

• Control instructions are described in the CONTRL Menu
• Branching instructions are descibed in the BRANCH Menu
• Flag manipulation and other program commands are described in

MENU Test
• Programs can be stored in variables like other objects.

See Data Types.
• There is no GOTO available. Use structured programming instead.
• Programs can be interrupted by pressing "ON".

Program example <<ROT * SWAP 2 / CHS DUP SQ ROT - √ >> 'QE' STO
• Program QE takes 3 input values from the stack which represent

coefficients a, b and c of a quadratic equation.
• The program returns two values r1 and r2 on the stack. The two

solutions of the quadratic equation can be calculated as r1+r2
and r1-r2.

Local Variables A program can have local variables.
Using local variables avoids conflicts with global variable names.
Example: <<→ x y <<x y + LN>> >> 'P' STO
This creates the program and stores it in a variable called P.
Important: The SPACE after the "→" is required!
The program takes two arguments from the stack and puts them into
the local variables x and y. The return value is ln(x+y).
Example: 1 2 P returns 1.0986…
This program could also be entered in the form of an expression:
<< → x y 'LN(x+y)' >> 'P' STO
Both the program and expression form allows to invoke the program
in functional notation.
Example: 'P(1,2)' EVAL also returns 1.0986…
Important: For some reason the sequence P(1,2) ENTER will not
work but rather issue and error.

Editing a
program

• Use 'P' VISIT to bring back the program into the command
line for editing.

• Use NEWLINE to enter line breaks to make the program code
more readable.

Comparisn
operators

> ≥ < ≤ == ≠ and flag checking commands return either 0 or 1 onto
the stack and can be used to steer branch instructions.
Note that the values to be compared must be present on the stack.
Example: 4 5 > returns 0.
For more details see TEST Menu.

Subroutines Simply specify the name of the program to execute. Example:
<< SQ LN 1 + >> 'P1' STO
<< P1 SWAP P1 + >> 'P2' STO

7

HP-28S

When P2 is invoked it calls P1 with the values in stack level 1 and 2
and adds the results that P1 produced (which is ln(x²)+1).

ARRAY Menu

General • Arrays (or fields) are either vectors or matrices.
• Arrays can be real or complex.
• If an array contains a single complex value the entire array is

automatically complex.
• Lengthy array operations can be interrupted by pressing ON
• Arrays are entered by using square brackets [and].
• Example 2x2 matrix: [[1 2] [3 4]]

+ − Add/substract vectors or matrices of matching dimensions.
This also works on mixed real/complex arguments but if a complex
argument is involved the result will always be complex.

* Multiplication. Either operand may be real or complex:
• Multiply vector by number or number by vector → vector
• Multiply matrix by number or number by matrix → matrix
• Multiply matrix by vector → vector
• Multiply matrix by matrix → matrix

÷ • Calculate matrix X so that M1*X=M2 where M1 and M2 are matrices in
stack level 1 and 2. Or: B A ÷ calculates X=B/A so that AX=B.

• Calculate vector X so that M1*X=V2 where M1 and V2 are the matrix
and vector in level 1 and 2. Or: V M ÷ calculates X=V/M so the M*X=V.

These operations produce more accurate results then using the INV
command on matrices. The matrices must be square. Can often be used
even if the matrix A or M is singular and thus solves systems where the
number of variables does not match the number of equations.

INV (1/x) Returns inverse of square matrix.
SQ (x²) Returns the square of a square matrix.
→ARRY Convert stack values into a matrix or vector:

• X1 X2 … Xn n →ARRY results in vector [X1 X2 … Xn]
• X11 X12 … Xnm {n m} →ARRY results in matrix [[X11…X1m] …

[Xn1…Xnm]]
• Note that combining a number of vectors into a matrix is not possible!
• An error occurs if the stack doesn't hold enough values for the matrix or

if they are not of numerical type.
• If any one value on the stack is complex the resulting array will be

complex.
ARRY→ The inverse operation of →ARRY. Vector and matrix dimensions are

returned as a number or length-2 list in stack level 1.
PUT Replace value of a matrix or vector:

• V {idx} X PUT puts the number X into vector V at position idx and
returns the modified vector in level 1.

• M {row col} X PUT puts the number X into matrix M at position
(row,col) and returns the modified matrix in level 1.

• 'Nam' {idx} X PUT puts the number X into vector named Nam at
position idx and returns nothing.

8

HP-28S

• 'Nam' {row col} X PUT puts the number X into the matrix named
Nam at position (row,col) and returns nothing.

Note that you cannot put a complex number into a real matrix!
Vector and matrix indices count from 1.

GET Inverse operation of PUT:
• V {idx} GET pushes the number at position idx in vector X onto the

stack.
• M {row col} GET pushes the number at position (row,col) in matrix

M onto the stack.
• 'Nam' {idx} GET pushes the number at position idx in vector named

Nam onto the stack.
• 'Nam' {row col} GET pushes the number at position (row,col) in

matrix named Nam onto the stack.
Vector and matrix indices count from 1.

PUTI This is similar to PUT but it does not discard the index value but rather
increments it (including row wrap) and returns it on stack level 1.
Example: V {idx} X PUTI puts the number X into vector V at position idx
and returns the modified vector (or its name) in level 2 and {idx+1} in level
1. This greatly simplyfies the input or modification of vectors and matrices.

GETI Reverse operation of PUTI.
Example: V {idx} GETI returns V (or its name) on stack level 3, {idx+1}
on stack level 2 and the retrieved number on stack level 1.

SIZE Returns the size of the specified vector as a length-1 list or the size of a
matrix as a length-2 list in {rows columns} format.

RDM Redimensions a matrix or vector. Added elements are set to 0. If the new
dimension is smaller than the original one then elements are discarded.
It is possible to redimension a matrix into a vector and a vector into a
matrix. Examples:
• [1] {2 2} RDM redimensions the vector V into a 2x3 matrix and

returns the resulting matrix on stack level 1: '[[1 0][0 0]]'
• 'Nam' {4} RDM redimensions the vector or matrix named Nam into a

length-4 vector and returns nothing.
TRN Transpose a nxm matrix into a mxn matrix.

When operating on a variable name the name is dropped from the stack.
For complex matrices the elements are also conjugated (imaginary part is
negated).

CON Create a "constant" matrix or vector where all elements have a specified
value.
• {3} 5 CON creates a length-3 vector with all elements set to 5.
• {2 3} 0 CON creates a 2x3 matrix with all elements set to 0.
• [1 2] 7 CON replaces all elements of the vector with value 7.
• 'Nam' 2 CON replaces all elements of the matrix or vector named Nam

with value 7 and returns nothing.
IDN Create an identity matrix (all elements 0 except for 1s in the diagonal).

• 5 IDN creates a 5x5 identity matrix
• [[1 2][3 4]] IDN sets elements of the square matrix to identity

matrix values.
• 'Nam' IDN sets elements of the square matrix named Nam to identity

matrix values and returns nothing.
9

HP-28S

RSD Returns the residual:
'B' 'A' 'X' RSD returns B – A*X in stack level 1.
A must be a matrix; B and X must be of the same type, either matrix or
vector.

CROSS Cross product of two length-3 vectors A and B returned as a length-3 vector:
[A2*B3-A3*B2, A3*B1-A1*B3, A1*B2-A2*B1]

DOT Scalar product of two equally-dimensioned vectors or matrices:
• [1 2 3] [4 5 6] DOT returns 1*4+2*5+3*6 = 32
• [[1 2] [3 4]] [[5 6] [7 8]] DOT returns

1*5+2*6+3*7+4*8 = 70
DET Returns the determinant of a square matrix.
ABS Returns the norm of a matrix or vector.

This is the square root of the sum of squares of all elements.
RNRM Row norm of a matrix or vector.

• For a vector this is the largest absolute value of all elements.
• For a nxm matrix: For each row sum up the absolute values of all n row

elements. Then take the largest value from these m sums. This returns
a single number.

CNRM Column norm. Same as RNRM but column-oriented.
For a vector this is the sum of the absolute values of all vector elements.

R→C Combine two real matrices or vectors into a complex matrix or vector where
the field in stack level 1 will be the imaginary part.

C→R Split a complex matrix or vector into real and imaginary part.
Stack level 1 will receive the imaginary part.

RE Return the real part of a real or complex matrix or vector.
IM Return the complex part of a real or complex matrix or vector.

For a real matrix/vector this will return a matrix/vector filled with zeros.
CONJ Conjugate a real or complex matrix or vector.

This will negate all imaginary parts.
Will do nothing on a real matrix or vector.

NEG (CHS) Negate each matrix or vector element.

BINARY Menu

General • "Binary" numbers are unsigned integer numbers with a maximum length of
64 bit.

• Binary numbers can be entered and displayed in binary, octal, decimal or
hex format (don't confuse binary display mode with the binary number
type!).

• Binary numbers are entered using the pound sign: #3A75C.
The digits must be valid for the selected number base.

• To enter a number in a number base other than the current one use a
trailing specifier: d (decimal), o (octal), h (hex), b (binary). Ie. #3Ah.
The number will automatically be converted to the current number base.

• Negative binary numbers are not supported.
+ - x ÷ These can be used on binary or mixed binary/real numbers.

The result will be a binary number with the fractional part cut off.
Binary and complex numbers cannot be combined.

10

HP-28S

DEC Select decimal entry format and display all binary numbers in the stack in
decimal notation with a trailing 'd'.

HEX Select hexadecimal entry format and display all binary numbers in the stack in
decimal notation with a trailing 'h'.

OCT Select octal entry format and display all binary numbers in the stack in
decimal notation with a trailing 'o'.

BIN Select binary entry format and display all binary numbers in the stack in
decimal notation with a trailing 'b'.

STWS Use the real number N in stack level 1 to specify a new word size of N=1…64
bits. N<1 is the same as N=1 and N>64 is the same as N=64.
A binary number cannot be passed to STWS!

RCWS Return the current word size.
RL Rotate the binary number in stack level 1 one bit left. The topmost bit

becomes bit0.
For this and the following commands the topmost bit is determined by the
current word size.

RR Rotate one bit right. bit0 will be the topmost bit.
RLB Rotate ony byte left. The topmost 8 bits will become bits0-7.
RRB Rotate ony byte right. bits0-7 will become the topmost 8 bits.
R→B Convert real number X into binary number.

If X<0 the result will be 0. If X>0xFFFFFFFFFFFFFFFF the result will be
0xFFFFFFFFFFFFFFF reduced to the currently selected word size.
Note that reduction is carried out after conversion to a 64-bit integer. So if
the word size is 4 and 17d is entered the result will be #1d.

B→R Convert binary number to real. Some significant digits may be lost!
SL Shift one bit left. Inserts zero in bit0.
SR Shift one bit right. Inserts in the topmost bit.
SLB Shift one byte left. Inserts zero in bit0-7.
SRB Shift one byte right. Inserts zero in the topmost 8 bits.
ASR Shift one bit right. Duplicates the topmost bit and discards bit 0.
AND AND operation
OR OR operation
XOR XOR operation
NOT Invert all bits

11

HP-28S

COMPLX Menu

General • Complex numbers are entered using brackets: (1.72 378) (2,4.5)
The left number is the real part and the right one the imaginary part.
Note that either a space or the delimiter symbol (either dot or comma,
depends on the current RDX setting) can be used to separate the real and
imaginary part.

• Among others the following operations can be performed on complex
numbers:
• + - x ÷ INV Simple arithmetics, inverse (1/x)
• SQ √ ^ Square (x²), square root and exponential
• SIN COS TAN Trigonometric functions and their inverse
• SINH COSH TANH Hyperbolic functions and their inverse
• EXP LN LOG ALOG Logarithms and their inverse

R→C Combine two real numbers in stack level 1 and 2 to a complex number where
the number in stack level 1 will be the complex part.

