mirror of
https://gitlab.freedesktop.org/emersion/libliftoff.git
synced 2024-12-25 21:59:11 +01:00
1036 lines
28 KiB
C
1036 lines
28 KiB
C
#define _POSIX_C_SOURCE 200112L
|
|
#include <assert.h>
|
|
#include <errno.h>
|
|
#include <inttypes.h>
|
|
#include <limits.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <time.h>
|
|
#include <unistd.h>
|
|
#include "log.h"
|
|
#include "private.h"
|
|
|
|
/* Plane allocation algorithm
|
|
*
|
|
* Goal: KMS exposes a set of hardware planes, user submitted a set of layers.
|
|
* We want to map as many layers as possible to planes.
|
|
*
|
|
* However, all layers can't be mapped to any plane. There are constraints,
|
|
* sometimes depending on driver-specific limitations or the configuration of
|
|
* other planes.
|
|
*
|
|
* The only way to discover driver-specific limitations is via an atomic test
|
|
* commit: we submit a plane configuration, and KMS replies whether it's
|
|
* supported or not. Thus we need to incrementally build a valid configuration.
|
|
*
|
|
* Let's take an example with 2 planes and 3 layers. Plane 1 is only compatible
|
|
* with layer 2 and plane 2 is only compatible with layer 3. Our algorithm will
|
|
* discover the solution by building the mapping one plane at a time. It first
|
|
* starts with plane 1: an atomic commit assigning layer 1 to plane 1 is
|
|
* submitted. It fails, because this isn't supported by the driver. Then layer
|
|
* 2 is assigned to plane 1 and the atomic test succeeds. We can go on and
|
|
* repeat the operation with plane 2. After exploring the whole tree, we end up
|
|
* with a valid allocation.
|
|
*
|
|
*
|
|
* layer 1 layer 1
|
|
* +---------> failure +---------> failure
|
|
* | |
|
|
* | |
|
|
* | |
|
|
* +---------+ | +---------+ |
|
|
* | | | layer 2 | | | layer 3 final allocation:
|
|
* | plane 1 +------------>+ plane 2 +--+---------> plane 1 → layer 2
|
|
* | | | | | plane 2 → layer 3
|
|
* +---------+ | +---------+
|
|
* |
|
|
* |
|
|
* | layer 3
|
|
* +---------> failure
|
|
*
|
|
*
|
|
* Note how layer 2 isn't considered for plane 2: it's already mapped to plane
|
|
* 1. Also note that branches are pruned as soon as an atomic test fails.
|
|
*
|
|
* In practice, the primary plane is treated separately. This is where layers
|
|
* that can't be mapped to any plane (e.g. layer 1 in our example) will be
|
|
* composited. The primary plane is the first that will be allocated, because
|
|
* some drivers require it to be enabled in order to light up any other plane.
|
|
* Then all other planes will be allocated, from the topmost one to the
|
|
* bottommost one.
|
|
*
|
|
* The "zpos" property (which defines ordering between layers/planes) is handled
|
|
* as a special case. If it's set on layers, it adds additional constraints on
|
|
* their relative ordering. If two layers intersect, their relative zpos needs
|
|
* to be preserved during plane allocation.
|
|
*
|
|
* Implementation-wise, the output_choose_layers function is called at each node
|
|
* of the tree. It iterates over layers, check constraints, performs an atomic
|
|
* test commit and calls itself recursively on the next plane.
|
|
*/
|
|
|
|
/* Global data for the allocation algorithm */
|
|
struct alloc_result {
|
|
drmModeAtomicReq *req;
|
|
uint32_t flags;
|
|
size_t planes_len;
|
|
|
|
struct liftoff_layer **best;
|
|
int best_score;
|
|
|
|
struct timespec started_at;
|
|
int64_t timeout_ns;
|
|
|
|
/* per-output */
|
|
bool has_composition_layer;
|
|
size_t non_composition_layers_len;
|
|
};
|
|
|
|
/* Transient data, arguments for each step */
|
|
struct alloc_step {
|
|
struct liftoff_list *plane_link; /* liftoff_plane.link */
|
|
