libliftoff/display.c
Simon Ser e9433997d9
Add liftoff_output_set_composition_layer
This lets the library user define a layer where composition will happen. At the
moment there can be at most one composition layer per output, on the primary
plane. It should be possible to remove these restrictions in the future if
desirable.

The composition layer will be put on a plane if and only if composition is
needed.

The compositor needs to know where composited layers will be blended to resolve
zpos conflicts.

Closes: https://github.com/emersion/libliftoff/issues/9
2019-10-11 14:31:17 +03:00

817 lines
22 KiB
C

#include <assert.h>
#include <errno.h>
#include <inttypes.h>
#include <limits.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include "log.h"
#include "private.h"
static int guess_plane_zpos_from_type(struct liftoff_display *display,
uint32_t plane_id, uint32_t type)
{
struct liftoff_plane *primary;
/* From far to close to the eye: primary, overlay, cursor. Unless
* the overlay ID < primary ID. */
switch (type) {
case DRM_PLANE_TYPE_PRIMARY:
return 0;
case DRM_PLANE_TYPE_CURSOR:
return 2;
case DRM_PLANE_TYPE_OVERLAY:
if (liftoff_list_empty(&display->planes)) {
return 0; /* No primary plane, shouldn't happen */
}
primary = liftoff_container_of(display->planes.next,
primary, link);
if (plane_id < primary->id) {
return -1;
} else {
return 1;
}
}
return 0;
}
static struct liftoff_plane *plane_create(struct liftoff_display *display,
uint32_t id)
{
struct liftoff_plane *plane, *cur;
drmModePlane *drm_plane;
drmModeObjectProperties *drm_props;
uint32_t i;
drmModePropertyRes *drm_prop;
struct liftoff_plane_property *prop;
uint64_t value;
bool has_type = false, has_zpos = false;
plane = calloc(1, sizeof(*plane));
if (plane == NULL) {
return NULL;
}
drm_plane = drmModeGetPlane(display->drm_fd, id);
if (drm_plane == NULL) {
return NULL;
}
plane->id = drm_plane->plane_id;
plane->possible_crtcs = drm_plane->possible_crtcs;
drmModeFreePlane(drm_plane);
drm_props = drmModeObjectGetProperties(display->drm_fd, id,
DRM_MODE_OBJECT_PLANE);
if (drm_props == NULL) {
return NULL;
}
plane->props = calloc(drm_props->count_props,
sizeof(struct liftoff_plane_property));
if (plane->props == NULL) {
drmModeFreeObjectProperties(drm_props);
return NULL;
}
for (i = 0; i < drm_props->count_props; i++) {
drm_prop = drmModeGetProperty(display->drm_fd,
drm_props->props[i]);
if (drm_prop == NULL) {
drmModeFreeObjectProperties(drm_props);
return NULL;
}
prop = &plane->props[i];
memcpy(prop->name, drm_prop->name, sizeof(prop->name));
prop->id = drm_prop->prop_id;
drmModeFreeProperty(drm_prop);
plane->props_len++;
value = drm_props->prop_values[i];
if (strcmp(prop->name, "type") == 0) {
plane->type = value;
has_type = true;
} else if (strcmp(prop->name, "zpos") == 0) {
plane->zpos = value;
has_zpos = true;
}
}
drmModeFreeObjectProperties(drm_props);
if (!has_type) {
liftoff_log(LIFTOFF_ERROR,
"plane %"PRIu32" is missing the 'type' property",
plane->id);
free(plane);
return NULL;
} else if (!has_zpos) {
plane->zpos = guess_plane_zpos_from_type(display, plane->id,
plane->type);
}
/* During plane allocation, we will use the plane list order to fill
* planes with FBs. Primary planes need to be filled first, then planes
* far from the primary planes, then planes closer and closer to the
* primary plane. */
if (plane->type == DRM_PLANE_TYPE_PRIMARY) {
liftoff_list_insert(&display->planes, &plane->link);
} else {
liftoff_list_for_each(cur, &display->planes, link) {
if (cur->type != DRM_PLANE_TYPE_PRIMARY &&
plane->zpos >= cur->zpos) {
liftoff_list_insert(cur->link.prev, &plane->link);
break;
}
}
if (plane->link.next == NULL) { /* not inserted */
liftoff_list_insert(display->planes.prev, &plane->link);
}
}
return plane;
}