C→R Split complex number into real part (stack level 2) and imaginary part (stack
level 1)

RE Return real part of complex or real number.
IM Return complex part of complex or real number.

For a real argument this will always be 0.
CONJ Conjugate a complex or real number (negate the imaginary part).

Performs no action on a real number.
SIGN Return unary vector in the direction of the complex number:

(x/sqrt(x*x+y*y), y/sqrt(x*x+y*y))

R→P Convert from rectangular to polar coordinates. See TRIG Menu.
P→R Convert from polar to rectangular coordinates. See TRIG Menu.
ABS Absolute value of complex or real number.

For a complex number this is sqrt(re*re+im*im)
NEG Negative value of complex or real number.
ARG Returns the angle θ of the complex number (x,y) vector with the x-axis.

• X≥0: θ=atan x/y
• X<0: θ=atan x/y + π*sign(y)

STRING Menu

General • Strings are entered in double quotes: "This is a string."
• The length of a string is only limited by the available memory.
• Strings are based on all 255 ASCII characters.

+ Concatenate strings in stack level 1 and 2.
→STR Convert any object type in stack level 1 into a string.

The conversion preserves the current display format including multi-line
mode. NEWLINE symbols inside the string are displayed as .
If the object in level 1 is a string no additional quotes are added.

STR→ Convert a string back into objects and evaluates them.
"3 4 + 10 *" STR→ evaluates the commands in the string and produces
70. This is essentially what ENTER does with the command line.

CHR Convert ASCII character code in stack level 1 into a string.

12

HP-28S

Note that the command does not accept binary numbers!
NUM Return ASCII code of the first character of the string in stack level 1 as a real

number.
→LCD Writes the data of the given string into the LCD pixel memory.

Each characters inside the string represents 8 pixel. Bit0 of the first character
represents the pixel in the very top left corner. Bit1 of the first character the
pixel below etc. Bit0 of the 2nd character represents the 2nd pixel from left at
the very top of the display.
If the string does not contain enough characters to fill the entire LCD screen
then the remaining pixels are unchanged.

LCD→ Returns a 548 byte string representing the pixel data of the LCD screen.
Each character receives the data of an 8 pixel-column, starting with the
column in the top left corner of the LCD screen.
The screen itself is 137x32 pixel in size.

POS Seach for the string given in level 1 within the string in level 2 and return the
position where the string was found or 0 if not found.
"This is a string" "str" POS returns 11.

SUB Returns a substring of the string in level 3. The numbers in level 2 and level 1
specify the start and end position of the substring (counting from 1).
"This is a string" 3 7 SUB returns "is is".
Start and end positions cannot be specified in a length-2 list.

SIZE Returns the length of the string.
DISP Display the string in level 2 on the LCD display line given in level 1 (1…4). See

CONTROL Menu.

LIST Menu

General • A list is a sequence of arbitrary objects which need not be of the same
type.

• Lists are entered by using curly brackets:
{1 (2,3) 5 "A" Q [7 8] {a b c}}.

• A lists may be put inside another list.
• In order to avoid evaluation of names when they are typed on the

command line to be put in a list they can be entered in single quotes or
with Alpha-Mode turned on. The quotes are removed when the list is
created.

+ Used to append objects of any type to a list:
• "Hi!" {1 2 3} + returns {"Hi!" 1 2 3}
• {3 4 5} [7 8 9] + returns {4 5 6 [7 8 9]}
• {1 2 3} {a b c} + returns {1 2 3 a b c} rather than

{{1 2 3} a b c}

→LIST Combine n elements on stack levels 2…n+1 into a list.
n must be given on stack level 1.
Some of the list components my be lists themselves:
{1 2 3} {a b c} 2 →LIST returns {{1 2 3} {a b c}}

LIST→ Splits a list into individual elements on the stack. The length of the list is
returned on stack level 1.

PUT Put an element into a list at the given position. Similar to PUT for matrices.
• {1 2 3} 2 'X' PUT puts the element X into the list at position 2 and

13

HP-28S

returns the modified list {1 X 3}
• 'Nam' 2 'X' PUT puts the element X into the list named Nam at

position idx and returns nothing.
List indices count from 1 and must be within range.
Note that this is an overwrite operation, not an insert!

GET Inverse operation of PUT:
{A B C} 2 GET pushes the element B at position 2 onto the stack.
B is not evaluated but rather returned as the name 'B'.

PUTI Put an element into a list at the given position and increase the position
index. Similar to PUTI for matrices.
Example: {1 2 3} 1 'X' PUTI puts the element X into the list at position
1 and returns the modified list (or its name) in level 2 and 2 (the new index)
in level 1: {X 2 3} 2.
This greatly simplyfies the input or modification of a list.
The index automatically wraps around.

GETI Inverse operation of PUTI.
Example: {1 2 3} 3 GETI returns the list (or its name) on stack level 3, 1
(the incremented and wrapped index) on stack level 2 and the retrieved
element on stack level 1.
The index automatically wraps around.

POS Searches for an element within a list.
Example: {1 (2,3) 5 "A"} 5 POS returns 3 because the real number 5
can be found at position 3.

SUB Return a sub-list from a given start index up to a given end index.
Example: {1 (2,3) 5 "A" 'Q'} 2 3 SUB returns {(2,3) 5}.
The start and end index cannot be specified in a list.

SIZE Returns the size (number of elements) of the list.
A list within a list counts as one list element.

REAL Menu

General • Note that various REAL functions are directly accessible on they keyboard.
See Direct-Key Commands.

• Real numbers are entered without special delimiter: 3.5721E10
NEG Negates object. This can be a real or complex number or a real or complex

matrix or vector.
FACT Calculates n! for integer n or Γ(x+1) for fractional x.

Works for non-integer negative numbers but does not work for complex
numbers. Use the following program IFAC to find Γ-1(x+1):
<<→ x <<'FACT(Y)-x' 'Y' 5 ROOT>> >> 'IFAC' STO
You can verify that Γ(120.56417111)=1E200

RAND Return the next random number in the range 0 ≤ x < 1.
RDZ Takes a real number as the initializer for the random number generator.

When 0 is specified the elapsed time since power-on is used.
MAXR Largest positive real number: 9.99999999999E499
MINR Smallest positive real number: 1.00000000000E-499
ABS Absolute value of a real or complex number or a real or complex matrix or

vector. See also COMPLX Menu and ARRAY Menu.

14

HP-28S

SIGN Sign of a real or complex number.
For the sign of a complex number see COMPLX Menu.

MANT Mantissa of a real number.
XPON Exponent of a real number.
IP Integer part of a real number.
FP Fractional part of a real number.
FLOOR Return largest number ≤ x.
CEIL Return smallest number ≥ x.
RND Perform rounding of a real or complex number or a real or complex matrix or

vector according to the number of significant digits specified in the current
FIX, SCI or ENG display mode. In STD mode no rounding occurs.

MAX Return larger of the two real numbers in stack level 1 and 2.
MIN Return smaller of the two real numbers in stack level 1 and 2.
MOD Returns reminder of division of real numbers in levels 1 and 2.

This is defined as: x – y*floor(x/y)
%T Calculates percentage of total: 100*y/x

15

HP-28S

STACK Menu

General The stack of the HP-28S behaves similar to the stack of many other RPN
(Reverse Polish Notation) calculators like the HP-41. However, there are
important differences:
• In theory the stack can hold an arbitrary number of elements. (Practically,

the number is limited by the available memory.)
• In particular, the stack can be empty. In this case commands that

take arguments from the stack will cause an error. This is different
from the 4-level stack used in other HP calculators: There the stack
registers always contain numbers.

• When dropping data from the stack the content of the highest stack
level is not duplicated. Thus, it is not possible to perform "calculations
with a constant" as usual.

• To avoid a rapidly growing stack virtually all comands remove all of
their arguments from the stack before the results are pushed onto the
stack.

• Different from normal RPN calculators there is a command line. It
supports advanced editing features but also introduces slight differences
in behaviour as compared to normal RPN, see example below.

Periodically erase unneeded stack objects (use CLEAR located on the "0" key)
because a large number will slow down execution speed.

Examples All examples assume an initially empty stack.
1 2 + results in 3. Except for the result the stack is empty.
1 2 + 'X' STO stores the result (3) in variable X. The stack is empty
because like all other commands STO removes its arguments from the stack
(the value and the variable name).
1 ENTER 2 ENTER + results in 3 and an otherwise empty stack. On a
normal RPN calculator the result would be 4 in stack level 1 and 1 in level 2.
This is because the 2nd ENTER moves the input value (2) from the command
line to stack level 1 only.
1 ENTER 2 ENTER ENTER + returns 1 and 4 because the 3rd ENTER acts
as a DUP which duplicates the element in stack level 1.
1 ENTER 2 DUP + also returns 1 and 4 because DUP explicitly duplicates
the 2.
Note that ENTER is not a command! It merely tells the calculator to evaluate
the command line. If the command line is empty it executes the DUP
command as a convenience.

DROP Above the "9" key: Discard the object in stack level 1 and shift all other
values one stack level down.

SWAP Shifted "⇐" key: Exchange the object in level 1 and 2 without evaluating
them.

ROLL Shifted DROP key: Move a specified stack object onto the top of the stack.
Example: 10 20 30 40 50 3 ROLL
Moves the 3rd stack object (30) to the top of the stack. After the operation the
stack looks like this: 10 20 40 50 30

DUP Same as ENTER with an empty command line: Shift up objects in the stack by
1 level. The object in level 1 is duplicated into level 2.

OVER Pushes a copy of the element in stack level 2 onto the stack. Example:

16

HP-28S

10 20 30 40 OVER produces 10 20 30 40 30
DUP2 Pushes a copy of the elements in stack level 1 and 2 onto the stack. Example:

10 20 30 40 DUP2 produces 10 20 30 40 30 40
DROP2 Discards stack elements in level 1 and 2 and rolls down the stack.
ROT Rotates the elements in the first three stack levels up.

This is equivalent to "3 ROLL". Example:
10 20 30 40 ROT produces 10 30 40 20

LIST→ See LIST Menu.
ROLLD Moves the element on top of the stack to a higher stack position.

This is the inverse operation of ROLL. Example:
10 20 30 40 50 3 ROLLD produces 10 20 50 30 40

PICK Push a copy of the given stack level onto the stack.
Note that "1 PICK" is equivalent to DUP and "2 PICK" is equivalent to "OVER".
Example: 10 20 30 40 3 PICK produces 10 20 30 40 20

DUPN Duplicate the given number of stack elements onto the top of the stack.
"1 DUPN" is equivalent to DUP and "2 DUPN" is equivalent to "DUP2".
Example: 10 20 30 40 3 DUP produces 10 20 30 40 20 30 40

DROPN Drop a given number of objects from the stack.
"1 DROPN" is equivalent to DROP and "2 DROPN" is equivalent to DROP2.
Example: 10 20 30 40 3 DROP produces 10

DEPTH Returns the number of elements in the stack.
Example (beginning with an empty stack):
Example: 10 20 30 40 DEPTH returns 4.

→LIST Create a list from stack elements. See LIST Menu.

STORE Menu

General • All data types (see Data Types) can be stored in named variables. The
number of variables is only limited by the available memory.

• The USER key displays the USER menu with all the variables (and – since a
program can be stored in a variable – the programs) of the current
directory. See USER Menu.

• Note that the USER menu's soft labels on the bottom of the LCD screen
only show the first few characters of a variable in upper case.

• Variable names are case sensitive!
• Variable names can be up to 127 characters long.
• Use PURGE to erase variables.
• See MEMORY Menu for directory issues.
• Unfortunately, storage arithmetic commands (STO+, STO* etc.) cannot

operate on local variables! So their "shortcut effect" is really lost. See
Progams.