size_t plane_idx;
|
|
|
|
struct liftoff_layer **alloc; /* only items up to plane_idx are valid */
|
|
int score; /* number of allocated layers */
|
|
int last_layer_zpos;
|
|
int primary_layer_zpos, primary_plane_zpos;
|
|
|
|
bool composited; /* per-output */
|
|
|
|
char log_prefix[64];
|
|
};
|
|
|
|
static const int64_t NSEC_PER_SEC = 1000 * 1000 * 1000;
|
|
|
|
static int64_t
|
|
timespec_to_nsec(struct timespec ts)
|
|
{
|
|
return (int64_t)ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
|
|
}
|
|
|
|
static const int64_t DEFAULT_ALLOC_TIMEOUT_NSEC = 1000 * 1000; // 1ms
|
|
|
|
static bool
|
|
check_deadline(struct timespec start, int64_t timeout_ns)
|
|
{
|
|
struct timespec now;
|
|
|
|
if (clock_gettime(CLOCK_MONOTONIC, &now) != 0) {
|
|
liftoff_log_errno(LIFTOFF_ERROR, "clock_gettime");
|
|
return false;
|
|
}
|
|
|
|
return timespec_to_nsec(now) - timeout_ns < timespec_to_nsec(start);
|
|
}
|
|
|
|
static void
|
|
plane_step_init_next(struct alloc_step *step, struct alloc_step *prev,
|
|
struct liftoff_layer *layer)
|
|
{
|
|
struct liftoff_plane *plane;
|
|
struct liftoff_layer_property *zpos_prop;
|
|
size_t len;
|
|
|
|
plane = liftoff_container_of(prev->plane_link, plane, link);
|
|
|
|
step->plane_link = prev->plane_link->next;
|
|
step->plane_idx = prev->plane_idx + 1;
|
|
step->alloc = prev->alloc;
|
|
step->alloc[prev->plane_idx] = layer;
|
|
|
|
if (layer != NULL && layer == layer->output->composition_layer) {
|
|
assert(!prev->composited);
|
|
step->composited = true;
|
|
} else {
|
|
step->composited = prev->composited;
|
|
}
|
|
|
|
if (layer != NULL && layer != layer->output->composition_layer) {
|
|
step->score = prev->score + 1;
|
|
} else {
|
|
step->score = prev->score;
|
|
}
|
|
|
|
zpos_prop = NULL;
|
|
if (layer != NULL) {
|
|
zpos_prop = layer_get_property(layer, "zpos");
|
|
}
|
|
if (zpos_prop != NULL && plane->type != DRM_PLANE_TYPE_PRIMARY) {
|
|
step->last_layer_zpos = zpos_prop->value;
|
|
} else {
|
|
step->last_layer_zpos = prev->last_layer_zpos;
|
|
}
|
|
if (zpos_prop != NULL && plane->type == DRM_PLANE_TYPE_PRIMARY) {
|
|
step->primary_layer_zpos = zpos_prop->value;
|
|
step->primary_plane_zpos = plane->zpos;
|
|
} else {
|
|
step->primary_layer_zpos = prev->primary_layer_zpos;
|
|
step->primary_plane_zpos = prev->primary_plane_zpos;
|
|
}
|
|
|
|
if (layer != NULL) {
|
|
len = strlen(prev->log_prefix) + 2;
|
|
if (len > sizeof(step->log_prefix) - 1) {
|
|
len = sizeof(step->log_prefix) - 1;
|
|
}
|
|
memset(step->log_prefix, ' ', len);
|
|
step->log_prefix[len] = '\0';
|
|
} else {
|
|
memcpy(step->log_prefix, prev->log_prefix,
|
|
sizeof(step->log_prefix));
|
|
}
|
|
}
|
|
|
|
static bool
|
|
is_layer_allocated(struct alloc_step *step, struct liftoff_layer *layer)
|
|
{
|
|
size_t i;
|
|
|
|
/* TODO: speed this up with an array of bools indicating whether a layer
|
|
* has been allocated */
|
|
for (i = 0; i < step->plane_idx; i++) {
|
|
if (step->alloc[i] == layer) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool
|
|
has_composited_layer_over(struct liftoff_output *output,
|
|
struct alloc_step *step, struct liftoff_layer *layer)
|
|
{
|
|
struct liftoff_layer *other_layer;
|
|
struct liftoff_layer_property *zpos_prop, *other_zpos_prop;
|
|
|
|
zpos_prop = layer_get_property(layer, "zpos");
|
|
if (zpos_prop == NULL) {
|
|
return false;
|
|
}
|
|
|
|
liftoff_list_for_each(other_layer, &output->layers, link) {
|
|
if (is_layer_allocated(step, other_layer)) {
|
|
continue;
|
|
}
|
|
|
|
other_zpos_prop = layer_get_property(other_layer, "zpos");
|
|
if (other_zpos_prop == NULL) {
|
|
continue;
|
|
}
|
|
|
|
if (layer_intersects(layer, other_layer) &&
