libliftoff/test/test_alloc.c
Simon Ser 61fd4c099a Make liftoff_output_apply return an int
Callers may want to get more details about the failure, in
particular EPERM indicates that the user isn't DRM master (can
happen on VT switch).
2021-07-27 12:28:00 +02:00

858 lines
19 KiB
C

#include <assert.h>
#include <unistd.h>
#include <libliftoff.h>
#include <stdio.h>
#include <string.h>
#include "libdrm_mock.h"
static struct liftoff_layer *add_layer(struct liftoff_output *output,
int x, int y, int width, int height)
{
uint32_t fb_id;
struct liftoff_layer *layer;
layer = liftoff_layer_create(output);
fb_id = liftoff_mock_drm_create_fb(layer);
liftoff_layer_set_property(layer, "FB_ID", fb_id);
liftoff_layer_set_property(layer, "CRTC_X", x);
liftoff_layer_set_property(layer, "CRTC_Y", y);
liftoff_layer_set_property(layer, "CRTC_W", width);
liftoff_layer_set_property(layer, "CRTC_H", height);
liftoff_layer_set_property(layer, "SRC_X", 0);
liftoff_layer_set_property(layer, "SRC_Y", 0);
liftoff_layer_set_property(layer, "SRC_W", width << 16);
liftoff_layer_set_property(layer, "SRC_H", height << 16);
return layer;
}
struct test_plane {
int type;
};
/* This structure describes a layer in a test case. The first block of fields
* describe the layer properties: geometry, vertical ordering, etc. The `compat`
* field describes which hardware planes the layer is compatible with. The
* `result` field describes the expected hardware plane returned by libliftoff.
*/
struct test_layer {
int x, y, width, height;
int zpos; /* zero means unset */
bool composition;
bool force_composited;
struct test_plane *compat[64];
struct test_plane *result;
};
struct test_case {
const char *name;
struct test_layer layers[64];
};
/* This array describes the hardware we're going to perform the tests with. Our
* hardware has one primary plane at the bottom position, two overlay planes
* at the middle position (with undefined ordering between themselves), and one
* cursor plane at the top.
*/
static struct test_plane test_setup[] = {
{ .type = DRM_PLANE_TYPE_PRIMARY }, /* zpos = 0 */
{ .type = DRM_PLANE_TYPE_CURSOR }, /* zpos = 2 */
{ .type = DRM_PLANE_TYPE_OVERLAY }, /* zpos = 1 */
{ .type = DRM_PLANE_TYPE_OVERLAY }, /* zpos = 1 */
};
static const size_t test_setup_len = sizeof(test_setup) / sizeof(test_setup[0]);
#define PRIMARY_PLANE &test_setup[0]
#define CURSOR_PLANE &test_setup[1]
#define OVERLAY_PLANE &test_setup[2]
/* non-primary planes */
#define FIRST_2_SECONDARY_PLANES { &test_setup[1], &test_setup[2] }
#define FIRST_3_SECONDARY_PLANES { &test_setup[1], &test_setup[2], \
&test_setup[3] }
static struct test_case tests[] = {
{
.name = "empty",
},
{
.name = "simple-1x-fail",
.layers = {
{
.width = 1920,
.height = 1080,
.compat = { NULL },
.result = NULL,
},
},
},
{
.name = "simple-1x",
.layers = {
{
.width = 1920,
.height = 1080,
.compat = { PRIMARY_PLANE },
.result = PRIMARY_PLANE,
},
},
},
{
.name = "simple-3x",
.layers = {
{
.width = 1920,
.height = 1080,
.compat = { PRIMARY_PLANE },
.result = PRIMARY_PLANE,
},
{
.width = 100,
.height = 100,
.compat = { CURSOR_PLANE },
.result = CURSOR_PLANE,
},
{
.width = 100,
.height = 100,
.compat = { OVERLAY_PLANE },
.result = OVERLAY_PLANE,
},
},
},
{
.name = "zpos-3x",
.layers = {
{
.width = 1920,
.height = 1080,
.zpos = 1,
.compat = { PRIMARY_PLANE },
.result = PRIMARY_PLANE,
},
{
.width = 100,
.height = 100,
.zpos = 2,
.compat = FIRST_2_SECONDARY_PLANES,
.result = OVERLAY_PLANE,
},
{
.width = 100,
.height = 100,
.zpos = 3,