static void plane_destroy(struct liftoff_plane *plane)
{
liftoff_list_remove(&plane->link);
free(plane->props);
free(plane);
}
struct liftoff_display *liftoff_display_create(int drm_fd)
{
struct liftoff_display *display;
drmModeRes *drm_res;
drmModePlaneRes *drm_plane_res;
uint32_t i;
display = calloc(1, sizeof(*display));
if (display == NULL) {
return NULL;
}
liftoff_list_init(&display->planes);
liftoff_list_init(&display->outputs);
display->drm_fd = dup(drm_fd);
if (display->drm_fd < 0) {
liftoff_display_destroy(display);
return NULL;
}
drm_res = drmModeGetResources(drm_fd);
if (drm_res == NULL) {
liftoff_display_destroy(display);
return NULL;
}
display->crtcs = malloc(drm_res->count_crtcs * sizeof(uint32_t));
if (display->crtcs == NULL) {
drmModeFreeResources(drm_res);
liftoff_display_destroy(display);
return NULL;
}
display->crtcs_len = drm_res->count_crtcs;
memcpy(display->crtcs, drm_res->crtcs,
drm_res->count_crtcs * sizeof(uint32_t));
drmModeFreeResources(drm_res);
/* TODO: allow users to choose which layers to hand over */
drm_plane_res = drmModeGetPlaneResources(drm_fd);
if (drm_plane_res == NULL) {
liftoff_display_destroy(display);
return NULL;
}
for (i = 0; i < drm_plane_res->count_planes; i++) {
if (plane_create(display, drm_plane_res->planes[i]) == NULL) {
liftoff_display_destroy(display);
return NULL;
}
}
drmModeFreePlaneResources(drm_plane_res);
return display;
}
void liftoff_display_destroy(struct liftoff_display *display)
{
struct liftoff_plane *plane, *tmp;
close(display->drm_fd);
liftoff_list_for_each_safe(plane, tmp, &display->planes, link) {
plane_destroy(plane);
}
free(display->crtcs);
free(display);
}
static struct liftoff_plane_property *plane_get_property(struct liftoff_plane *plane,
const char *name)
{
size_t i;
for (i = 0; i < plane->props_len; i++) {
if (strcmp(plane->props[i].name, name) == 0) {
return &plane->props[i];
}
}
return NULL;
}
static bool plane_set_prop(struct liftoff_plane *plane, drmModeAtomicReq *req,
struct liftoff_plane_property *prop, uint64_t value)
{
int ret;
liftoff_log(LIFTOFF_DEBUG, " Setting %s = %"PRIu64,
prop->name, value);
ret = drmModeAtomicAddProperty(req, plane->id, prop->id, value);
if (ret < 0) {
perror("drmModeAtomicAddProperty");
return false;
}
return true;
}
static bool set_plane_prop_str(struct liftoff_plane *plane,
drmModeAtomicReq *req, const char *name,
uint64_t value)
{
struct liftoff_plane_property *prop;
prop = plane_get_property(plane, name);
if (prop == NULL) {
liftoff_log(LIFTOFF_DEBUG,
"plane %"PRIu32" is missing the %s property",
plane->id, name);
return false;
}
return plane_set_prop(plane, req, prop, value);
}
static bool plane_apply(struct liftoff_plane *plane, struct liftoff_layer *layer,
drmModeAtomicReq *req, bool *compatible)
{
int cursor;
size_t i;
struct liftoff_layer_property *layer_prop;
struct liftoff_plane_property *plane_prop;
*compatible = true;
cursor = drmModeAtomicGetCursor(req);
if (layer == NULL) {
return set_plane_prop_str(plane, req, "FB_ID", 0) &&
set_plane_prop_str(plane, req, "CRTC_ID", 0);
}
if (!set_plane_prop_str(plane, req, "CRTC_ID", layer->output->crtc_id)) {
return false;
}
for (i = 0; i < layer->props_len; i++) {
layer_prop = &layer->props[i];
if (strcmp(layer_prop->name, "zpos") == 0) {
/* We don't yet support setting the zpos property. We
* only use it (read-only) during plane allocation. */
continue;
}
plane_prop = plane_get_property(plane, layer_prop->name);
if (plane_prop == NULL) {
*compatible = false;
drmModeAtomicSetCursor(req, cursor);
return true;
}
if (!plane_set_prop(plane, req, plane_prop, layer_prop->value)) {
drmModeAtomicSetCursor(req, cursor);
return false;
}
}
return true;
}
/* Plane allocation algorithm
*
* Goal: KMS exposes a set of hardware planes, user submitted a set of layers.