STO Stores the object in stack level 2 in the variable who's quoted name is given
in stack level 1. Ie. 5 'A' STO stores 5 in variable A and drops both objects
from the stack.

RCL Recall variable and push it onto the stack. This does not evaluate the
contents of the variable or execute a program. The quoted variable name is
replaced by the recalled object.

PURGE Delete variable(s) or program(s) as specified in stack level 1.

17

HP-28S

This command can operate on lists of names. Ie. to erase all variables of the
current directory use MEMORY VARS PURGE
To erase variable PROG: 'PROG' PURGE
To erase variables X and Y: {X Y} PURGE

STO+ A quoted name must be present in stack level 1 or 2. The 2nd argument (real
or complex number, real or complex vector or matrix) will be added to the
variable:
'A' 6 STO+ and 6 'A' STO+ calculates A+6 and stores the result in A.
Note that even though "+" can be used with lists this is not supported for the
STO+ command.
Note: This command cannot operate on local variables!

STO- A quoted name must be present in stack level 1 or 2. The 2nd argument (real
or complex number, real or complex vector or matrix) will be substracted
from the variable (or vice versa depending on the order of arguments):
'A' 6 STO- Calculates A-6 and stores the result in A.
6 'A' STO- Calculates 6-A and stores the result in A.
Note: This command cannot operate on local variables!

STO* A quoted name must be present in stack level 1 or 2. The 2nd argument (real
or complex number, real or complex vector or matrix) will be multiplied to the
variable:
'A' 6 STO* and 6 'A' STO* calculates A*6 and stores the result in A.
Note: This command cannot operate on local variables!

STO/ A quoted name must be present in stack level 1 or 2. The 2nd argument (real
or complex number, real or complex vector or matrix) will be divided by the
variable (or vice versa depending on the order of arguments, see STO-):
'A' 6 STO/ Calculates A/6 and stores the result in A.
6 'A' STO/ Calculates 6/A and stores the result in A.
Note: This command cannot operate on local variables!

SNEG Negate the contents of a variable (real or complex number, real or complex
vector or matrix)
Note: This command cannot operate on local variables!

SINV Negate the contents of a variable (real or complex number, real or complex
square matrix)
Note: This command cannot operate on local variables!

SCONJ Conjugate the contents of a variable (real or complex number, real or
complex vector or matrix). This negates the imaginary part of the value.
Note: This command cannot operate on local variables!

18

HP-28S

MEMORY Menu

MEM Return the amount of free memory in bytes.
MENU Creates a customized user menu. See CUSTOM Menu.
ORDER Takes a list of variable names and moves these names in the given order to

the beginning of the current user menu.
PATH Returns the current path as a list of directory names. This always starts with

HOME which is the root directory.
Note that HOME is a reserved name that cannot be used for a variable.
Apparently, it cannot even put into a quoted name ('HOME').

HOME Return to the HOME directory.
Note that there are no commands to step up one level in the directory
hierarchy (no "CD .."). To get this functionality a user program must be
written which uses PATH to get access to the directory names:
<< PATH DUP SIZE 1 – → P N
 << 1 N FOR I P I GET EVAL NEXT >>
>> 'UP' STO

This creates a command UP which steps up one directory.
Note that GET retrieves the next directory name from the list and puts it onto
the stack. This does not evaluate the name, hence EVAL is needed to actually
change the directory. Unfortunately, there doesn't seem to be a command
which activates the USER menu (or any other menu).

More
about
paths

• If a name (variable, program etc.) is not found in the current directory it is
searched in the partent directory and so on until it is found.
This also applies to directories so evaluating a directory name can not only
change to a subdirectory of the current directory but also to a subdirectory
of any upper-level directory.
As a consequence of this path searching, the above UP program should be
stored in the HOME directory so that it is accessible from all other
directories!

• The same applies to directory names.
• Furthermore, the HOME directory should contain utility programs; regular

work (which usually involves all sorts of temporary variables) should be
carried out in a subdirectory.

• It is possible to change to a subdirectory by specifying its name on the
command line. But be aware that the subdirectory's associated menu label
may not display the entire variable name or the true name may have lower
case characters!

• Path names need no be unique throughout the directory hierarchy.
CRDIR Create a directory with given name underneath the current directory.
VARS Return a list containing the names of all variables and subdirectories in the

current directory.
CLUSR Erases all variables in all directories.

19

HP-28S

ALGEBRA Menu

General This menu contains commands for symbolic manipulation of expressions and
equations. There's also an interactive equation editor available (FORM).
Important: If flag 36 is clear the "numerical" evaluation mode is used. It
evaluates expressions until a numerical result has been found. If an
undefined variable is encountered an error is issued. Thus, in order to to see
the symbolic results in this section flag 36 must be set.

COLCT Takes an equation or expression and collects similar expressions:
'1+2+LOG(10)' → '4'
'1+X+2' → '3+X'
'X^Z*Y*X^T*Y' → 'X^(T+Z)*Y^2'
'X+X+Y+3*X' → '5*X+Y'

COLCT operates independently on each side of an equation:
'1+2*X=3+4*X' is not simplified to '-2=2*X' or even '-1=X'

EXPAN Expands an equation or expression:
'A*(B+C)' → 'A*B+A*C'
'(B+C)/A' → 'B/A+C/A'
'A^(B+C)' → 'A^B*A^C'
'X^5' → 'X*X^4'
'(X+Y)^2' → 'X^2+2*X*Y+Y^2'

EXPAN doesn't perform all possible expansions in a single step. It may be
necessary to apply the command repeatedly.

SIZE Returns the number of objects in an expression or equation. Example:
'XX*LN(Y)=CCC' SIZE returns 6 because there are these objects:
XX, *, LN, Y, =, CCC

FORM Allows to perform identity manipulations interactively on equations and
expressions.
• When invoked, the expression in stack level 0 is displayed in line 2 (and

line 3 if it doesn't fit in one line) of the LCD display and a number of soft-
key menus are displayed.

• The commands available in the menus depend on the type of sub-
expression that is currently selected by the cursor.

• When done press ON to quit the interactive mode. The expression in level
1 will be replaced by the modified version.

• The FORM editor can be invoked by a program.
COLCT Collect similar expressions of the selected sub-expression.

Similar to COLCT above.
EXPAN Expand products and exponentials of the selected sub-expression.

Similar to EXPAN above.
LEVEL While this button is held down the level of the currently selected

object or sub-expression is displayed.
EXGET Quit the FORM editor and returns:

• In stack level 3: The edited expression.
• In stack level 2: A copy of the currently selected sub-expression.
• In stack level 1: The position index of the sub-expression.

[←] Move cursor left.
[→] Move cursor right.

20

HP-28S

The presence of the following commands depends on the type of the current
subexpression:
E() Replace exponentials of an exponent by a product of exponentials:

EXP(A)^B → EXP(A*B)
E^ Inverse of E(): EXP(A*B) → EXP(A)^B
←D Distribute left. A*(B+C) → (A*B)+(A*C)
D→ Distribute right.
←A Associate left. This moves the grouping brackets to the left.
A→ Associate right. This moves the grouping brackets to the right.
←M Collect similar right-hand-side factors of surrounding expressions.
M→ Collect similar left-hand-side factors of surrounding expressions.
DNEG Insert a double-negation.
DINV Insert a double inversion.
*1 Insert multiplication by 1.
/1 Insert division by 1.
^1 Insert exponentiation by 1.
+1-1 Insert addition of +1-1.
→() Distribute a prefix-operator (ie. minus sign, INV()) into the following

sub-expression.
-() Combination of DNEG and a →() of the inner negation.
1/() Combination of DINV and a →() of the inner inversion.
←→ Swap left and right side of operator. Inserts a factor –1 or 1/x when

executed on substraction or division.
L* Replace logarithm of an exponential by a product of a logarithm and

the exponent: LN(A^B) → (LN(A)*B)
L() Inverse of L*: (LN(A)*B) → LN(A^B)
AF Add fractions by expanding to a common denominator.

OBSUB Replaces the n-th object with a new one. See also OBGET below:
'XX*LN(Y)=CCC' 4 {Q} OBSUB returns 'XX*LN(Q)=CCC'.
'XX*LN(Y)=CCC' 5 {Q} OBSUB returns 'Q(XX*LN(Q),CCC)'.
'XX*LN(Y)=CCC' 1 {-} OBSUB returns an error.

EXSUB Replaces the n-th expression with a new one. See also EXGET below:
'XX*LN(Y)=CCC' 3 '2*K' EXSUB returns 'XX*(2*K)=CCC'.

TAYLR Calculates a Taylor series (polynomial) for an arbitrary function. Example:
'X/(X^2+1)' 'X' 3 TAYLR returns 'X-X^3'.
'SIN(X)' 'X' 5 TAYLR returns 'X-0.1666*X^3+8.3333E-3*X^5'.
The series is developed around X=0 which may not always be desirable.
To shift the point of expansion, ie. from X=0 to X=2:
• Store 'Y+2' in variable X. Make sure variable Y does not exist.
• Evaluate the function f(X) to convert it to a function f(Y).
• Perform the Taylor series expansion for Y.
• Evaluate the resulting function around Y=0 or:
• Store 'X-2' in variable Y. Make sure variable X does not exist.
• Evaluate the Taylor series to convert it into a function of X.
• Evaluate the result for values of X around 2.
Example: Develop ln(x) around x=2:

'LN(X)' 'Y+2' 'X' STO EVAL returns f(y)=LN(Y+2).
…'Y' 3 TAYLR returns the expansion around Y=0:

21

HP-28S

0.693+0.5*Y—0.125*Y^2+4.166E-2*Y^3
Now convert back to a function of X:
…'X' PURGE 'X-2' 'Y' STO EVAL returns:
0.693+0.5*(X-2)—0.125*(X-2)^2+4.166E-2*(X-2)^3
For a test evalue this function for X=2.5:
…2.5 'X' STO EVAL returns 0.9171055…
The true value would be ln(2.5)=0.916290…

ISOL Isolates the leftmost occurence of a specified variable.
Example with flag 34 (principal value) set:

'A=3^(X+5)' 'X' ISOL returns 'LN(A)/1.0986…-5'.
'x^2=3^(X+5)' 'X' ISOL returns '√(3^(X+5))'.
'3^(X+5)=x^2' 'X' ISOL returns 'LN(X^2)/ 1.0986…-5'.

Example with flag 34 (principal value) clear:
'A=3^(X+5)' 'X' ISOL returns
'(LN(A) +2*π*i*n1)/1.0986…-5' where n1 is a placeholder for an
arbitrary integer number.
'x^2=3^(X+5)' 'X' ISOL returns 's1*√(3^(X+5))'.
'3^(X+5)=x^2' 'X' ISOL returns
'(LN(X^2)+2*π*i*n1)/ 1.0986…-5'.

QUAD See SOLV Menu.
SHOW Makes implicit references to a variable visible.

Example: Assume variable A contains the expression 'X+Y' and B contains a
plain number. Then 'A*B' 'X' SHOW returns '(X+Y)*B'.
The implicit reference of A*B to variable X is resolved in the result of SHOW.
Note that you could also use EVAL on 'A*B' but if A, X or Y contained
numerical values these would replace their variable names!

OBGET Returns the n-th object from an equation or expression:
'XX*LN(Y)=CCC' I OBGET returns for I=1…6:
{XX}, {*}, {LN}, {Y}, {=}, {CCC}
See also SIZE above.

EXGET Returns the n-th partial expression from an equation or expression:
'XX*LN(Y)=CCC' I EXGET returns for I=1…6:
'XX', 'XX*LN(Y)', 'LN(Y)', 'Y', 'XX*LN(Y)=CCC', 'CCC'

22

HP-28S

STAT Menu

∑DAT A variable containing a matrix or vector.
Statistics commands operate on the real nxm matrix stored in variable ∑DAT.
Statistics functions cannot operate on complex data.
See Reserved Variables.