.compat = FIRST_2_SECONDARY_PLANES,
.result = CURSOR_PLANE,
},
},
},
{
.name = "zpos-3x-intersect-fail",
/* Layer 1 is over layer 2 but falls back to composition. Since
* they intersect, layer 2 needs to be composited too. */
.layers = {
{
.width = 1920,
.height = 1080,
.zpos = 1,
.compat = { PRIMARY_PLANE },
.result = PRIMARY_PLANE,
},
{
.width = 100,
.height = 100,
.zpos = 3,
.compat = { NULL },
.result = NULL,
},
{
.width = 100,
.height = 100,
.zpos = 2,
.compat = FIRST_2_SECONDARY_PLANES,
.result = NULL,
},
},
},
{
.name = "zpos-3x-intersect-partial",
/* Layer 1 is only compatible with the cursor plane. Layer 2 is
* only compatible with the overlay plane. Layer 2 is over layer
* 1, but the cursor plane is over the overlay plane. There is a
* zpos conflict, only one of these two layers can be mapped to
* a plane. */
.layers = {
{
.width = 1920,
.height = 1080,
.zpos = 1,
.compat = { PRIMARY_PLANE },
.result = PRIMARY_PLANE,
},
{
.width = 100,
.height = 100,
.zpos = 2,
.compat = { CURSOR_PLANE },
.result = NULL,
},
{
.width = 100,
.height = 100,
.zpos = 3,
.compat = { OVERLAY_PLANE },
.result = OVERLAY_PLANE,
},
},
},
{
.name = "zpos-3x-disjoint-partial",
/* Layer 1 is over layer 2 and falls back to composition. Since
* they don't intersect, layer 2 can be mapped to a plane. */
.layers = {
{
.width = 1920,
.height = 1080,
.zpos = 1,
.compat = { PRIMARY_PLANE },
.result = PRIMARY_PLANE,
},
{
.width = 100,
.height = 100,
.zpos = 3,
.compat = { NULL },
.result = NULL,
},
{
.x = 100,
.y = 100,
.width = 100,
.height = 100,
.zpos = 2,
.compat = { CURSOR_PLANE },
.result = CURSOR_PLANE,
},
},
},
{
.name = "zpos-3x-disjoint",
/* Layer 1 is only compatible with the cursor plane. Layer 2 is
* only compatible with the overlay plane. Layer 2 is over layer
* 1, but the cursor plane is over the overlay plane. There is a
* zpos conflict, however since these two layers don't
* intersect, we can still map them to planes. */
.layers = {
{
.width = 1920,
.height = 1080,
.zpos = 1,
.compat = { PRIMARY_PLANE },
.result = PRIMARY_PLANE,
},
{
.width = 100,
.height = 100,
.zpos = 2,
.compat = { CURSOR_PLANE },
.result = CURSOR_PLANE,
},
{
.x = 100,
.y = 100,
.width = 100,
.height = 100,
.zpos = 3,
.compat = { OVERLAY_PLANE },
.result = OVERLAY_PLANE,
},
},
},
{
.name = "zpos-4x-intersect-partial",
/* We have 4 layers and 4 planes. However since they all
* intersect and the ordering between both overlay planes is
* undefined, we can only use 3 planes. */
.layers = {
{
.width = 1920,
.height = 1080,
.zpos = 1,
.compat = { PRIMARY_PLANE },
.result = PRIMARY_PLANE,
},
{
.width = 100,
.height = 100,
.zpos = 4,
.compat = FIRST_3_SECONDARY_PLANES,
.result = CURSOR_PLANE,
},
{
.width = 100,
.height = 100,
.zpos = 2,
.compat = FIRST_3_SECONDARY_PLANES,
.result = NULL,
},
{
.width = 100,
.height = 100,
.zpos = 3,
.compat = FIRST_3_SECONDARY_PLANES,
.result = &test_setup[3],
},
},
},
{
.name = "zpos-4x-disjoint",
/* Ordering between the two overlay planes isn't defined,
* however layers 2 and 3 don't intersect so they can be mapped
* to these planes nonetheless. */
.layers = {
{
.width = 1920,
.height = 1080,
.zpos = 1,
.compat = { PRIMARY_PLANE },
.result = PRIMARY_PLANE,
},
{
.width = 100,
.height = 100,
.zpos = 4,
.compat = FIRST_3_SECONDARY_PLANES,
.result = CURSOR_PLANE,
},
{
.width = 100,
.height = 100,
.zpos = 2,
.compat = { &test_setup[3] },
.result = &test_setup[3],
},
{
.x = 100,
.y = 100,
.width = 100,
.height = 100,
.zpos = 3,
.compat = { OVERLAY_PLANE },