|
|
other_zpos_prop->value > zpos_prop->value) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool
|
|
has_allocated_layer_over(struct liftoff_output *output, struct alloc_step *step,
|
|
struct liftoff_layer *layer)
|
|
{
|
|
ssize_t i;
|
|
struct liftoff_plane *other_plane;
|
|
struct liftoff_layer *other_layer;
|
|
struct liftoff_layer_property *zpos_prop, *other_zpos_prop;
|
|
|
|
zpos_prop = layer_get_property(layer, "zpos");
|
|
if (zpos_prop == NULL) {
|
|
return false;
|
|
}
|
|
|
|
i = -1;
|
|
liftoff_list_for_each(other_plane, &output->device->planes, link) {
|
|
i++;
|
|
if (i >= (ssize_t)step->plane_idx) {
|
|
break;
|
|
}
|
|
if (other_plane->type == DRM_PLANE_TYPE_PRIMARY) {
|
|
continue;
|
|
}
|
|
|
|
other_layer = step->alloc[i];
|
|
if (other_layer == NULL) {
|
|
continue;
|
|
}
|
|
|
|
other_zpos_prop = layer_get_property(other_layer, "zpos");
|
|
if (other_zpos_prop == NULL) {
|
|
continue;
|
|
}
|
|
|
|
/* Since plane zpos is descending, this means the other layer is
|
|
* supposed to be under but is mapped to a plane over the
|
|
* current one. */
|
|
if (zpos_prop->value > other_zpos_prop->value &&
|
|
layer_intersects(layer, other_layer)) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool
|
|
has_allocated_plane_under(struct liftoff_output *output,
|
|
struct alloc_step *step, struct liftoff_layer *layer)
|
|
{
|
|
struct liftoff_plane *plane, *other_plane;
|
|
ssize_t i;
|
|
|
|
plane = liftoff_container_of(step->plane_link, plane, link);
|
|
|
|
i = -1;
|
|
liftoff_list_for_each(other_plane, &output->device->planes, link) {
|
|
i++;
|
|
if (i >= (ssize_t)step->plane_idx) {
|
|
break;
|
|
}
|
|
if (other_plane->type == DRM_PLANE_TYPE_PRIMARY) {
|
|
continue;
|
|
}
|
|
if (step->alloc[i] == NULL) {
|
|
continue;
|
|
}
|
|
|
|
if (plane->zpos >= other_plane->zpos &&
|
|
layer_intersects(layer, step->alloc[i])) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool
|
|
check_layer_plane_compatible(struct alloc_step *step,
|
|
struct liftoff_layer *layer,
|
|
struct liftoff_plane *plane)
|
|
{
|
|
struct liftoff_output *output;
|
|
struct liftoff_layer_property *zpos_prop;
|
|
|
|
output = layer->output;
|
|
|
|
/* Skip this layer if already allocated */
|
|
if (is_layer_allocated(step, layer)) {
|
|
return false;
|
|
}
|
|
|
|
zpos_prop = layer_get_property(layer, "zpos");
|
|
if (zpos_prop != NULL) {
|
|
if ((int)zpos_prop->value > step->last_layer_zpos &&
|
|
has_allocated_layer_over(output, step, layer)) {
|
|
/* This layer needs to be on top of the last
|
|
* allocated one */
|
|
liftoff_log(LIFTOFF_DEBUG,
|
|
"%s Layer %p -> plane %"PRIu32": "
|
|
"layer zpos invalid",
|
|
step->log_prefix, (void *)layer, plane->id);
|
|
return false;
|
|
}
|
|
if ((int)zpos_prop->value < step->last_layer_zpos &&
|
|
has_allocated_plane_under(output, step, layer)) {
|
|
/* This layer needs to be under the last
|
|
* allocated one, but this plane isn't under the
|
|
* last one (in practice, since planes are
|
|
* sorted by zpos it means it has the same zpos,
|
|
* ie. undefined ordering). */
|
|
liftoff_log(LIFTOFF_DEBUG,
|
|
"%s Layer %p -> plane %"PRIu32": "
|
|
"plane zpos invalid",
|
|
step->log_prefix, (void *)layer, plane->id);
|
|
return false;
|
|
}
|
|
if (plane->type != DRM_PLANE_TYPE_PRIMARY &&
|
|
(int)zpos_prop->value < step->primary_layer_zpos &&
|
|
plane->zpos > step->primary_plane_zpos) {
|
|
/* Primary planes are handled up front, because some
|
|
* drivers fail all atomic commits when it's missing.
|
|
* However that messes up with our zpos checks. In
|
|
* particular, we need to make sure we don't put a layer
|
|
* configured to be over the primary plane under it.