* We want to map as many layers as possible to planes.
*
* However, all layers can't be mapped to any plane. There are constraints,
* sometimes depending on driver-specific limitations or the configuration of
* other planes.
*
* The only way to discover driver-specific limitations is via an atomic test
* commit: we submit a plane configuration, and KMS replies whether it's
* supported or not. Thus we need to incrementally build a valid configuration.
*
* Let's take an example with 2 planes and 3 layers. Plane 1 is only compatible
* with layer 2 and plane 2 is only compatible with layer 3. Our algorithm will
* discover the solution by building the mapping one plane at a time. It first
* starts with plane 1: an atomic commit assigning layer 1 to plane 1 is
* submitted. It fails, because this isn't supported by the driver. Then layer
* 2 is assigned to plane 1 and the atomic test succeeds. We can go on and
* repeat the operation with plane 2. After exploring the whole tree, we end up
* with a valid allocation.
*
*
* layer 1 layer 1
* +---------> failure +---------> failure
* | |
* | |
* | |
* +---------+ | +---------+ |
* | | | layer 2 | | | layer 3 final allocation:
* | plane 1 +------------>+ plane 2 +--+---------> plane 1 → layer 2
* | | | | | plane 2 → layer 3
* +---------+ | +---------+
* |
* |
* | layer 3
* +---------> failure
*
*
* Note how layer 2 isn't considered for plane 2: it's already mapped to plane
* 1. Also note that branches are pruned as soon as an atomic test fails.
*
* In practice, the primary plane is treated separately. This is where layers
* that can't be mapped to any plane (e.g. layer 1 in our example) will be
* composited. The primary plane is the first that will be allocated. Then all
* other planes will be allocated, from the topmost one to the bottommost one.
*
* The "zpos" property (which defines ordering between layers/planes) is handled
* as a special case. If it's set on layers, it adds additional constraints on
* their relative ordering. If two layers intersect, their relative zpos needs
* to be preserved during plane allocation.
*
* Implementation-wise, the output_choose_layers function is called at each node
* of the tree. It iterates over layers, check constraints, performs an atomic
* test commit and calls itself recursively on the next plane.