.result = OVERLAY_PLANE,
},
},
},
{
.name = "zpos-4x-disjoint-alt",
/* Same as zpos-4x-disjoint, but with the last two layers'
* plane swapped. */
.layers = {
{
.width = 1920,
.height = 1080,
.zpos = 1,
.compat = { PRIMARY_PLANE },
.result = PRIMARY_PLANE,
},
{
.width = 100,
.height = 100,
.zpos = 4,
.compat = FIRST_3_SECONDARY_PLANES,
.result = CURSOR_PLANE,
},
{
.width = 100,
.height = 100,
.zpos = 2,
.compat = { OVERLAY_PLANE },
.result = OVERLAY_PLANE,
},
{
.x = 100,
.y = 100,
.width = 100,
.height = 100,
.zpos = 3,
.compat = { &test_setup[3] },
.result = &test_setup[3],
},
},
},
{
.name = "zpos-4x-domino-fail",
/* A layer on top falls back to composition. There is a layer at
* zpos=2 which doesn't overlap and could be mapped to a plane,
* however another layer at zpos=3 overlaps both and prevents
* all layers from being mapped to a plane. */
.layers = {
{
.width = 1920,
.height = 1080,
.zpos = 1,
.compat = { PRIMARY_PLANE },
.result = PRIMARY_PLANE,
},
{
.width = 100,
.height = 100,
.zpos = 4,
.compat = { NULL },
.result = NULL,
},
{
.x = 100,
.y = 100,
.width = 100,
.height = 100,
.zpos = 2,
.compat = FIRST_3_SECONDARY_PLANES,
.result = NULL,
},
{
.x = 50,
.y = 50,
.width = 100,
.height = 100,
.zpos = 3,
.compat = FIRST_3_SECONDARY_PLANES,
.result = NULL,
},
},
},
{
.name = "zpos-4x-domino-partial",
/* A layer on top falls back to composition. A layer at zpos=2
* falls back to composition too because it's underneath. A
* layer at zpos=3 doesn't intersect with the one at zpos=4 and
* is over the one at zpos=2 so it can be mapped to a plane. */
.layers = {
{
.width = 1920,
.height = 1080,
.zpos = 1,
.compat = { PRIMARY_PLANE },
.result = PRIMARY_PLANE,
},
{
.width = 100,
.height = 100,
.zpos = 4,
.compat = { NULL },
.result = NULL,
},
{
.x = 100,
.y = 100,
.width = 100,
.height = 100,
.zpos = 3,
.compat = FIRST_3_SECONDARY_PLANES,
.result = CURSOR_PLANE,
},
{
.x = 50,
.y = 50,
.width = 100,
.height = 100,
.zpos = 2,
.compat = FIRST_3_SECONDARY_PLANES,
.result = NULL,
},
},
},
{
.name = "composition-3x",
.layers = {
{
.width = 1920,
.height = 1080,
.zpos = 1,
.composition = true,
.compat = { PRIMARY_PLANE },
.result = NULL,
},
{
.width = 1920,
.height = 1080,
.zpos = 1,
.compat = { PRIMARY_PLANE },
.result = PRIMARY_PLANE,
},
{
.width = 100,
.height = 100,
.zpos = 2,
.compat = FIRST_2_SECONDARY_PLANES,
.result = OVERLAY_PLANE,
},
{
.width = 100,
.height = 100,
.zpos = 3,
.compat = FIRST_2_SECONDARY_PLANES,
.result = CURSOR_PLANE,
},
},
},
{
.name = "composition-3x-fail",
.layers = {
{
.width = 1920,
.height = 1080,
.zpos = 1,
.composition = true,
.compat = { PRIMARY_PLANE },
.result = PRIMARY_PLANE,
},
{
.width = 1920,
.height = 1080,
.zpos = 1,
.compat = { PRIMARY_PLANE },
.result = NULL,
},
{
.width = 100,
.height = 100,
.zpos = 2,
.compat = FIRST_2_SECONDARY_PLANES,
.result = NULL,
},
{
.width = 100,
.height = 100,
.zpos = 3,
.compat = { 0 },
.result = NULL,
},
},
},
{
.name = "composition-3x-partial",
.layers = {
{
.width = 1920,
.height = 1080,
.zpos = 1,
.composition = true,
.compat = { PRIMARY_PLANE },
.result = PRIMARY_PLANE,
},
{
.width = 1920,
.height = 1080,
.zpos = 1,
.compat = { PRIMARY_PLANE },
.result = NULL,
},
{
.width = 100,
.height = 100,
.zpos = 2,
.compat = { 0 },
.result = NULL,
},
{
.width = 100,
.height = 100,
.zpos = 3,
.compat = { CURSOR_PLANE },
.result = CURSOR_PLANE,
},
},
},
{
.name = "composition-3x-force",
/* Layers at zpos=1 and zpos=2 could be put on a plane, but