|
|
* TODO: revisit this once we add underlay support. */
|
|
liftoff_log(LIFTOFF_DEBUG,
|
|
"%s Layer %p -> plane %"PRIu32": "
|
|
"layer zpos under primary",
|
|
step->log_prefix, (void *)layer, plane->id);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (plane->type != DRM_PLANE_TYPE_PRIMARY &&
|
|
has_composited_layer_over(output, step, layer)) {
|
|
liftoff_log(LIFTOFF_DEBUG,
|
|
"%s Layer %p -> plane %"PRIu32": "
|
|
"has composited layer on top",
|
|
step->log_prefix, (void *)layer, plane->id);
|
|
return false;
|
|
}
|
|
|
|
if (plane->type != DRM_PLANE_TYPE_PRIMARY &&
|
|
layer == layer->output->composition_layer) {
|
|
liftoff_log(LIFTOFF_DEBUG,
|
|
"%s Layer %p -> plane %"PRIu32": "
|
|
"cannot put composition layer on "
|
|
"non-primary plane",
|
|
step->log_prefix, (void *)layer, plane->id);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
check_alloc_valid(struct liftoff_output *output, struct alloc_result *result,
|
|
struct alloc_step *step)
|
|
{
|
|
/* If composition isn't used, we need to have allocated all
|
|
* layers. */
|
|
/* TODO: find a way to fail earlier, e.g. when the number of
|
|
* layers exceeds the number of planes. */
|
|
if (result->has_composition_layer && !step->composited &&
|
|
step->score != (int)result->non_composition_layers_len) {
|
|
liftoff_log(LIFTOFF_DEBUG,
|
|
"%sCannot skip composition: some layers "
|
|
"are missing a plane", step->log_prefix);
|
|
return false;
|
|
}
|
|
/* On the other hand, if we manage to allocate all layers, we
|
|
* don't want to use composition. We don't want to use the
|
|
* composition layer at all. */
|
|
if (step->composited &&
|
|
step->score == (int)result->non_composition_layers_len) {
|
|
liftoff_log(LIFTOFF_DEBUG,
|
|
"%sRefusing to use composition: all layers "
|
|
"have been put in a plane", step->log_prefix);
|
|
return false;
|
|
}
|
|
|
|
/* TODO: check allocation isn't empty */
|
|
|
|
return true;
|
|
}
|
|
|
|
static int
|
|
output_choose_layers(struct liftoff_output *output, struct alloc_result *result,
|
|
struct alloc_step *step)
|
|
{
|
|
struct liftoff_device *device;
|
|
struct liftoff_plane *plane;
|
|
struct liftoff_layer *layer;
|
|
int cursor, ret;
|
|
size_t remaining_planes;
|
|
struct alloc_step next_step = {0};
|
|
|
|
device = output->device;
|
|
|
|
if (step->plane_link == &device->planes) { /* Allocation finished */
|
|
if (step->score > result->best_score &&
|
|
check_alloc_valid(output, result, step)) {
|
|
/* We found a better allocation */
|
|
liftoff_log(LIFTOFF_DEBUG,
|
|
"%sFound a better allocation with score=%d",
|
|
step->log_prefix, step->score);
|
|
result->best_score = step->score;
|
|
memcpy(result->best, step->alloc,
|
|
result->planes_len * sizeof(struct liftoff_layer *));
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
plane = liftoff_container_of(step->plane_link, plane, link);
|
|
|
|
remaining_planes = result->planes_len - step->plane_idx;
|
|
if (result->best_score >= step->score + (int)remaining_planes) {
|
|
/* Even if we find a layer for all remaining planes, we won't
|
|
* find a better allocation. Give up. */
|
|
/* TODO: change remaining_planes to only count those whose
|
|
* possible CRTC match and which aren't allocated */
|
|
return 0;
|
|
}
|
|
|
|
cursor = drmModeAtomicGetCursor(result->req);
|
|
|
|
if (plane->layer != NULL) {
|
|
goto skip;
|
|
}
|
|
if ((plane->possible_crtcs & (1 << output->crtc_index)) == 0) {
|
|
goto skip;
|
|
}
|
|
|
|
liftoff_log(LIFTOFF_DEBUG,
|
|
"%sPerforming allocation for plane %"PRIu32" (%zu/%zu)",
|
|
step->log_prefix, plane->id, step->plane_idx + 1, result->planes_len);
|
|
|
|
liftoff_list_for_each(layer, &output->layers, link) {
|
|
if (layer->plane != NULL) {
|
|
continue;
|
|
}
|
|
if (!layer_is_visible(layer)) {
|
|
continue;
|
|
}
|
|
if (!check_layer_plane_compatible(step, layer, plane)) {
|
|
continue;
|
|
}
|
|
|
|
if (!check_deadline(result->started_at, result->timeout_ns)) {
|
|
liftoff_log(LIFTOFF_DEBUG, "%s Deadline exceeded",
|
|
step->log_prefix);
|
|
break;
|
|
}
|
|
|
|
/* Try to use this layer for the current plane */
|
|
ret = plane_apply(plane, layer, result->req);
|
|
if (ret == -EINVAL) {
|
|
liftoff_log(LIFTOFF_DEBUG,
|
|
"%s Layer %p -> plane %"PRIu32": "
|
|
"incompatible properties",
|
|
step->log_prefix, (void *)layer, plane->id);
|
|
continue;
|
|
} else if (ret != 0) {
|
|
return ret;
|
|
}
|
|
|
|
layer_add_candidate_plane(layer, plane);
|
|
|
|
/* If composition is forced, wait until after the
|
|
* layer_add_candidate_plane() call to reject the plane: we want
|
|
* to return a meaningful list of candidate planes so that the
|
|
* API user has the opportunity to re-allocate its buffers with
|
|