*/
/* Global data for the allocation algorithm */
struct alloc_result {
drmModeAtomicReq *req;
size_t planes_len;
struct liftoff_layer **best;
int best_score;
/* per-output */
bool has_composition_layer;
size_t non_composition_layers_len;
};
/* Transient data, arguments for each step */
struct alloc_step {
struct liftoff_list *plane_link; /* liftoff_plane.link */
size_t plane_idx;
struct liftoff_layer **alloc; /* only items up to plane_idx are valid */
int score; /* number of allocated layers */
int last_layer_zpos;
bool composited; /* per-output */
};
static void plane_step_init_next(struct alloc_step *step,
struct alloc_step *prev,
struct liftoff_layer *layer)
{
struct liftoff_plane *plane;
struct liftoff_layer_property *zpos_prop;
plane = liftoff_container_of(prev->plane_link, plane, link);
step->plane_link = prev->plane_link->next;
step->plane_idx = prev->plane_idx + 1;
step->alloc = prev->alloc;
step->alloc[prev->plane_idx] = layer;
if (layer != NULL && layer == layer->output->composition_layer) {
assert(!prev->composited);
step->composited = true;
} else {
step->composited = prev->composited;
}
if (layer != NULL && layer != layer->output->composition_layer) {
step->score = prev->score + 1;
} else {
step->score = prev->score;
}
zpos_prop = NULL;
if (layer != NULL) {
zpos_prop = layer_get_property(layer, "zpos");
}
if (zpos_prop != NULL && plane->type != DRM_PLANE_TYPE_PRIMARY) {
step->last_layer_zpos = zpos_prop->value;
} else {
step->last_layer_zpos = prev->last_layer_zpos;
}
}
static bool is_layer_allocated(struct alloc_step *step,
struct liftoff_layer *layer)
{
size_t i;
/* TODO: speed this up with an array of bools indicating whether a layer
* has been allocated */
for (i = 0; i < step->plane_idx; i++) {
if (step->alloc[i] == layer) {
return true;
}
}
return false;
}
static bool has_composited_layer_over(struct liftoff_output *output,
struct alloc_step *step,
struct liftoff_layer *layer)
{
struct liftoff_layer *other_layer;
struct liftoff_layer_property *zpos_prop, *other_zpos_prop;
zpos_prop = layer_get_property(layer, "zpos");
if (zpos_prop == NULL) {
return false;
}
liftoff_list_for_each(other_layer, &output->layers, link) {
if (is_layer_allocated(step, other_layer)) {
continue;
}
other_zpos_prop = layer_get_property(other_layer, "zpos");
if (other_zpos_prop == NULL) {
continue;
}
if (layer_intersects(layer, other_layer) &&
other_zpos_prop->value > zpos_prop->value) {
return true;
}
}
return false;
}
static bool has_allocated_layer_over(struct liftoff_output *output,
struct alloc_step *step,
struct liftoff_layer *layer)
{
ssize_t i;
struct liftoff_plane *other_plane;
struct liftoff_layer *other_layer;
struct liftoff_layer_property *zpos_prop, *other_zpos_prop;
zpos_prop = layer_get_property(layer, "zpos");
if (zpos_prop == NULL) {
return false;
}
i = -1;
liftoff_list_for_each(other_plane, &output->display->planes, link) {
i++;
if (i >= (ssize_t)step->plane_idx) {
break;
}
if (other_plane->type == DRM_PLANE_TYPE_PRIMARY) {
continue;
}
other_layer = step->alloc[i];
if (other_layer == NULL) {
continue;
}
other_zpos_prop = layer_get_property(other_layer, "zpos");
if (other_zpos_prop == NULL) {
continue;
}
/* Since plane zpos is descending, this means the other layer is
* supposed to be under but is mapped to a plane over the
* current one. */
if (zpos_prop->value > other_zpos_prop->value &&
layer_intersects(layer, other_layer)) {
return true;
}
}
return false;
}
static bool has_allocated_plane_under(struct liftoff_output *output,
struct alloc_step *step,
struct liftoff_layer *layer)
{
struct liftoff_plane *plane, *other_plane;
ssize_t i;
plane = liftoff_container_of(step->plane_link, plane, link);
i = -1;
liftoff_list_for_each(other_plane, &output->display->planes, link) {
i++;
if (i >= (ssize_t)step->plane_idx) {
break;
}
if (other_plane->type == DRM_PLANE_TYPE_PRIMARY) {
continue;