∑PAR A variable containing a list.
It contains four parameters for statistics operations, see COL∑.
See Reserved Variables.

∑+ Appends another row-vector of m real numbers to the ∑DAT matrix.
∑+ can also append multiple length-m vectors of data elements which are
stored in a kxm matrix.
A plain number can also be appended in case m=1.
The number of data points must match the number of colums in ∑DAT.
The number of rows n is the number of "data points".
The first ∑+ operation defines the number of columns m in ∑DAT.

∑- Removes the last line n from ∑DAT and returns it in stack level 1.
In case m=1 only a real number is returned.

N∑ Return the number of data points in ∑DAT which is the number of rows of the
matrix.

CL∑ Clears all statistics data by erasing ∑DAT. ∑PAR is not erased.
After this the next ∑+ operation defines the size of a new ∑DAT matrix.

STO∑ Takes a matrix from the stack and stores it in ∑DAT. The number of columns
in the stored matrix need not match the number of columns in – the
potentially existing – ∑DAT.

RCL∑ Returns the ∑DAT matrix to the stack. This is equivalent to '∑DAT' RCL.
TOT Adds up the values in each column of ∑DAT separately and returns a size-m

vector.
MEAN Calculates the mean value of the values in each column and returns a size-m

vector.
SDEV Calculates the standard deviation of the values in each column and returns a

size-m vector.
VAR Returns the variance of the values in each column and returns a size-m

vector. VAR is the square of SDEV.
MAX∑ Finds the maximum value in each of the columns and returns a size-m vector.
MIN∑ Finds the minimum value in each of the columns and returns a size-m vector.
COL∑ Take two numbers from the stack and store them in ∑PAR:

The 1st number (from stack level 2) defines the independent variable for LR or
the horizontal coordinate for DRW∑ and SCL∑. For SCL∑ see PLOT Menu.
The 2nd number (from stack level 1) defines the dependent variable for LR or
the vertical coordinate for DRW∑ and SCL∑.
By default the independent-variable column is column 1 and the dependent-
variable column is column 2.

CORR Returns a real correlation value between two columns of the data matrix. The
column numbers are taken from ∑PAR and can be specified using COL∑.

COV Calculates the covariance between two columns of the data matrix. The
column numbers are taken from ∑PAR and can be specified using COL∑.

LR Calculates the linear regression thru a set of x/y-points taken from two

23

HP-28S

columns. The column numbers for the dependent (y(x)) and independent (x)
set of values are specified in ∑PAR and can be modified using COL∑.
The return value is the y-offset of the best-fit line in stack level 1 and the
slope in level 2.
The returned values are also stored in the ∑PAR list at positions 3 and 4 for
later reference by PREDV.
Other types of curve fits (exponential, logarithmic, etc.) can easily be
implemented by user programs operating on ∑DAT.

PREDEV Takes the x value from stack level 1 and calculates a prediction y(x) according
to the linear coefficients that were calculated by LR.

UTPC Upper-tail Probability Chi-square Distribution UTPC(n,x).
This function and the following ones do not operate on statistics data.

UTPF Upper-tail Probability F Distribution UTPF(n1,n2,x)
UTPN Upper-tail Probability Normal Distribution UTPN(m,v,x)
UTPT Upper-tail Probability t-Distribution utp(n,x)
COMB Combinations C(x,y) = Y! / [X! • (Y-X)!]

Number of possibilities to select X elements from a group of Y different
elements where different sequences do not count separately:
10 2 COMB returns 45. There are 45 possibilities to draw two elements from
a group of 10 different elements if the order of the two drawn elements does
not matter.

PERM Permutations P(x,y) = Y! / (Y-X)!
Number of possibilities to select X elements from a group of Y different
elements where different sequences count separately.
10 2 COMB returns 90. There are 90 possibilities to draw two elements from
a group of 10 different elements if the order of the drawn elements does
matter.

PRINT Menu

General • The HP-28S works in conjunction with the thermal printer HP-82240A.
• To print the current contents of the LCD: Hold down "ON", then press

"L" (it has the PRINT menu associated with it), release "ON".
This produces the same output as PRLCD.

Print flags • Flag 33: Usually, every print command sends a trailing CR which
triggers the immediate printout of the data. If flag 33 is set, data is
collected in the printer's input buffer (max. 200 characters) and
printed only after sending a CR (4dec) or LF (10dec). Note that the
printer needs about 1.8 seconds to print one line so do not send data
too fast.

• Flag 47: When set a blank line is printed after every printout.
• Flag 52: Activates the "fast print mode". It should only be set when

the printer is operated with an external power supply!
Escape chars Escape characters can be used for special print effects.

The escape code is 27 or 0x1B.
• 27 001…166 Print graphics characters.
• 27 250 Underline off.
• 27 251 Underline on.
• 27 252 Normal print width (24 characters).

24

HP-28S

• 27 253 Double print width (12 characters).
• 27 254 Printer self test. Prints the entire character set until

the printer is turned off.
• 27 255 Printer reset.

PR1 Print object in stack level 1. The exact formatting of the printout depends
on the number format (STD, FIX etc.), see MODE Menu.
Independently of the multi-line setting (ML) the entire object is printed
over multiple lines. The object is not dropped from the stack.

PRST Print all objects on the stack. Objects are printed over multiple lines.
PRVAR Print the contents of a given variable.

Objects are printed over multiple lines.
PRLCD Print the contents of the LCD screen.
CR Advance the printer paper by one line.
TRAC Print a running record of all activity. A printout of the command line and

the contents in stack level 1 occurs whenever ENTER is executed or a
command that implicitly executes ENTER.
Different from other print commands all objects are only printed in one
line. Not all of the data may be visible.

PRSTC Prints the stack in compact form where one stack level occupies only one
line in the printout.

PRUSR Print the names of the USER variables in the current directory in the form
of a list (similar to the VARS command in the MEMORY Menu).
If it is empty "No User Variables" is printed.

PRMD Displays and prints the current MODE settings. See MODE Menu.

CONTRL Menu

General Special commands that are mostly used in conjunction with programs.
SST Executes the next instruction of a suspended program.

The instruction is briefly displayed. If during the execution of the next step an
error occurs the program counter is not advanced. The stack can be
manipulated between SST commands.

HALT Suspend program execution. Use CONT (above the "1" key) or SST to
continue the program. Multiple programs can be put in the suspended state.
In this case CONT continues the most recently suspended program.

ABORT Abort the program execution. The program cannot be continued.
KILL Abort the current program and all other suspended programs.

Usually not used within a program.
WAIT n WAIT suspends program execution for n seconds. n may be fractional.
KEY Queries the keyboard for key-presses.

• If no key is waiting this command returns 0
• If one or more keys are waiting this returns a string in stack level 2 and

"1" in stack level 1. The string contains the name of a single key.
Example: << DO KEY IF 0 ≠ THEN 1 DISP END UNTIL 0 END >>
waits for keys and displays their string representation in the top row of the
LCD screen (press ON to quit the program). Usually the returned string
represents the text that is printed ontop of the keys, except:

SPACE : " "

25

HP-28S

LC : "l"
INS : "INS"
DEL : "DEL"
↑ : "UP"
↓ : "DOWN"
← : "LEFT"
→ : "RIGHT"
<> : "CURSOR"
⇐ : "BACK"
Shift : "SHIFT"

BEEP Usage: frequency duration BEEP
Issues a tone of given frequency and duration (in seconds).

<< 2 12 INV ^ 444 → F T
 << 1 12 START T DUP .5 BEEP F * 'T' STO
NEXT>>
>>

This small program playes the tone ladder based on A (444 Hz). T is the
frequency, F is the factor between subsequent tones which is 2^(1/12).

CLLCD Clears the entire LCD screen and sets the message flag, see CLMF.
DISP Usage: object n DISP

Displays the given object in line n (1…4) of the LCD screen and sets the
message flag.
This does not change any values in the stack!
Objects are displayed in their normal format. Except strings are not displayed
with surrounding quotation marks.
Lengthy objects are split over multiple lines.

CLMF Clear Message Flag and return to normal stack view. See PLOT Menu.
ERRN Return a binary number representing the code of the most recent error.
ERRM Returns a string representing a description of the most recent error.

BRANCH Menu

General Special commands that are mostly used in conjunction with programs:
IF Usage:

• IF test-instruction THEN true-instructions END
• IF test-instruction THEN true-instructons ELSE false-instructions END
The "test-instruction" must return a value on the stack. Non-0 values are
interpreted as true, 0 as false. Example:
IF 0 < THEN –1 ELSE 1 END implements the SIGN function.

IFERR Usage:
• IFERR test-instruction THEN error-instructions END
• IFERR test-instruction THEN error-instructons ELSE ok-instructions END
"test-instruction" is executed and if an error occurs the remaining test-
instructions are skipped and the "error-instructions" are executed.
Ie. this can be used to process all values on the stack without needing to
know how many there are. Or type errors can be caught.

THEN Used with IF
ELSE Used with IF
END Used with various branch instructions

26

HP-28S

START Usage:
• start end START instructions NEXT
• start end START instructions step-size STEP
"start" end "end" denote the start and end values of the loop counter. With
NEXT "instructions" are executed end-start+1 times.
With STEP the loop counter is incremented by "step-size" and the loop stops
when the loop counter exceeds "end".
Note that the value of the loop counter is not accessible to the program!

FOR Usage:
• start end FOR name instructions NEXT
• start end FOR name instructions step-size STEP
"start" and "end" denote the start and end values of the loop counter. The
current value of the loop counter is stored in the local variable "name".
With NEXT "instructions" are executed end-start+1 times.
With STEP the loop counter is incremented by "step-size" and the loop stops
when the loop counter exceeds "end". Example:
<<→ n << 1 n START x x DUP * NEXT n →LIST >>
returns a list of squares from 1 to n.
The "instructions" are never executed if initially start>end.

NEXT Used with START and FOR
STEP Used with START and FOR
IFT Similar to IF-THEN-END:

• test-instruction true-instruction IFT
If "test-instructions" evaluates to a non-0 value then the true-instruction is
executed (evaluated). Otherwise no action occurs.
1 2 3 IFT results in 1 3 because 2 evaluates to true and 3 is executed.

IFTE Similar to IF-THEN-ELSE-END:
• test-instruction true-instruction false-instruction IFT
If "test-instructions" evaluates to a non-0 value then the true-instruction is
executed (evaluated). Otherwise the false-instruction is executed.
1 2 3 IFTE results in 2 because 1 evaluates to true and 2 is executed but 3
is not.

DO Usage:
• DO loop-instructions UNTIL test-instruction END
The "loop-instructions" are evaluated until the "test-instructions" evaluates to
a non-0 value. The "loop-instructions" are evaluated at least once.

UNTI UNTIL. Used with DO
END Used with various branch instructions
WHIL WHILE. Usage:

• WHILE test-instruction REPEAT loop-instructions END
While the "test-instruction" evaluates to a non-0 value the "loop-instructions"
are executed. The "loop-instructions" may never be executed.

REPEA REPEAT. Used with WHILE.
END Used with various branch instructions

27

HP-28S

TEST Menu

General Special commands that are mostly used in conjunction with programs:
≠ Return true if the objects in level 1 and 2 are of different type or have the

same type but a different value.
Lists and programs are assumed to be identical when they contain the
same elements.

> ≥ < ≤ Can be used to compare:
• Real numbers (but not complex numbers)
• Binary numbers
• Strings (in alphabetical order that is based on ASCII codes)

SF Set specified flag. The real flag number must be in the range 1…64.
Binary numbers cannot be used as arguments to SF and the following
functions. See Flags.