* scanout-capable ones. Same deal for the FB check. */
|
|
if (layer->force_composition || !plane_check_layer_fb(plane, layer)) {
|
|
drmModeAtomicSetCursor(result->req, cursor);
|
|
continue;
|
|
}
|
|
|
|
ret = device_test_commit(device, result->req, result->flags);
|
|
if (ret == 0) {
|
|
liftoff_log(LIFTOFF_DEBUG,
|
|
"%s Layer %p -> plane %"PRIu32": success",
|
|
step->log_prefix, (void *)layer, plane->id);
|
|
/* Continue with the next plane */
|
|
plane_step_init_next(&next_step, step, layer);
|
|
ret = output_choose_layers(output, result, &next_step);
|
|
if (ret != 0) {
|
|
return ret;
|
|
}
|
|
} else if (ret != -EINVAL && ret != -ERANGE && ret != -ENOSPC) {
|
|
return ret;
|
|
} else {
|
|
liftoff_log(LIFTOFF_DEBUG,
|
|
"%s Layer %p -> plane %"PRIu32": "
|
|
"test-only commit failed (%s)",
|
|
step->log_prefix, (void *)layer, plane->id,
|
|
strerror(-ret));
|
|
}
|
|
|
|
drmModeAtomicSetCursor(result->req, cursor);
|
|
}
|
|
|
|
skip:
|
|
/* Try not to use the current plane */
|
|
plane_step_init_next(&next_step, step, NULL);
|
|
ret = output_choose_layers(output, result, &next_step);
|
|
if (ret != 0) {
|
|
return ret;
|
|
}
|
|
drmModeAtomicSetCursor(result->req, cursor);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
apply_current(struct liftoff_device *device, drmModeAtomicReq *req)
|
|
{
|
|
struct liftoff_plane *plane;
|
|
int cursor, ret;
|
|
|
|
cursor = drmModeAtomicGetCursor(req);
|
|
|
|
liftoff_list_for_each(plane, &device->planes, link) {
|
|
ret = plane_apply(plane, plane->layer, req);
|
|
if (ret != 0) {
|
|
drmModeAtomicSetCursor(req, cursor);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool
|
|
fb_info_needs_realloc(const drmModeFB2 *a, const drmModeFB2 *b)
|
|
{
|
|
if (a->width != b->width || a->height != b->height ||
|
|
a->pixel_format != b->pixel_format || a->modifier != b->modifier) {
|
|
return true;
|
|
}
|
|
|
|
/* TODO: consider checking pitch and offset? */
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool
|
|
layer_needs_realloc(struct liftoff_layer *layer)
|
|
{
|
|
size_t i;
|
|
struct liftoff_layer_property *prop;
|
|
|
|
if (layer->changed) {
|
|
liftoff_log(LIFTOFF_DEBUG, "Cannot re-use previous allocation: "
|
|
"layer property added or force composition changed");
|
|
return true;
|
|
}
|
|
|
|
for (i = 0; i < layer->props_len; i++) {
|
|
prop = &layer->props[i];
|
|
|
|
/* If FB_ID changes from non-zero to zero, we don't need to
|
|
* display this layer anymore, so we may be able to re-use its
|
|
* plane for another layer. If FB_ID changes from zero to
|
|
* non-zero, we might be able to find a plane for this layer.
|
|
* If FB_ID changes from non-zero to non-zero and the FB
|
|
* attributes didn't change, we can try to re-use the previous
|
|
* allocation. */
|
|
if (strcmp(prop->name, "FB_ID") == 0) {
|
|
if (prop->value == 0 && prop->prev_value == 0) {
|
|
continue;
|
|
}
|
|
|
|
if (prop->value == 0 || prop->prev_value == 0) {
|
|
liftoff_log(LIFTOFF_DEBUG, "Cannot re-use previous allocation: "
|
|
"layer enabled or disabled");
|
|
return true;
|
|
}
|
|
|
|
if (fb_info_needs_realloc(&layer->fb_info,
|
|
&layer->prev_fb_info)) {
|
|
liftoff_log(LIFTOFF_DEBUG, "Cannot re-use previous allocation: "
|
|
"FB info changed");
|
|
return true;
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
/* For all properties except FB_ID, we can skip realloc if the
|
|
* value didn't change. */
|
|
if (prop->value == prop->prev_value) {
|
|
continue;
|
|
}
|
|
|
|
/* If the layer was or becomes completely transparent or
|
|
* completely opaque, we might be able to find a better
|
|
* allocation. Otherwise, we can keep the current one. */
|
|
if (strcmp(prop->name, "alpha") == 0) {
|
|
if (prop->value == 0 || prop->prev_value == 0 ||
|
|
prop->value == 0xFFFF || prop->prev_value == 0xFFFF) {
|
|
liftoff_log(LIFTOFF_DEBUG, "Cannot re-use previous allocation: "
|
|
"alpha changed");
|
|
return true;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
/* We should never need a re-alloc when IN_FENCE_FD or
|
|
* FB_DAMAGE_CLIPS changes. */
|
|
if (strcmp(prop->name, "IN_FENCE_FD") == 0 ||
|
|
strcmp(prop->name, "FB_DAMAGE_CLIPS") == 0) {
|
|
continue;
|
|
}
|
|
|
|
/* TODO: if CRTC_{X,Y,W,H} changed but intersection with other
|
|
* layers hasn't changed, don't realloc */
|
|
liftoff_log(LIFTOFF_DEBUG, "Cannot re-use previous allocation: "
|
|
"property \"%s\" changed", prop->name);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool
|
|
layer_is_higher_priority(struct liftoff_layer *this, struct liftoff_layer *other)
|
|
{
|
|
struct liftoff_layer_property *this_zpos, *other_zpos;
|
|
bool this_visible, other_visible, intersects;
|
|
|
|
// The composition layer should be highest priority.