}
if (step->alloc[i] == NULL) {
continue;
}
if (plane->zpos >= other_plane->zpos &&
layer_intersects(layer, step->alloc[i])) {
return true;
}
}
return false;
}
bool output_choose_layers(struct liftoff_output *output,
struct alloc_result *result, struct alloc_step *step)
{
struct liftoff_display *display;
struct liftoff_plane *plane;
struct liftoff_layer *layer;
int cursor, ret;
size_t remaining_planes;
bool compatible;
struct alloc_step next_step;
struct liftoff_layer_property *zpos_prop;
display = output->display;
if (step->plane_link == &display->planes) { /* Allocation finished */
/* If composition isn't used, we need to have allocated all
* layers. */
/* TODO: find a way to fail earlier, e.g. when the number of
* layers exceeds the number of planes. */
if (result->has_composition_layer && !step->composited &&
step->score != (int)result->non_composition_layers_len) {
liftoff_log(LIFTOFF_DEBUG,
"Cannot skip composition: some layers "
"are missing a plane");
return true;
}
/* On the other hand, if we manage to allocate all layers, we
* don't want to use composition. We don't want to use the
* composition layer at all. */
if (step->composited &&
step->score == (int)result->non_composition_layers_len) {
liftoff_log(LIFTOFF_DEBUG,
"Refusing to use composition: all layers "
"have been put in a plane");
return true;
}
/* TODO: check allocation isn't empty */
if (step->score > result->best_score) {
/* We found a better allocation */
liftoff_log(LIFTOFF_DEBUG,
"Found a better allocation with score=%d",
step->score);
result->best_score = step->score;
memcpy(result->best, step->alloc,
result->planes_len * sizeof(struct liftoff_layer *));
}
return true;
}
plane = liftoff_container_of(step->plane_link, plane, link);
remaining_planes = result->planes_len - step->plane_idx;
if (result->best_score >= step->score + (int)remaining_planes) {
/* Even if we find a layer for all remaining planes, we won't
* find a better allocation. Give up. */
return true;
}
cursor = drmModeAtomicGetCursor(result->req);
if (plane->layer != NULL) {
goto skip;
}
if ((plane->possible_crtcs & (1 << output->crtc_index)) == 0) {
goto skip;
}
liftoff_log(LIFTOFF_DEBUG,
"Performing allocation for plane %"PRIu32" (%zu/%zu)",
plane->id, step->plane_idx + 1, result->planes_len);
liftoff_list_for_each(layer, &output->layers, link) {
if (layer->plane != NULL) {
continue;
}
/* Skip this layer if already allocated */
if (is_layer_allocated(step, layer)) {
continue;
}
zpos_prop = layer_get_property(layer, "zpos");
if (zpos_prop != NULL) {
if ((int)zpos_prop->value > step->last_layer_zpos &&
has_allocated_layer_over(output, step, layer)) {
/* This layer needs to be on top of the last
* allocated one */
liftoff_log(LIFTOFF_DEBUG,
"Layer %p -> plane %"PRIu32": "
"layer zpos invalid",
(void *)layer, plane->id);
continue;
}
if ((int)zpos_prop->value < step->last_layer_zpos &&
has_allocated_plane_under(output, step, layer)) {
/* This layer needs to be under the last
* allocated one, but this plane isn't under the
* last one (in practice, since planes are
* sorted by zpos it means it has the same zpos,
* ie. undefined ordering). */
liftoff_log(LIFTOFF_DEBUG,
"Layer %p -> plane %"PRIu32": "
"plane zpos invalid",
(void *)layer, plane->id);
continue;
}
}
if (plane->type != DRM_PLANE_TYPE_PRIMARY &&
has_composited_layer_over(output, step, layer)) {
liftoff_log(LIFTOFF_DEBUG,
"Layer %p -> plane %"PRIu32": "
"has composited layer on top",
(void *)layer, plane->id);
continue;
}
if (plane->type != DRM_PLANE_TYPE_PRIMARY &&
layer == layer->output->composition_layer) {
liftoff_log(LIFTOFF_DEBUG,
"Layer %p -> plane %"PRIu32": "
"cannot put composition layer on "
"non-primary plane",
(void *)layer, plane->id);
continue;
}
/* Try to use this layer for the current plane */
liftoff_log(LIFTOFF_DEBUG, "Layer %p -> plane %"PRIu32": "
"applying properties...",