CF Clear specified flag.
FS? Test specified flag and return 1 when it is set, otherwise 0.
FC? Test specified flag and return 0 when it is set, otherwise 1.
FS?C Test specified flag and return 1 when it is set, otherwise 0.

Clear the flag after the test.
FC?C Test specified flag and return 0 when it is set, otherwise 1.

Clear the flag after the test.
AND Treats the values in stack level 1 and 2 as flags (true if non-0, false if 0).

It performs the AND operation and returns 0 or 1.
OR Performs the OR operation and returns 0 or 1.
XOR Performs the XOR operation and returns 0 or 1.
NOT NOT operation: A non-0 value results in 0; a 0-value results in 1.
SAME Very similar to ==. However, SAME returns true when names are

involved and the names are identical. SAME never returns an expression.
Example: 'A' 5 SAME returns 0.
A quoted name is not evaluated.

== Compare objects in stack level 1 and 2 and return 1 if they are of the
same type and have the same value.
Returns an expression if names are involved.
Example: 'A' 5 == returns 'A==5'.
A quoted name is not evaluated.

STOF Takes a binary number from the stack and replaces all 64 flags with the
bits of the binary number. bit0 of the binary number replaces flag 1 and
bit63 replaces flag 64. See Flags.

RCLF Return the settings of the 64 flags in a binary number.
STOF/RCLF can be used to save and restore the machine settings in case
a program needs to change flag-based operation modes.

TYPE Returns the type of the object in stack level 1:
Real number...................: 0
Complex number.............: 1
String.............................: 2
Real vector or matrix.......: 3
Complex vector or matrix.: 4
List.................................: 5

28

HP-28S

Name.............................: 6
Local name.....................: 7
Program.........................: 8
Algebraic expression........: 9
Binary number................: 10

CATALOG Menu

General Displays a list of all available commands in alphabetical order.
Press a character to jump to the next command that starts with this
character.

NEXT, PREV Go to next/previous command
SCAN Automatically display all entries one after the other. SCAN will be replaced

by STOP which can be used to stop the scan.
Not available with some HP-28S versions!

USE Display the arguments that the command expects on the stack.
This also brings up its own NEXT/PREV menu to scroll thru different
argument sets.

FETCH Bring the command name into the edit line.
QUIT Quit the catalog

UNITS Menu

General UNITS is not a menu but a catalog of all available built-in units.
• Use PREV/NEXT to step thru the list.
• Use SCAN to let the HP-28S step thru the units catalog. Use STOP to

halt the scan. Not available on all HP-28S versions.
• Press a character to jump to the next unit which starts with this

character.
• Press "1" to jump to the last entry.
• For every unit the value and the constituting SI units are given.
• Use FETCH to bring the unit name into the command line.
• Use quit to close the UNITS Menu.

SI base units Quantity Unit Abbreviation
Length Meter m
Mass Kilograms kg
Time Seconds s
Electric current Ampere A
Temperature Kelvin °K
Luminous intensity Candela cd
Amount of substance Mol mol

CONVERT Use this command to convert between units:
100 "m" "ft" CONVERT results in 328.08 "ft"
Note that the converted number sits in stack level 2 and the new unit
string in stack level 1.
Provided no variables m and ft exist this would also work:
100 m ft CONVERT

Unit string • The string defining the units may consist of a product of multiple
elementary units:

29

HP-28S

100 "m*m" "ft^2" CONVERT results in 1076.39 "ft^2"
100 "m/s" "ft/s" CONVERT results in 328.08 "ft/s"

• The unit string may only contain a single divide sign "/". To the left
positive powers and to the right of it negative powers of units are
assumed.

• Powers may only be in the range 1-9. In particular, they must not be
negative.

• Brackets for grouping are not allowed!
• Also, the unit may be preceeded by a magnitude prefix (see below)

100 "km/s" "mi/h" CONVERT results in 223693.63 "mi/h"
Warning: Some combinations of magnitude prefix and unit result in
another unit. Example: "min" is minutes but not milli-inches; "ft" is feet
but not femto-tons etc.

• Single quotes inside the unit string are ignored.
Magnitude
prefixes

Symbol Name Factor 10E..
E Exa 18
P Peta 15
T Tera 12
G Giga 9
M Mega 6
k or K Kilo 3
h or H Hecto 2
D Deca 1

Symbol Name Factor 10E..
d Dezi -1
c Centi -2
m Milli -3
µ Micro -6
n Nano -9
p Pico -12
F Femto -15
a Atto -18

Temperature
conversions

These are special because additive constants are involved.
• If there is only a plain temperature unit without magnitude prefix or

exponent or any other unit then absolute temperature conversion is
performed:
100 "°F" "°C" CONVERT results in 37.78 "°C"

• Otherwise, a relative temperature conversion is performed which
ignores the additive constant:
50 "°F^2" "°C^2" CONVERT results in 30.86 "°C^2"

User defined
units

• A user-defined unit is a length-2 list stored in a variable. The 1st

element in the list is the factor to convert the unit into a built-in unit
and the 2nd element is the built-in unit.
{7 "d"} 'wk' STO creates a unit wk (week) which consists of 7
days (d). It can be used like any other unit:
7 "wk" "h" CONVERT results in 168 "h"

• Note that user-defined units cannot be preceeded by a magnitude
prefix. However, it is always possible to define a new user-unit that
has the prefix built into its name.

• A dimension-less unit uses the unit string "1".
• For non-SI units use the unit string "?". This can be used for example

to convert currency exchange rates.
List of built-in units. The actual values can be retrieved from the calculator!
Unit Name Type SI units
a Ar Area m^2
A Ampere Electric current A
acre Acre Area m^2
arcmin Arcus Minute Plane angle 1

30

HP-28S

arcs Arcus Second Plane angle 1
atm Atmosphere Pressure kg/m*s^2
au Astronomical Unit Length m
A° Angström Length m
b Barn Area m^2
bar Bar Pressure kg/m*s^2
bbl Barrel Oil Volume m^3
Bq Bequerel Radioactive activity 1/s
Btu British Thermal Unit Energy kg*m^2/s^2
bu Bushel Volume m^3
c Speed of Light Speed m/s
C Coulomb Electric charge A*s
cal Calorie Energy kg*m^2/s^2
cd Candela Luminous intensity

(Lichtstärke)
cd

chain Chain Length m
Ci Curie Radioactive activity 1/s
ct Carat Mass kg
cu US Cup Volume m^3
d Day Time s
dyn Dyne Force kg*m/s^2
erg Erg Energy kg*m^2/s^2
eV Electronvolt Energy kg*m^2/s^2
F Farad Electric capacitance A^2*s^4/kg*m^2
fath Fathom Length m
fbm Board Foot Volume m^3
fc Footcandle Luminance (Leuchtdichte) cd/m^2
Fdy Faraday Electric charge A*s
fermi Fermi Length m
flam Footlambert Luminance (Leuchtdichte) cd/m^2
ft Internatl. Foot Length m
ftUS Survey Foot Length m
g Gram Mass kg
ga Gravitational Acceleration Acceleration m/s^2
gal US Gallon Volume m^3
galC Canadian Gallon Volume m^3
galUK British Gallon Volume m^3
gf Gram-Force Force kg*m/s^2
grad Degrees Plane angle 1
grain Grain Mass kg
Gy Gray Absorbed radioactive dose m^2/s^2
h Hour Time s
H Henry Inductance kg*m^2/A^2*s^2
hp Horsepower Power kg*m^2/s^3
Hz Hertz Frequency 1/s
in Inch Length m
inHg Inches Quicksilver Pressure kg/m*s^2
inH20 Inches Water Pressure kg/m*s^2

31

HP-28S

J Joule Energy kg*m^2/s^2
kip Kilopound-Force Force kg*m/s^2
knot Knot Speed m/s
kph Kilometers per Hour Speed m/s
l Liter Volume m^3
lam Lambert Luminance (Leuchtdichte) cd/m^2
lb Avoirdupois Pound Mass kg
lbf Pound-Force Force kg*m/s^2
lm Lumen Luminous flux (Lichtstrom) cd
lx Lux Illuminance (Leuchtdichte) cd/m^2
lyr Lightyear Length m
m Meter Length m
mho Mho Electric conductance A^2*s^3/kg*m^2
mi Internatl. Mile Length m
mil Mil Length mil
min Minute Time s
miUS US statute Mile Length m
mmHg Millimeter Quicksilver Pressure kg/m*s^2
mol Mol Amount of substance mol
mph Miles per Hour Speed m/s
N Newton Force kg*m/s^2
nmi Nautic mile Length m
ohm Ohm Electric resistance kg*m^2/A^2*s^3
oz Ounce Mass kg
ozfl US Fluid Ounce Volume m^3
ozt Troy Ounce Mass kg
ozUK UK Fluid Ounce Volume m^3
P Poise Dynamic viscosity kg/m*s
Pa Pascal Pressure kg/m*s^2
pc Parsec Length m
pdl Poundal Force kg*m/s^2
ph Phot Luminance (Leuchtdichte) cd/m^2
pk Peck Volume m^3
psi Pound per Square Inch Pressure kg/m*s^2
pt Pint Volume m^3
qt Quart Volume m^3
r Radians Plane angle 1
R Röntgen Radiation exposure

(Strahlendosis)
A*s/kg

rad Rad Absorbed radioactive dose m^2/s^2
rd Rod Length m
rem Rem Dose equivalent m^2/s^2
s Second Time s
S Siemens Electric conductance A^2*s^3/kg*m^2
sb Stilb Luminance (Leuchtdichte) cd/m^2
slug Slug Mass kg
sr Steradian Solid angle 1
st Stere Volume m^3

32

HP-28S

St Stokes Kinematic viscosity m^2/s
Sv Sievert Dose equivalent m^2/s^2
t Metric Ton Mass kg
T Tesla Magnetic induction kg/A*s^2
tbsp Tablespoon Volume m^3
therm EEC Therm Energy kg*m^2/s^2
ton Shot Ton Mass kg
tonUK Long Ton Mass kg
torr Torr Pressure kg/m*s^2
tsp Teaspoon Volume m^3
u Atomic Mass Unit Mass kg
V Volt Electric voltage (potential) kg*m^2/A*s^3
W Watt Power kg*m^3/s^3
Wb Weber Magnetix flux kg*m^2/A*s^2
yd Intl. Yard Length m
yr Year Time s
° Degree Angle 1
°C Degree Celsius Temperature °K
°F Degree Fahrenheit Temperature °K
°K Degree Kelvin Temperature °K
°R Degree Rankine Temperature °K
µ Micron Length m
? User Unit ?
1 Dimension-less Unit 1

CURSOR Menu

General When the cursor menu is active, the top row of white keys beneath the
LCD screen assume their indicated operations (INS, DEL, …) and no menu
items (soft labels) are displayed in the bottom row of the LCD screen.

INS Toggle command line editing mode between insert and overwrite.
Shift-INS deletes all characters to the left of the cursor up to the beginning
of the current line. By default overwrite mode is active.

DEL Delete character under cursor in editing mode.
Shift-DEL deletes the character under the cursor and all characetrs up to
the end of the current line.

← → ↑ ↓ Cursor movement in editing mode.
Shifted operations move to the leftmost, rightmost, topmost or bottommost
position of the edited text.

33

HP-28S

MODE Menu

STD Select standard display format. It displays all non-0 fractional digits of a
number. Note that a change of the number format affects the display of all
values in the stack. This includes plain numbers that occur within programs
or lists.

FIX Select fixed point notation with given number of significant fractional digits.
SCI Select scientific (exponential) notation with given number of significant digits.
ENG Select engineering (exponential) notation with given number of significant

digits where the exponent is a multiple of 3.
DEG Use degrees for trigonometric functions (360).
RAD Use radians for trigonometric functions (2π).

Grad (400) are not supported.
CMD Enable/disable the command line auto-save feature.