|
|
if (this->output->composition_layer == this) {
|
|
return true;
|
|
} else if (this->output->composition_layer == other) {
|
|
return false;
|
|
}
|
|
|
|
// Invisible layers are given lowest priority. Pass-thru if both have
|
|
// same visibility
|
|
this_visible = layer_is_visible(this);
|
|
other_visible = layer_is_visible(other);
|
|
if (this_visible != other_visible) {
|
|
return this_visible;
|
|
}
|
|
|
|
// A layer's overall priority is determined by a combination of it's
|
|
// current_priority, it's zpos, and whether it intersects with others.
|
|
//
|
|
// Consider two layers. If they do not intersect, the layer with higher
|
|
// priority is given overall priority. However if both layers have
|
|
// identical priority, then the layer with higher zpos is given overall
|
|
// priority.
|
|
//
|
|
// If the layers intersect, their zpos determines the overall priority.
|
|
// If their zpos are identical, then simply fallback to looking at
|
|
// current_priority. Otherwise, the layer with higher zpos is given
|
|
// overall priority, since the top layer needs to be offloaded in order
|
|
// to offload the bottom layer.
|
|
|
|
this_zpos = layer_get_property(this, "zpos");
|
|
other_zpos = layer_get_property(other, "zpos");
|
|
intersects = layer_intersects(this, other);
|
|
|
|
if (this_zpos != NULL && other_zpos != NULL) {
|
|
if (intersects) {
|
|
return this_zpos->value == other_zpos->value ?
|
|
this->current_priority > other->current_priority :
|
|
this_zpos->value > other_zpos->value;
|
|
} else {
|
|
return this->current_priority == other->current_priority ?
|
|
this_zpos->value > other_zpos->value :
|
|
this->current_priority > other->current_priority;
|
|
}
|
|
} else if (this_zpos == NULL && other_zpos == NULL) {
|
|
return this->current_priority > other->current_priority;
|
|
} else {
|
|
// Either this or other zpos is null
|
|
return this_zpos != NULL;
|
|
}
|
|
}
|
|
|
|
static bool
|
|
update_layers_order(struct liftoff_output *output)
|
|
{
|
|
struct liftoff_list *search, *max, *cur, *head;
|
|
struct liftoff_layer *this_layer, *other_layer;
|
|
bool order_changed = false;
|
|
|
|
head = &output->layers;
|
|
cur = head;
|
|
|
|
// Run a insertion sort to order layers by priority.