* FB composition is forced on the zpos=2 one. As a result, only
* the layer at zpos=3 can be put into a plane. */
.layers = {
{
.width = 1920,
.height = 1080,
.zpos = 1,
.composition = true,
.compat = { PRIMARY_PLANE },
.result = PRIMARY_PLANE,
},
{
.width = 1920,
.height = 1080,
.zpos = 1,
.compat = { PRIMARY_PLANE },
.result = NULL,
},
{
.width = 100,
.height = 100,
.zpos = 2,
.force_composited = true,
.compat = FIRST_2_SECONDARY_PLANES,
.result = NULL,
},
{
.width = 100,
.height = 100,
.zpos = 3,
.compat = { CURSOR_PLANE },
.result = CURSOR_PLANE,
},
},
},
};
static void run_test(struct test_layer *test_layers)
{
size_t i, j;
ssize_t plane_index_got, plane_index_want;
struct liftoff_mock_plane *mock_planes[64];
struct liftoff_mock_plane *mock_plane;
struct test_layer *test_layer;
int drm_fd;
struct liftoff_device *device;
struct liftoff_output *output;
struct liftoff_layer *layers[64];
struct liftoff_plane *plane;
drmModeAtomicReq *req;
bool ok;
int ret;
uint32_t plane_id;
for (i = 0; i < test_setup_len; i++) {
mock_planes[i] = liftoff_mock_drm_create_plane(test_setup[i].type);
}
drm_fd = liftoff_mock_drm_open();
device = liftoff_device_create(drm_fd);
assert(device != NULL);
liftoff_device_register_all_planes(device);
output = liftoff_output_create(device, liftoff_mock_drm_crtc_id);
for (i = 0; test_layers[i].width > 0; i++) {
test_layer = &test_layers[i];
layers[i] = add_layer(output, test_layer->x, test_layer->y,
test_layer->width, test_layer->height);
if (test_layer->zpos != 0) {
liftoff_layer_set_property(layers[i], "zpos",
test_layer->zpos);
}
if (test_layer->composition) {
liftoff_output_set_composition_layer(output, layers[i]);
}
if (test_layer->force_composited) {
liftoff_layer_set_fb_composited(layers[i]);
}
for (j = 0; test_layer->compat[j] != NULL; j++) {
mock_plane = mock_planes[test_layer->compat[j] -
test_setup];
liftoff_mock_plane_add_compatible_layer(mock_plane,
layers[i]);
}
}
req = drmModeAtomicAlloc();
ret = liftoff_output_apply(output, req, 0);
assert(ret == 0);
ret = drmModeAtomicCommit(drm_fd, req, 0, NULL);
assert(ret == 0);
drmModeAtomicFree(req);
ok = true;
for (i = 0; test_layers[i].width > 0; i++) {
plane = liftoff_layer_get_plane(layers[i]);
mock_plane = NULL;
if (plane != NULL) {
plane_id = liftoff_plane_get_id(plane);
mock_plane = liftoff_mock_drm_get_plane(plane_id);
}
plane_index_got = -1;
for (j = 0; j < test_setup_len; j++) {
if (mock_planes[j] == mock_plane) {
plane_index_got = j;
break;
}
}
assert(mock_plane == NULL || plane_index_got >= 0);
fprintf(stderr, "layer %zu got assigned to plane %d\n",
i, (int)plane_index_got);
plane_index_want = -1;
if (test_layers[i].result != NULL) {
plane_index_want = test_layers[i].result - test_setup;
}
if (plane_index_got != plane_index_want) {
fprintf(stderr, " ERROR: want plane %d\n",
(int)plane_index_want);
ok = false;
}
}
assert(ok);
liftoff_output_destroy(output);
liftoff_device_destroy(device);
close(drm_fd);
}
static void test_basic(void)
{
struct liftoff_mock_plane *mock_plane;
int drm_fd;
struct liftoff_device *device;
struct liftoff_output *output;
struct liftoff_layer *layer;
drmModeAtomicReq *req;
int ret;
mock_plane = liftoff_mock_drm_create_plane(DRM_PLANE_TYPE_PRIMARY);
drm_fd = liftoff_mock_drm_open();
device = liftoff_device_create(drm_fd);
assert(device != NULL);
liftoff_device_register_all_planes(device);
output = liftoff_output_create(device, liftoff_mock_drm_crtc_id);
layer = add_layer(output, 0, 0, 1920, 1080);
liftoff_mock_plane_add_compatible_layer(mock_plane, layer);