In programs use +CMD and –CMD. See Direct Key Commands.
When running a program it does not alter the auto-saved command line.

UNDO Enable/disable the stack auto-save feature.
In programs use +UND and –UND. See Direct Key Commands.
When running a program it does not alter the auto-saved stack contents.

LAST Enable/disable the argument auto-save feature.
In programs use +LAST and –LAST. See Direct Key Commands.
When running a program the individual program commands will alter the
auto-saved arguments:
<<1 + 2 *>> 'A' STO 3 A LAST returns 8 4 2: 8 is the result of the
program and 4 and 2 are the arguments of the last program instruction (the
multiplication).

ML Enable/disable the multi-line display feature.
• Enabled: Matrices, vectors, complex numbers, lists and programs are

displayed in up to 4 lines as to display them entirely.
"…" is appended on the right side if necessary to indicate that
not all of the object is visible (ie. for large matrices).

• Disabled: All stack objects are displayed in one line only. "…" is appended
on the right side if necessary.

In programs use +ML and –ML.
RDX, Toggle between using a comma and a period for the decimal point.

The respective other symbol is used as a delimiter.
Note that a SPACE can also be used as a delimiter!
Be aware that this can be confusing:
{1.2,3.4,5.6} is evaluated as:
• {1.2 3.4 5.6} if the decimal sign is a comma
• {1 2,3 4,5 6} if the decimal sign is a period
In programs use RDX, and RDX.

PRMD Display and print the current MODE settings. This includes:
Display format and number of valid digits, angle mode, UNDO, LAST and
COMMAND settings, multiline setting, binary number base.

34

HP-28S

TRIG Menu

SIN Sine of a real or complex value.
ASIN Arcus sine of a real or complex value.
COS Cosine of a real or complex value.
ACOS Arcus cosine of a real or complex value.
TAN Tangent of a real or complex value.
ATAN Arcus tangent of a real or complex value.
P→R Converts real or complex number or a vector in stack level 1 from polar to

rectangular coordinates:
• real X → (x, 0)
• (r, θ) → (x, y)
• [r θ …] → [x y …]
If the vector contains more than 2 elements only the first two are converted
and the other elements are left unchanged. This is useful when handling
3-dimensional [r θ z] vectors.
The current angle mode (degrees or radians) determines the units of θ.

R→P Converts a complex number or a vector in stack level 1 from rectangular to
polar coordinates. See P→R for details.

R→C Combine two real numbers into a complex number.
The value in level 1 will be the imaginary part.

C→R Split a complex number into two real numbers in stack level 1 and 2.
Level 1 will receive the imaginary part.

ARG Return the angle θ of the complex number (x,y) vector with the x-axis.
• X≥0: θ=atan x/y
• X<0: θ=atan x/y + π*sign(y)

→HMS Convert a number from fractional hours format to HMS format.
HMS numbers are displayed in the format H.MMSSs where H are hours, MM
are minutes (60 per hour), SS are seconds (60 per minute) and s are
fractional seconds.
Note: This format may not match the coodinate format used in GPS devices
where SS is not seconds but fractional minutes!! Use the following two
programs to convert to and from HM format:
<<DUP IP SWAP FP 0.6 * +>> '→HM' STO
<<DUP IP SWAP FP 0.6 / +>> 'HM→' STO

HMS→ Convert a number form HMS format to fractional hours.
HMS+ Add two numbers given in HMS format.
HMS- Substract numbers given in HMS format.
D→R Convert degress (360) to radians (2π)
R→D Convert radians (2π) to degress (360)

35

HP-28S

LOGS Menu

General All of the following functions operate on real as well as complex numbers but
not on matrices or vectors.

LOG Logarithm base 10.
ALOG 10^x.
LN Logarithm base e.
EXP e^x.
LNP1 Returns ln(1+x) which is useful when x is close to 0.
EXPM Returns exp(x)-1 which is useful when x is close to 0.
SINH Hyperbolic sine.
ASINH Inverse hyperbolic sine.
COSH Hyperbolic cosine.
ACOSH Inverse hyperbolic cosine.
TANH Hyperbolic tangent.
ATANH Inverse hyperbolic tangent.

SOLV Menu

General The commands in this menu allow to find solutions for user-defined
functions. A solution is the value x where f(x)=0. This is also called a root
of the function.
• Note that only real but not complex roots can be found!
• SOLVR is the interactive version of the solver.

This mode can be invoked by a program. It offers a versatile user
menu for finding iterative solutions for (usually complicated)
functions. The "user interface" is the same as for example on the
HP-12C when solving for n, i, PM, PV, PMT and FV.

• ROOT is a non-interactive version which is mainly used in programs.
• Furthermore, ISOL can isolate (unique) variables from equations and

QUAD can calculate symbolic solutions for functions.
• A very powerful tool is the combination of the interactive plot

command DRAW (see PLOT Menu) and the solver: Visually
interesting points in the plot (ie. approximate roots) can be digitized
and passed as initial guesses to the solver.

Finding a
numerical
root

Follow these steps to interactively find a numerical root:
1. Store the function to be solved using STEQ, see below.
2. Press SOLVR to display a menu that shows all the variables used

inside the function.
3. Store the desired values in these variables. Also store an initial guess

in the variable that you want to solve for.
4. Press SHIFT and the menu button for the variable you want to solve

for. This will invoke the root finding process.
STEQ This stores the function that is to be solved in the global variable called

EQ. The function can be:
• An expression, ie. '3-x^2'.

In this case the solver finds the value for x where the expression is 0.
• An equation, ie. 'y=3*x^3 – 2*x'.

36

HP-28S

The solver finds a solution for x (or y) where the left side equals the
right side.

• A program, ie. << X DUP * 7 – Y + >>.
The solver finds the value for one of the variables used in the
program (X or Y) for which the program returns 0 in stack level 1.
The program must not take anything from the stack.

Note that the solver and plot commands (see PLOT Menu) use the same
equation EQ.

RCEQ Recall the function stored in variable EQ.
SOLVR:
Variables

Display the interactive solver menu with all the independent variables
used in the function. The menu looks different than normal command
menus in that the names are printed black on a white background.
While the interactive menu is active the stack can be used normally.
• An independent variable is either a formal variable (with no

associated data) or a variable containing data (ie. a number).
Variables containing procedures do not show up in this menu. Instead
the independent variables of these procedures are listed. If any one
of these nested procedures is modified the solver menu is updated
automatically.
Note that if a variable contains an equation the "=" sign is replaced
by "-" (minus) in order to convert it to an expression which returns a
result.

By pressing the menu button associated with a variable a value can be
stored for the variable:
• The value is taken from stack level 1 as usual.
• The stored value is also temporarily displayed in the top line of the

LCD display.
continued
SOLVR:
Initial Guess

For the variable that is solved for an initial guess must be specified:
• This can be a single number or list with a single value.
• Or a list with two values which indicate the initial interval of the

search algorithm. If the function has a different sign at these two
points the solver will quickly find a root.

• Or a list with three values where the first is a best guess and the
other two values should be below and above the best guess.

• Note: After using DRAW on the function in EQ and looking at the
function curve it is usually simple to see initial guesses for the solver.
DRAW offers a cross-hair pointer that can be moved over the plot and
complex (x,y) coordinates can be selected and stored on the stack.
These complex values can be used as initial guesses (the imaginary
part will be ignored). See PLOT Menu.

continued
SOLVR:
Finding the
root

Pressing SHIFT and one of the menu buttons invokes the solver for the
specified variable.
• The solver can be interrupted by pressing ON. In this case a best

guess in the form of a length-3 list is returned.
• Pressing any other key displays the current best guess in lines 2 and

3 of the LCD display and the root finding process continues.
continued
SOLVR:
Results

When done the solver will return the result in stack level 1 and also
display it in the display line 1. In display line 2 one of these messages
appears:

37

HP-28S

• Zero: A root has been found.
• Sign reversal: Two adjacent points have been found where the

function changes it sign. Possibly, the function has a discontinuity at
this point.

• Extremum: The solver found an extremum (local maximum or
minimum) or hit ±MAXR.

• Bad Guess(es): When evaluating the function at the initial guess
points it causes an error.

• Constant?: The function always returns the same value.
continued
SOLVR:
Verification

Also, there are the following buttons present in the solver menu. They
can be used to verify a solution:
• EXPR= Only present if the function is an expression or program.

When pressed the expression/program is evaluated using the current
values of the variables. The result should be 0.

• LEFT= Only present if the function is an equation. When pressed it
evaluates the left side of the equation.

• RT= Only present if the function is an equation. When pressed it
evaluates the right side of the equation. Left and right side should be
equal.

The quit the interactive menu press any other menu key are activate the
CURSOR menu.

ISOL Isolate a unique variable in a formula. See ALGEBRA Menu.
QUAD Symbolically solves a quadratic equation. Example (flag 34 clear):

'X^2-5*X+6' 'X' QUAD returns '(5+s1)/2'.
s1 indicates an arbitrary sign so the two solutions are (5+1)/2=3 and
(5-1)/2=2.
This result is only returned when the "principal value" flag 34 has been
turned off. If it is set the solution for s1=1 is returned which is 3.
It is possible to use formal names:
'X^2-3*X-A*X+3*A' 'X' QUAD returns
'(-(-3-A)+s1*√((-3-A)^2-4*(3*A)))/2'. COLCT converts this to:
'.5*(3+√((-3-A)^2-12*A)*s1+A)'. It is easy to prove that this is
equivalent to the correct solution '.5*(3+A+s1*(A-3))' but the
calculator cannot perform this simplification.
• If A has an associated value then the result is evaluated using this

value.
• Variable s1 can be set to +1 and –1 to get the two results.
• If the input expression is not a polynomial of degree 2 then a Taylor

series expansion of the expression is performed up to degree 2 and
then the roots of this expansion are calculated.

SHOW Show implicit references to a variable. See ALGEBRA Menu.
ROOT Root is a version of the solver that can be used in a progam.

Example: <<X DUP * 7 - >> 'X' 0 ROOT returns 2.645…
• Stack level 3 contains the function which can be an expression, an

equation or a program, see STEQ above.
• Level 2 contains the name of the variable that the solver solves for.
• Level 1 contains an initial guess or multiple initial guesses in a list as

described in SOLVR above.
• The return value is a single value for X.

38

HP-28S

• Unfortunately, X cannot be a local variable so it is not possible to
write a program that implements a function of a local variable and
where the function is solved for the local variable. See the example
program for the factorial function FACT in the REAL Menu.

When the root finding process is interrupted by pressing ON the function
and variable name are returned as well as the current best solution. Thus
it is possible to continue the search by simply pressing ROOT again.

PLOT Menu

General • The PLOT menu commands allow to display function curves or
statistical data on the graphics LCD display.

• The HP-28S display has a resolution of 137x32 pixel.
• The function to be plotted is stored in the global variable EQ.

This variables is also used by the solver, see SOLV Menu.
• Statistical data to be plotted is stored in the global matrix ∑DAT, see

STAT Menu.
• Drawing commands automatically set the "message flag" which

suppresses the normal stack display until either a key is pressed or
CLMF is called.

• Graphical data points are represented by complex numbers where
the real part specifies the horizontal x-coordinate (from left to right)
and the imaginary part the vertical y-coordinate (from bottom to
top).

• Note that it is not possible to "overlay" multiple curves in interactive
mode. As a maximum two curves can be plotted by using an
equation, see STEQ.
However, the non-interactive mode (see DRAW) can be used to
overlay an arbitrary number of plots.

• To draw graphics other than functions, ie. parameterized curves in
the form (x(t),y(t)) or histograms etc. the PIXEL command can be
used, see further down and Parameterized Curves at the end of this
section.