|
|
while (cur->next != head) {
|
|
cur = cur->next;
|
|
|
|
max = cur;
|
|
search = cur;
|
|
while (search->next != head) {
|
|
search = search->next;
|
|
this_layer = liftoff_container_of(search, this_layer, link);
|
|
other_layer = liftoff_container_of(max, other_layer, link);
|
|
if (layer_is_higher_priority(this_layer, other_layer)) {
|
|
max = search;
|
|
}
|
|
}
|
|
|
|
if (cur != max) {
|
|
liftoff_list_swap(cur, max);
|
|
// max is now where iterator cur was, relocate to continue
|
|
cur = max;
|
|
order_changed = true;
|
|
}
|
|
}
|
|
|
|
return order_changed;
|
|
}
|
|
|
|
static int
|
|
reuse_previous_alloc(struct liftoff_output *output, drmModeAtomicReq *req,
|
|
uint32_t flags)
|
|
{
|
|
struct liftoff_device *device;
|
|
struct liftoff_layer *layer;
|
|
int cursor, ret;
|
|
bool layer_order_changed;
|
|
|
|
device = output->device;
|
|
|
|
layer_order_changed = update_layers_order(output);
|
|
|
|
if (output->layers_changed) {
|
|
liftoff_log(LIFTOFF_DEBUG, "Cannot re-use previous allocation: "
|
|
"a layer has been added or removed");
|
|
return -EINVAL;
|
|
}
|
|
|
|
liftoff_list_for_each(layer, &output->layers, link) {
|
|
if (layer_needs_realloc(layer)) {
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
if (layer_order_changed) {
|
|
liftoff_log(LIFTOFF_DEBUG, "Cannot re-use previous allocation: "
|
|
"layer priority order changed.");
|
|
return -EINVAL;
|
|
}
|
|
|
|
cursor = drmModeAtomicGetCursor(req);
|
|
|
|
ret = apply_current(device, req);
|
|
if (ret != 0) {
|
|
return ret;
|
|
}
|
|
|
|
ret = device_test_commit(device, req, flags);
|
|
if (ret != 0) {
|
|
drmModeAtomicSetCursor(req, cursor);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
mark_layers_clean(struct liftoff_output *output)
|
|
{
|
|
struct liftoff_layer *layer;
|
|
|
|
output->layers_changed = false;
|
|
|
|
liftoff_list_for_each(layer, &output->layers, link) {
|
|
layer_mark_clean(layer);
|
|
}
|
|
}
|
|
|
|
static void
|
|
update_layers_priority(struct liftoff_device *device)
|
|
{
|
|
struct liftoff_output *output;
|
|
struct liftoff_layer *layer;
|
|
bool period_elapsed;
|
|
|
|
device->page_flip_counter++;
|
|
period_elapsed = device->page_flip_counter >= LIFTOFF_PRIORITY_PERIOD;
|
|
if (period_elapsed) {
|
|
device->page_flip_counter = 0;
|
|
}
|
|
|
|
liftoff_list_for_each(output, &device->outputs, link) {
|
|
liftoff_list_for_each(layer, &output->layers, link) {
|
|
layer_update_priority(layer, period_elapsed);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
update_layers_fb_info(struct liftoff_output *output)
|
|
{
|
|
struct liftoff_layer *layer;
|
|
|
|
/* We don't know what the library user did in-between
|
|
* liftoff_output_apply() calls. They might've removed the FB and
|
|
* re-created a completely different one which happens to have the same
|
|
* FB ID. */
|
|
liftoff_list_for_each(layer, &output->layers, link) {
|
|
layer->fb_info = (drmModeFB2){0};
|
|
|
|
layer_cache_fb_info(layer);
|
|
/* TODO: propagate error? */
|
|
}
|
|
}
|
|
|
|
static void
|
|
log_reuse(struct liftoff_output *output)
|
|
{
|
|
if (output->alloc_reused_counter == 0) {
|
|
liftoff_log(LIFTOFF_DEBUG,
|
|
"Reusing previous plane allocation on output %"PRIu32,
|
|
output->crtc_id);
|
|
}
|
|
output->alloc_reused_counter++;
|
|
}
|
|
|
|
static void
|
|
log_no_reuse(struct liftoff_output *output)
|
|
{
|
|
liftoff_log(LIFTOFF_DEBUG, "Computing plane allocation on output %"PRIu32,
|
|
output->crtc_id);
|
|
|
|
if (output->alloc_reused_counter != 0) {
|
|
liftoff_log(LIFTOFF_DEBUG,
|
|
"Stopped reusing previous plane allocation on "
|
|
"output %"PRIu32" (had reused it %d times)",
|
|
output->crtc_id, output->alloc_reused_counter);
|
|
output->alloc_reused_counter = 0;
|
|
}
|
|
}
|
|
|
|
static size_t
|
|
non_composition_layers_length(struct liftoff_output *output)
|
|
{
|
|
struct liftoff_layer *layer;
|
|
size_t n;
|
|
|
|
n = 0;
|
|
liftoff_list_for_each(layer, &output->layers, link) {
|
|
if (layer_is_visible(layer) &&
|
|
output->composition_layer != layer) {
|
|
n++;
|
|
}
|
|
}
|
|
|
|
return n;
|
|
}
|
|
|
|
int
|
|
liftoff_output_apply(struct liftoff_output *output, drmModeAtomicReq *req,
|
|
uint32_t flags,
|
|