(void *)layer, plane->id);
if (!plane_apply(plane, layer, result->req, &compatible)) {
return false;
}
if (!compatible) {
liftoff_log(LIFTOFF_DEBUG,
"Layer %p -> plane %"PRIu32": "
"incompatible properties",
(void *)layer, plane->id);
continue;
}
ret = drmModeAtomicCommit(display->drm_fd, result->req,
DRM_MODE_ATOMIC_TEST_ONLY, NULL);
if (ret == 0) {
liftoff_log(LIFTOFF_DEBUG,
"Layer %p -> plane %"PRIu32": success",
(void *)layer, plane->id);
/* Continue with the next plane */
plane_step_init_next(&next_step, step, layer);
if (!output_choose_layers(output, result, &next_step)) {
return false;
}
} else if (-ret != EINVAL && -ret != ERANGE) {
perror("drmModeAtomicCommit");
return false;
}
drmModeAtomicSetCursor(result->req, cursor);
}
skip:
/* Try not to use the current plane */
plane_step_init_next(&next_step, step, NULL);
if (!output_choose_layers(output, result, &next_step)) {
return false;
}
drmModeAtomicSetCursor(result->req, cursor);
return true;
}
bool liftoff_display_apply(struct liftoff_display *display, drmModeAtomicReq *req)
{
struct liftoff_output *output;
struct liftoff_plane *plane;
struct liftoff_layer *layer;
struct alloc_result result;
struct alloc_step step;
size_t i;
bool compatible;
/* Unset all existing plane and layer mappings.
TODO: incremental updates keeping old configuration if possible */
liftoff_list_for_each(plane, &display->planes, link) {
if (plane->layer != NULL) {
plane->layer->plane = NULL;
plane->layer = NULL;
}
}
/* Disable all planes. Do it before building mappings to make sure not
to hit bandwidth limits because too many planes are enabled. */
liftoff_list_for_each(plane, &display->planes, link) {
if (plane->layer == NULL) {
liftoff_log(LIFTOFF_DEBUG,
"Disabling plane %d", plane->id);
if (!plane_apply(plane, NULL, req, &compatible)) {
return false;
}
assert(compatible);
}
}
result.req = req;
result.planes_len = liftoff_list_length(&display->planes);
step.alloc = malloc(result.planes_len * sizeof(*step.alloc));
result.best = malloc(result.planes_len * sizeof(*result.best));
if (step.alloc == NULL || result.best == NULL) {
perror("malloc");
return false;
}
/* TODO: maybe start by allocating the primary plane on each output to
* make sure we can display at least something without hitting bandwidth
* issues? Also: be fair when mapping planes to outputs, don't give all
* planes to a single output. Also: don't treat each output separately,
* allocate planes for all outputs at once. */
liftoff_list_for_each(output, &display->outputs, link) {
/* For each plane, try to find a layer. Don't do it the other
* way around (ie. for each layer, try to find a plane) because
* some drivers want user-space to enable the primary plane
* before any other plane. */
result.best_score = -1;
memset(result.best, 0, result.planes_len * sizeof(*result.best));
result.has_composition_layer = output->composition_layer != NULL;
result.non_composition_layers_len =
liftoff_list_length(&output->layers);
if (output->composition_layer != NULL) {
result.non_composition_layers_len--;
}
step.plane_link = display->planes.next;
step.plane_idx = 0;
step.score = 0;
step.last_layer_zpos = INT_MAX;
step.composited = false;
if (!output_choose_layers(output, &result, &step)) {
return false;
}
liftoff_log(LIFTOFF_DEBUG,
"Found plane allocation for output %p with "
"score=%d", (void *)output, result.best_score);
/* Apply the best allocation */
i = 0;
liftoff_list_for_each(plane, &display->planes, link) {
layer = result.best[i];
i++;
if (layer == NULL) {
continue;
}
liftoff_log(LIFTOFF_DEBUG,
"Assigning layer %p to plane %"PRIu32,
(void *)layer, plane->id);
if (!plane_apply(plane, layer, req, &compatible)) {
return false;
}
assert(compatible);
assert(plane->layer == NULL);
assert(layer->plane == NULL);
plane->layer = layer;
layer->plane = plane;
}
}
free(step.alloc);
free(result.best);
return true;
}