Follow these general steps to create a function plot:
1. Store the desired function in variable EQ using STEQ.
2. Choose the independent variable using INDEP.
3. Optionally use PMIN, PMAX, and CENTR to specify the limits of the

plot area.
4. Optionally use RES to select the resolution of the plot.
5. Press DRAW.

PPAR A global list containg data to control graphical plots. It contains in this
order:
• A complex number specifying the lower left corner Pmin of the plot.

Set by PMIN.
• A complex number specifying the upper right corner Pmax of the

plot. Set by PMAX.
• The independent variable for the plot. Set by INDEP.
• A real number specifying the resolution of the plot. Set by RES.
• A complex number specifying the coordinates of the intersection of

39

HP-28S

the plot axes. Set by AXES.
See Reserved Variables.

STEQ Store a function in variable EQ. The form of the function determines
how it is displayed:
• An expression is displayed as a single curve.
• An equation results in two curves, one for each side of the equal-

sign.
• A program is treated as expression and plots a single curve. The

program must not take any arguments from the stack and it must
returns a single function result to the stack.

See Reserved Variables.
RCEQ Recall the function from EQ.
PMIN Takes a complex argument from the stack and stores it in PPAR as the

lower left corner of the plot.
PMAX Takes a complex argument from the stack and stores it in PPAR as the

upper right corner of the plot.
INDEP Store a name in PPAR which specifies the independent variable for a

plot. The function stored in EQ is evaluated for varying values of the
independent variable in order to obtain the y=f(x) values of the curve to
be plotted.
If no independent variable has been specified then DRAW uses the first
variable in EQ instead.

DRAW When called by pressing the DRAW menu button:
• Clears the display
• Calls DRAX to draw the axes and then draws the plot.
• Dependent on the type of the function either one or two curves are

plotted, see STEQ above.
• Interactive mode is activated, see below.
• Pressing ON aborts the plot process and interactive mode activated

immediately.
When called from a program:
• The display is not cleared.
• Axes are not drawn.
• The 1 or 2 function curves are plotted.
• Pressing ON aborts the plot process and returns to the stack view.
• Pressing any key after the plot has been drawn returns to the stack

view.
• Interactive mode is not entered automatically but can be invoked

using the DIGTZ command.
This non-interactive mode allows to overlay multiple function plots:
<< 'PPAR' PURGE (0,0) PMIN (10 4) PMAX
 'X' INDEP CLLCD DRAX
 'SIN(X)+1' STEQ DRAW
 '(COS(X*1,5)+1)*1.5' STEQ DRAW
 '(X-5)^2/10 + 0.5' STEQ DRAW
DIGTZ >>

Draws an overlay of three plots and then activates interactive mode.
Interactive
Mode

While the plot is displayed:
• The cursor keys can be used to move a small cross-hair-shaped ("+")

40

HP-28S

cursor over the plot.
• SHIFT-cursor moves the cross-hair to the top, bottom, left or right

edge of the plot.
• INS puts the current coordinates of the cross-hair as a complex

number onto the stack (without changing to the stack view). INS can
be pressed repeatedly to digitize multiple points.

• DEL retrieves a copy of the display data into a string (without the
cross-hair).
This is identical to the LCD→ command in the STRING Menu.
Note that older versions of the Reference Manual describe this
command differently.

• Press ON to quit the interactive mode.
The INS-feature is extremely useful. It allows for:
• Finding initial guess for the solver. See SOLV Menu.
• Moving the center of the plot to an interesting location, see CENTR.
• Cutting off uninteresting areas of the plot, see PMIN and PMAX.

PPAR Returns the PPAR list. Use menu commands or 'PPAR' STO to store
new parameters.

RES Stores a real number in PPAR which determines the resolution of the
plot.
For n=1 a point is displayed in every LCD column, for n=2 in every 2md
column etc. Larger values of the resolution speed up the plot process!

AXES Takes a complex argument from the stack and stores it in PPAR as
coordinate of the intersection of the plot axes. This is usually (0,0).

CENTR Takes a complex argument and modifies the parameters Pmin and Pmax
in PPAR so that the given point is displayed in the middle of the LCD
screen. The height and width of the plot are not changed.

*W Takes a real argument and multiplies the x-coordinates of Pmin and
Pmax with it. Ie. 2 *W displays a larger x-area or "zooms out".
On the other hand 0.5 *W displays a smaller area or "zooms in".

*H Takes a real argument and multiplies the y-coordinates of Pmin and
Pmax with it.

STO∑ Store a matrix in statistics variable ∑DAT. See STAT Menu and
Reserved Variables.

RCL∑ Recall statistics matrix ∑DAT. See STAT Menu.
COL∑ Takes two real arguments that define two columns of the statistics data

matrix ∑DAT which are used to plot statistics data. See DRW∑ and
STAT Menu.

SCL∑ Modifies Pmin and Pmax in PPAR so that a DRW∑ plot will fit exactly into
the LCD display.

DRW∑ Calls DRAX to draw the axes and then plots statistics data stored in
matrix ∑DAT. Horizontal values are taken from the independent-variable
column (usually 1), vertical values are taken from the dependent-
variable column (usually 2). See COL∑ and STAT Menu.
When invoked by pressing the DRW∑ menu key the interactive mode is
activated, see above.

CLLCD Clear the entire LCD screen.
DIGTIZ Activate the interactive digitization cross-hair on the current display.

41

HP-28S

See Interactive Mode above.
PIXEL Takes a complex number from the stack and sets the pixel specified by

the real part (horizontal position from left) and imaginary part (vertical
position from bottom).
The current coordinate system settings in PPAR are obeyed! If the x and
y positions need to actually refer to raw LCD pixels originating at the
bottom-left corner then enter: (0 0) PMIN (137 32) PMAX.

DRAX Draw a horizontal and vertical coordinate axis. The location of point
(0,0) is specified by the PPAR variable. Tick marks are added every 10
pixel.

CLMF Clear Message Flag.
Commands CLLCD, DISP, PIXEL, DRAX, DRAW, und DRW∑ set the
"message flag" which suppresses the normal stack display.
CLMF clears the message flag and thus redisplays the normal stack view.

PRLCD Print the current contents of the LCD screen.
Parameterized
Curves

The following program PPLOT expects:
• On stack level 2 a program that takes the parameter T from the

stack and returns a complex number (x(T),y(T)).
• On stack level 1 a length-3 list containing the start and end values

and the step-size of parameter T.
<< LIST→ DROP → F MI MA S << CLLCD DRAX
 MI MA FOR X X F EVAL PIXEL S STEP DIGTZ >>
'PPLOT' STO

Usage example (degrees selected):
<<DUP SIN 2 * SWAP COS R→C>> {0 360 6} PPAR
draws an ellipse.
<<DUP 2 * SIN SWAP COS R→C>> {0 360 6} PPAR
draws a hour glass.

USER Menu

General Displays the names of the variables of the current directory in six "soft
labels" on the bottom of the LCD screen.

NEXT
PREV

Used to display the next or previous six entries or press USER again to
display the first six entries.

Menu key
press

When one of the white menu keys below the display is pressed the
associated variable is evaluated immediately and thus the variable
content is returned to the stack or the program executed or the current
directory is changed. For directories see MEMORY Menu.

Retrieving
variable
names

To avoid evaluation enter a single quote and then press the menu key.
This will append the variable/program/directory name to the command
line rather than evaluating it.
Not available for the HOME directory name.

Soft-Label
names

The menu name is derived from the first few characters of the variable
name. Lower case characters are displayed in upper case.
Warning: Variable names are case sensitive so the menu may display
two entries with the same name that actually refer to different variables!
However, when retrieving the variable name (see above) the correct
name is returned.

42

HP-28S

CUSTOM Menu

General This displays the menu structure that has been created with the MENU
command, see below.

MENU Located in the MEMORY Menu.
• Takes a list of names and creates a custom menu containing these

names.
• The names need not refer to existing variables.
• The MENU command automatically activates the custom menu.

Custom
input menu

If the first name in the list passed to MENU is STO then a custom input
menu is created which is similar to the SOLV menu: Pressing a menu key
stores the element from stack level 1 in the specified variable.
The name STO is not included in the menu and the menu labels are
displayed in outlined mode instead of solid mode.

Custom
user menu

If the first name in the list passed to MENU is not STO then a custom user
menu is created which is similar to the regular USER menu. Notably, it can
be used to give access to variables, programs and directories.

CUSTOM Use this command (located on the USER key) to activate the custom menu.
Notes This is most useful in programs to generate a list of user choices.

Unfortunately, the VARS command (see MEMORY menu) does not return
the names in the CUSTOM menu when it is the active menu! Thus, it is not
possible for a program to save the contents of the current CUSTOM menu
and temporarily replace it by another customized menu.
But it is possible to write a modified MENU command which not only
creates a new CUSTOM menu but also stores the list of names in a global
variable for later reference:
<<DUP 'GLBCST' STO CUSTOM>> 'MENUS' STO

Integration

General The integration symbol ∫ located on the "5" key can be used to integrate
arbitrary functions numerically or polynomials (sums of powers of x)
symbolically.

Symbolic
integration

Example: 'x^3+2*x+5' 'x' 3 ∫ returns '5*x + x^2 + 0.25*x^4'
• Stack level 3 contains the polynomial to integrate (or the variable where

it is stored).
• Level 2 contains the integration variables
• Level 1 contains the degree of the polynomial to integrate

Numeric
integration
with explicit
integration
variable

Example: 'EXP(x)+5' {'x' 1 2} 1E-3 ∫ returns 9.67 0.01:
• Stack level 3 contains the function to integrate.

The function result must be a real value.
• Stack level 2 contains a list which specifies: The integration variable

and the lower and upper limits of integration. The limits of integration
must be real values.

• Stack level 1 contains the desired absolute accuracy of the result.
• The result after integration is 9.67… in stack level 2.
• 9.669…E-3 in stack level 1 is the upper limit for the relative error. The

absolute error is 9.669…E-3/9.67…=9.998…E-4 which is indeed better

43

HP-28S

than the specified accuracy of 1E-3.
In case the returned upper limit for the relative error is negative then
the integral did not converge.

The function to integrate may also be specified as a program which
evaluates the integration variable and returns the function result on the
stack. No value must be taken from the stack:
<<x EXP 5 +>> {'x' 1 2} 1E-3 ∫ returns 9.67 0.01.

Numeric
integration
with implicit
integration
variable

Example: <<EXP 5 +>> {1 2} 1E-3 ∫ returns 9.67 0.01.
• Stack level 3 must contain a program (or the name of a variable

containing a program). The program implements the function to
integrate and it must take one argument from the stack and return a
single real result on the stack.

• Stack level 2 contains a list which specifies the lower and upper limits of
integration (real values).

• Stack level 1 contains the desired absolute accuracy of the result.

Differentiation

General The differentiation symbol ∂ (d/dx located on the "6" key) can perform
symbolic differentiation of a very wide range of functions. Ie. many
built-in functions of the HP-28S can be differentiated.
In addition it is possible to specify derivatives for user-defined
functions which the differentiation algorithm will use to generate
complete differentials.

Complete
differentiation

Invoked by issuing the ∂ command explicitly.
Example: 'SIN(2*X)+X^2' 'X' ∂ results in 'COS(2*X)*2+2*X'.
If the variable X exists the result will be the differential evaluated at
position X. An error occurs if X contains an improper object (ie. a list).

Partial
differentiation

Invoked by using ∂ in an expression.
Example: '∂X(SIN(2*X)+X^2)' EVAL results in
'∂X(SIN(2*X))+∂X(X^2)'. The next EVAL will return
'COS(2*X)*∂X(2*X)+∂X(X)*2*X^(2-1)' and then
'COS(2*X)*(2*∂X(X))+2*X' and finally
'COS(2*X)*2+2*X'.
After this EVAL won't change the result any more.
If necessary, use COLCT to simplify the resulting expression.