const struct liftoff_output_apply_options *options)
|
|
{
|
|
struct liftoff_device *device;
|
|
struct liftoff_plane *plane;
|
|
struct liftoff_layer *layer;
|
|
struct alloc_result result = {0};
|
|
struct alloc_step step = {0};
|
|
const struct liftoff_output_apply_options default_options = {0};
|
|
size_t i, candidate_planes;
|
|
int ret;
|
|
bool found_layer;
|
|
|
|
if (options == NULL) {
|
|
options = &default_options;
|
|
}
|
|
|
|
device = output->device;
|
|
|
|
update_layers_priority(device);
|
|
update_layers_fb_info(output);
|
|
|
|
ret = reuse_previous_alloc(output, req, flags);
|
|
if (ret == 0) {
|
|
log_reuse(output);
|
|
mark_layers_clean(output);
|
|
return 0;
|
|
}
|
|
log_no_reuse(output);
|
|
|
|
/* Reset layers' candidate planes */
|
|
liftoff_list_for_each(layer, &output->layers, link) {
|
|
layer_reset_candidate_planes(layer);
|
|
}
|
|
|
|
device->test_commit_counter = 0;
|
|
output_log_layers(output);
|
|
|
|
/* Unset all existing plane and layer mappings. */
|
|
liftoff_list_for_each(plane, &device->planes, link) {
|
|
if (plane->layer != NULL && plane->layer->output == output) {
|
|
plane->layer->plane = NULL;
|
|
plane->layer = NULL;
|
|
}
|
|
}
|
|
|
|
/* Disable all planes we might use. Do it before building mappings to
|
|
* make sure not to hit bandwidth limits because too many planes are
|
|
* enabled. */
|
|
candidate_planes = 0;
|
|
liftoff_list_for_each(plane, &device->planes, link) {
|
|
if (plane->layer == NULL) {
|
|
candidate_planes++;
|
|
liftoff_log(LIFTOFF_DEBUG,
|
|
"Disabling plane %"PRIu32, plane->id);
|
|
ret = plane_apply(plane, NULL, req);
|
|
assert(ret != -EINVAL);
|
|
if (ret != 0) {
|
|
return ret;
|
|
}
|
|
}
|
|
}
|
|
|
|
result.req = req;
|
|
result.flags = flags;
|
|
result.planes_len = liftoff_list_length(&device->planes);
|
|
|
|
step.alloc = malloc(result.planes_len * sizeof(step.alloc[0]));
|
|
result.best = malloc(result.planes_len * sizeof(result.best[0]));
|
|
if (step.alloc == NULL || result.best == NULL) {
|
|
liftoff_log_errno(LIFTOFF_ERROR, "malloc");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (clock_gettime(CLOCK_MONOTONIC, &result.started_at) != 0) {
|
|
liftoff_log_errno(LIFTOFF_ERROR, "clock_gettime");
|
|
return -errno;
|
|
}
|
|
|
|
result.timeout_ns = options->timeout_ns;
|
|
if (result.timeout_ns == 0) {
|
|
result.timeout_ns = DEFAULT_ALLOC_TIMEOUT_NSEC;
|
|
}
|
|
|
|
/* For each plane, try to find a layer. Don't do it the other
|
|
* way around (ie. for each layer, try to find a plane) because
|
|
* some drivers want user-space to enable the primary plane
|
|
* before any other plane. */
|
|
|
|
result.best_score = -1;
|
|
memset(result.best, 0, result.planes_len * sizeof(result.best[0]));
|
|
result.has_composition_layer = output->composition_layer != NULL;
|
|
result.non_composition_layers_len =
|
|
non_composition_layers_length(output);
|
|
step.plane_link = device->planes.next;
|
|
step.plane_idx = 0;
|
|
step.score = 0;
|
|
step.last_layer_zpos = INT_MAX;
|
|
step.primary_layer_zpos = INT_MIN;
|
|
step.primary_plane_zpos = INT_MAX;
|
|
step.composited = false;
|
|
ret = output_choose_layers(output, &result, &step);
|
|
if (ret != 0) {
|
|
return ret;
|
|
}
|
|
|
|
liftoff_log(LIFTOFF_DEBUG,
|
|
"Found plane allocation for output %"PRIu32" "
|
|
"(score: %d, candidate planes: %zu, tests: %d):",
|
|
output->crtc_id, result.best_score, candidate_planes,
|
|
device->test_commit_counter);
|
|
|
|
/* Apply the best allocation */
|
|
i = 0;
|
|
found_layer = false;
|
|
liftoff_list_for_each(plane, &device->planes, link) {
|
|
layer = result.best[i];
|
|
i++;
|
|
if (layer == NULL) {
|
|
continue;
|
|
}
|
|
|
|
liftoff_log(LIFTOFF_DEBUG, " Layer %p -> plane %"PRIu32,
|
|
(void *)layer, plane->id);
|
|
|
|
assert(plane->layer == NULL);
|
|
assert(layer->plane == NULL);
|
|
plane->layer = layer;
|
|
layer->plane = plane;
|
|
|
|
found_layer = true;
|
|
}
|
|
if (!found_layer) {
|
|
liftoff_log(LIFTOFF_DEBUG, " (No layer has a plane)");
|
|
}
|
|
|
|
ret = apply_current(device, req);
|
|
if (ret != 0) {
|
|
return ret;
|
|
}
|
|
|
|
free(step.alloc);
|
|
free(result.best);
|
|
|
|
mark_layers_clean(output);
|
|
|
|
return 0;
|
|
}
|