req = drmModeAtomicAlloc();
ret = liftoff_output_apply(output, req, 0);
assert(ret == 0);
ret = drmModeAtomicCommit(drm_fd, req, 0, NULL);
assert(ret == 0);
assert(liftoff_mock_plane_get_layer(mock_plane) == layer);
drmModeAtomicFree(req);
liftoff_device_destroy(device);
close(drm_fd);
}
/* Checks that the library doesn't allocate a plane for a layer without a
* non-zero FB_ID set. */
static void test_no_fb_fail(bool zero_fb_id)
{
struct liftoff_mock_plane *mock_plane;
int drm_fd;
struct liftoff_device *device;
struct liftoff_output *output;
struct liftoff_layer *layer;
drmModeAtomicReq *req;
int ret;
mock_plane = liftoff_mock_drm_create_plane(DRM_PLANE_TYPE_PRIMARY);
drm_fd = liftoff_mock_drm_open();
device = liftoff_device_create(drm_fd);
assert(device != NULL);
liftoff_device_register_all_planes(device);
output = liftoff_output_create(device, liftoff_mock_drm_crtc_id);
layer = liftoff_layer_create(output);
if (zero_fb_id) {
liftoff_layer_set_property(layer, "FB_ID", 0);
}
liftoff_mock_plane_add_compatible_layer(mock_plane, layer);
req = drmModeAtomicAlloc();
ret = liftoff_output_apply(output, req, 0);
assert(ret == 0);
ret = drmModeAtomicCommit(drm_fd, req, 0, NULL);
assert(ret == 0);
assert(liftoff_mock_plane_get_layer(mock_plane) == NULL);
drmModeAtomicFree(req);
liftoff_device_destroy(device);
close(drm_fd);
}
/* Checks that the library doesn't fallback to composition when a layer doesn't
* have a FB. */
static void test_composition_zero_fb(void)
{
struct liftoff_mock_plane *mock_plane;
int drm_fd;
struct liftoff_device *device;
struct liftoff_output *output;
struct liftoff_layer *composition_layer, *layer_with_fb,
*layer_without_fb;
drmModeAtomicReq *req;
int ret;
mock_plane = liftoff_mock_drm_create_plane(DRM_PLANE_TYPE_PRIMARY);
drm_fd = liftoff_mock_drm_open();
device = liftoff_device_create(drm_fd);
assert(device != NULL);
liftoff_device_register_all_planes(device);
output = liftoff_output_create(device, liftoff_mock_drm_crtc_id);
composition_layer = add_layer(output, 0, 0, 1920, 1080);
layer_with_fb = add_layer(output, 0, 0, 1920, 1080);
layer_without_fb = liftoff_layer_create(output);
(void)layer_with_fb;
liftoff_output_set_composition_layer(output, composition_layer);
liftoff_mock_plane_add_compatible_layer(mock_plane, composition_layer);
liftoff_mock_plane_add_compatible_layer(mock_plane, layer_without_fb);
liftoff_mock_plane_add_compatible_layer(mock_plane, layer_with_fb);
req = drmModeAtomicAlloc();
ret = liftoff_output_apply(output, req, 0);
assert(ret == 0);
ret = drmModeAtomicCommit(drm_fd, req, 0, NULL);
assert(ret == 0);
assert(liftoff_mock_plane_get_layer(mock_plane) == layer_with_fb);
drmModeAtomicFree(req);
liftoff_device_destroy(device);
close(drm_fd);
}
int main(int argc, char *argv[]) {
const char *test_name;
size_t i;
liftoff_log_set_priority(LIFTOFF_DEBUG);
if (argc != 2) {
fprintf(stderr, "usage: %s <test-name>\n", argv[0]);
return 1;
}
test_name = argv[1];
if (strcmp(test_name, "basic") == 0) {
test_basic();
return 0;
} else if (strcmp(test_name, "no-props-fail") == 0) {
test_no_fb_fail(false);
return 0;
} else if (strcmp(test_name, "zero-fb-id-fail") == 0) {
test_no_fb_fail(true);
return 0;
} else if (strcmp(test_name, "composition-zero-fb-id") == 0) {
test_composition_zero_fb();
return 0;
}
for (i = 0; i < sizeof(tests) / sizeof(tests[0]); i++) {
if (strcmp(tests[i].name, test_name) == 0) {
run_test(tests[i].layers);
return 0;
}
}
fprintf(stderr, "no such test: %s\n", test_name);
return 1;
}