User functions A user defined function or a program in functional form can be
differentiated as well. Example: First create a function F(x,y) that takes
two arguments: <<→ a b 'a*b + a + b' >> 'F' STO
Then differentiate d/dx F(x,x+2): 'F(X,X+2)' 'X' ∂ .
The result is: 'X+2+X+1+1' and after COLCT '4+2*X'.
Note that the program given above must contain an expression in
single quotes. It cannot contain another program in <<>> brackets
even though these kinds of program can be invoked in functional
notation, see Programs.

User-defined
differentials

Not all built-in functions can be differentiated symbolically.
Example: '%(100,3)' is the functional notation of % and returns 3%
of 100. '%(X,3)' 'X' ∂ returns 'der%(X,3,1,0)' because the
derivative of % is not known.

44

HP-28S

Here der% is the derivative of %. In general:
'∂X(F(X1,x2))' EVAL returns 'derF(X1,x2,∂X(X1),∂X(X2))'
if F is not defined. derF is the unknow derivative of F. Each argument
in the original function produces two arguments to the derF function.
Further evaluation results in 'derF(X1,x2,0,0)' if neither variable
X1 nor X2 exists.
Now, the point is that the user can specify the derivative which is then
used by ∂:
<<→ x y dx dy '(x*dy+y*dx)/100'>> 'der%' STO stores the
user-defined derivative for %.
After this '%(X,3)' 'X' ∂ returns 0.03.
Note: I'm not sure whether this is useful. The problem is that most
interesting functions cannot be given in the required expressional
notation. For example, a wide range of integrals I(x)=∫ F(k)*dk can
only be calculated by numeric approximation. This can easily be done
in a program and furthermore the derivative derI is already known: It
is the function F that is being integrated. I(x) can even be executed in
functional notation (see Programs) but ∂ requires the explicit notation
as an expression in single quotes. Thus, ∂I(x) will produce an error
even though derI has been specified explicitly.

Evaluation Rules

Variable
names

The contents of a variable replaces the variable name when:
• … pressing a menu button showing the variable name
• … the name is entered in the command line without quotes and

ENTER is executed explicitly or implicitly.
• … in a program the name is encountered without quotes.
• … the EVAL command is executed on its quoted name.
Important:
• When the variable name contains multiple other names they are not

evaluated when the variable is evaluated:
'A+B' 'C' STO C recalls 'A+B' into the stack and does not evaluate
A or B. Also, if C contained a list containing program or variable names
the list components will not be evaluated when the variable is
evaluated. Rather, the list is put back onto the stack as is.

• However, when the variable contains a single other variable name it
will be evaluated:
'A' 'C' STO C puts the value of variable A onto the stack.

• Names that do not reference an existing variable are left unchanged:
'W' PURGE W puts 'W' onto the stack.

• To retrieve the contents of a variable to the stack without evaluating it
use the RCL command.

• To edit the contents of stack level 1 use the EDIT command.
• A shortcut for editing the contents of a variable is the VISIT

command. It is a combination of RCL and EDIT. See Direct Key
Commands.

Programs Essentially the same rules apply as for variables.
• "Evaluation" of a program means the execution of the program.

45

HP-28S

• To edit a program use the VISIT shortcut.
• If a variable contains the name of a program only then the program is

executed when the variable is recalled.
• If a program A contains the unquoted name of another program B,

the program B will be executed as a subroutine as soon as execution
of program A encounters the symbol B.

Symbolic
constants

These are: e, i, MINR, MAXR, π. See Direct Key Commands.
Flag 35 determines how these are evaluated:
• When set these symbolic constants evaluate to their symbolic form.

Use →NUM to convert them to numerical values.
• When clear these symbolic constants evaluate to their numerical

value.
Expressions,
Equations,
Functions

Flag 36 specifies how equations or functions with symbolic arguments are
evaluated:
• When set, the evaluation of an expression is taken only a single step

further by replacing variables with their contents (which may either be
another expression or a numerical value). EVAL may have to be
applied repeatedly to resolve all dependencies. Consider:
'A+B' 'A' STO A returns 'A+B'. After EVAL it is 'A+B+B' then
'A+B+B+B' etc.

• When clear, the variables are evaluated until a numerical result is
reached. If a symbolic name is undefined an error occurs. Do not try
the above excample with flag 36 clear because it will produce an
endless recursion loop!!

Consequences:
• In symbolic mode 'Q' 1/x returns 'INV(Q)' even if the variable Q

exists and has a numerical value. By pressing EVAL the expression is
evaluated and the numerical result returned.

• In numeric mode an error occurs if Q is not an existing variable.
Otherwise Q is evaluated and a numerical result is returned.

• Overall the symbolic evaluation mode seems to be more handy.

Flags

General For testing and modifying flags see TEST Menu.
1 – 64 User flags without predefined meaning.
31 – 64 System flags:

31 LAST activated. MODE Menu: LAST
32 Protocol. PRINT Menu: TRAC
33 Printhead right. See PRINT Menu.
34 Principal value. ALGEBRA Menu: ISOL and QUAD
35 Symbolic evaluation of constants. See Evaluation Rules.
36 Symbolic evaluation of functions. See Evaluation Rules.

37 – 42 Length of binary words (1-64), default is 64 BINARY menu: STWS
43, 44 Binary number base. 00=decimal, 01=binary, 02=octal, 03=hex

BINARY menu: DEC, HEX, OCT, BIN
45 Display in level 1: Single line or multi-line MODE menu: ML
46 (reserved)

46

HP-28S

47 Double space printing. See PRINT Menu.
48 Decimal sign MODE menu: RDX,

Important: If a period is used as the decimal sign then the comma
will function as number separator – and vice versa!

49, 50 Real number format MODE Menu: STD, ENG, FIX, SCI
51 Acoustic signal: When set a BEEP occurs for every keypress.
52 Fast print mode. See PRINT Menu.

53 – 56 Number of decimal digits (0-11) MODE Menu: STD, ENG, FIX, SCI
57 Underflow condition action (magnitude smaller the 1E-499):

• If set an underflow will be treated as an error and abort any programs.
• If clear, the program will continue, flag 61 or 62 is set and the value 0

is returned.
58 Overflow condition action (magnitude larger than 1E499):

See "Underflow action" above. If clear, ±MAXR is returned.
59 Infinite result condition action (ie. ln(0), tan(90°)):

See "Underflow action" above. If clear, ±MAXR is returned.
60 Angle mode (degrees or radians) MODE menu: DEG, RAD
61 Underflow- exception has occurred
62 Underflow+ exception has occurred
63 Overflow exception has occurred
64 Infinite result exception has occurred

Reserved Variables

General When needed the variables listed below are created automatically.
Important: The variables are always created in the current directory! This
means that when working in different subdirectories different sets of these
variables can be kept.
In other words: Different subdirectories can hold different sets of statistical
data or different parameter sets for function plots and changing from one
directory to another changes the entire context for SOLVR and DRAW.
For directory issues see MEMORY Menu.

EQ Name of the current equation used by SOLVR and DRAW, see SOLV Menu
and PLOT Menu.

∑PAR Parameter list for statistics commands, see STAT Menu.
PPAR Parameter list for DRAW commands, see PLOT Menu.
∑DAT Array of statistics variables, STAT Menu.
s1, s2… Created by ISOL and QUAD to indicate arbitrary signs.

See SOLV Menu and ALGEBRA Menu.
n1, n2… Created by ISOL and QUAD to indicate arbitrary integer numbers.

See SOLV Menu and ALGEBRA Menu.

47

HP-28S

System Operations

Contrast
adjustment

• Press and hold ON
• Press + or – to change the contrast
• Release ON

Clear memory • Press and hold ON
• Press and and release INS and → (cursor right)
• Release ON
WARNING: This clears the entire memory including stack, variables,
programs and flags. This is essentially a "restore to defaults".

Endless-loop
interruption

• Press and hold ON
• Press and release ↑ (cursor up)
• Release ON
This will clear the stack, go to HOME, clear UNDO, COMMAND, LAST,
clear the CUSTOM menu, deselect TRACE printing.
Note that a program or other lengthy operations can usually be
interrupted by pressing "ON".

System test • Press and hold ON
• Press and release ↓ (cursor down) or ← (cursor left)
• Release ON
This will execute a system test once (↓) or repeatedly (←).
Press ON/↑ to abort the test. The single test will also execute the
keyboard test.
Note that the system test behaves differently with different software
versions.

Keyboard test • Press and hold ON
• Press and NEXT
• Release ON
This will execute a keyboard test where the user must press all keys
from top left to bottom right.
Note that the system test behaves differently with different software
versions.

SYSEVAL Execute subroutine at absolute address. For debug only.
Warning: Addresses change between different versions of the HP-28S
software. Calling an invalid address usually resets the machine and
causes a "Memory lost" error.
• #10d SYSEVAL return the software version number

48

HP-28S

Contents

Section Page Contents
General 1 Some important details on the HP-28S
Direct-Key Commands 1 Commands available directly on the keyboard
Data Types 6 A list of available objects and the notation to create

them.
Programs 7 General information on programs

Menus in the order of appearance on the calculator:
ARRAY Menu 8 Vectors and matrices
BINARY Menu 10 Binary, octal, decimal and hexadecimal integer numbers
COMPLX Menu 12 Complex number functions
STRING Menu 12 String manipulation
LIST Menu 13 List manipulation
REAL Menu 14 Real functions
STACK Menu 16 Stack manipulation
STORE Menu 17 Storage arithmetic
MEMORY Menu 19 Memory display, menu management, directories
ALGEBRA Menu 20 Symbolic formulae manipulation and Taylor series

expansion
STAT Menu 23 Statistics
PRINT Menu 25 Printing and printer control
CONTROL Menu 25 Program control functions
BRANCH Menu 26 Program branch and loop functions
TEST Menu 28 Flag manipulation and other tests
CATALOG Menu 29 List of built-in commands
UNITS Menu 29 List of built-in units
CURSOR Menu 33 Cursor movement and editing
MODE Menu 34 System and display settings
TRIG Menu 35 Trigonometric functions
LOGS Menu 36 Logarithms and exponentials
SOLV Menu 36 Interactive function solver and root finder
PLOT Menu 39 Plotting curves on the LCD display
USER Menu 42 Objects in the current directory
CUSTOM Menu 43 User-defined menu
Integration 43 Symbolic and numeric integration
Differentiation 44 Symbolic differentiation
Evaluation Rules 45 Rules how objects, programs and variables are

evaluated
Flags 46 Description of system flags
Reserved Variables 47 List of names of internally used variables
System Operations 48 How to clear memory and perform self tests
Contents 49 This list of contents

49

	General
	Direct-Key Commands
	Command line editing
	ARRAY
	BINARY
	COMPLX
	LIST

	REAL
	STACK
	STORE
	MEMORY
	STAT
	PRINT
	CONTRL
	BRANCH
	TEST
	CATALOG
	UNITS
	MODE
	TRIG
	SOLV
	CUSTOM

	Data Types
	All of the data types described below can be stored on the stack and in variables.
	Programs
	ARRAY Menu
	BINARY Menu
	COMPLX Menu
	STRING Menu
	LIST Menu
	REAL Menu
	STACK Menu
	STORE Menu
	MEMORY Menu
	ALGEBRA Menu
	STAT Menu
	PRINT Menu
	CONTRL Menu
	BRANCH Menu
	TEST Menu
	CATALOG Menu
	Not available with some HP-28S versions!

	UNITS Menu
	CURSOR Menu
	MODE Menu
	TRIG Menu
	LOGS Menu
	SOLV Menu
	PLOT Menu
	USER Menu
	CUSTOM Menu
	Integration
	Differentiation
	Evaluation Rules
	Flags
	Reserved Variables
	System Operations
	Contents
	Page

