libliftoff/alloc.c
Simon Ser b5b921ea85 Introduce core properties
This is a set of well-known KMS standard properties, either used
by libliftoff itself or commonly used by compositors. Adding
special cases for these allows us to access them without having
to iterate over a list.

This roughly improves performance by ~50% when leaving out the
atomic test-only commits.

Closes: https://gitlab.freedesktop.org/emersion/libliftoff/-/issues/1
2024-05-27 23:46:20 +02:00

1099 lines
30 KiB
C

#define _POSIX_C_SOURCE 200112L
#include <assert.h>
#include <errno.h>
#include <inttypes.h>
#include <limits.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <unistd.h>
#include "log.h"
#include "private.h"
/* Plane allocation algorithm
*
* Goal: KMS exposes a set of hardware planes, user submitted a set of layers.
* We want to map as many layers as possible to planes.
*
* However, all layers can't be mapped to any plane. There are constraints,
* sometimes depending on driver-specific limitations or the configuration of
* other planes.
*
* The only way to discover driver-specific limitations is via an atomic test
* commit: we submit a plane configuration, and KMS replies whether it's
* supported or not. Thus we need to incrementally build a valid configuration.
*
* Let's take an example with 2 planes and 3 layers. Plane 1 is only compatible
* with layer 2 and plane 2 is only compatible with layer 3. Our algorithm will
* discover the solution by building the mapping one plane at a time. It first
* starts with plane 1: an atomic commit assigning layer 1 to plane 1 is
* submitted. It fails, because this isn't supported by the driver. Then layer
* 2 is assigned to plane 1 and the atomic test succeeds. We can go on and
* repeat the operation with plane 2. After exploring the whole tree, we end up
* with a valid allocation.
*
*
* layer 1 layer 1
* +---------> failure +---------> failure
* | |
* | |
* | |
* +---------+ | +---------+ |
* | | | layer 2 | | | layer 3 final allocation:
* | plane 1 +------------>+ plane 2 +--+---------> plane 1 → layer 2
* | | | | | plane 2 → layer 3
* +---------+ | +---------+
* |
* |
* | layer 3
* +---------> failure
*
*
* Note how layer 2 isn't considered for plane 2: it's already mapped to plane
* 1. Also note that branches are pruned as soon as an atomic test fails.
*
* In practice, the primary plane is treated separately. This is where layers
* that can't be mapped to any plane (e.g. layer 1 in our example) will be
* composited. The primary plane is the first that will be allocated, because
* some drivers require it to be enabled in order to light up any other plane.
* Then all other planes will be allocated, from the topmost one to the
* bottommost one.
*
* The "zpos" property (which defines ordering between layers/planes) is handled
* as a special case. If it's set on layers, it adds additional constraints on
* their relative ordering. If two layers intersect, their relative zpos needs
* to be preserved during plane allocation.
*
* Implementation-wise, the output_choose_layers function is called at each node
* of the tree. It iterates over layers, check constraints, performs an atomic
* test commit and calls itself recursively on the next plane.
*/
/* Global data for the allocation algorithm */
struct alloc_result {
drmModeAtomicReq *req;
uint32_t flags;
size_t planes_len;
struct liftoff_layer **best;
int best_score;
struct timespec started_at;
int64_t timeout_ns;
/* per-output */
bool has_composition_layer;
size_t non_composition_layers_len;
};
/* Transient data, arguments for each step */
struct alloc_step {
struct liftoff_list *plane_link; /* liftoff_plane.link */
size_t plane_idx;
struct liftoff_layer **alloc; /* only items up to plane_idx are valid */
int score; /* number of allocated layers */
int last_layer_zpos;
int primary_layer_zpos, primary_plane_zpos;
bool composited; /* per-output */
char log_prefix[64];
};
static const int64_t NSEC_PER_SEC = 1000 * 1000 * 1000;
static int64_t
timespec_to_nsec(struct timespec ts)
{
return (int64_t)ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
}
static const int64_t DEFAULT_ALLOC_TIMEOUT_NSEC = 1000 * 1000; // 1ms
static bool
check_deadline(struct timespec start, int64_t timeout_ns)
{
struct timespec now;
if (clock_gettime(CLOCK_MONOTONIC, &now) != 0) {
liftoff_log_errno(LIFTOFF_ERROR, "clock_gettime");
return false;
}
return timespec_to_nsec(now) - timeout_ns < timespec_to_nsec(start);
}
static void
plane_step_init_next(struct alloc_step *step, struct alloc_step *prev,
struct liftoff_layer *layer)
{
struct liftoff_plane *plane;
struct liftoff_layer_property *zpos_prop;
size_t len;
plane = liftoff_container_of(prev->plane_link, plane, link);
step->plane_link = prev->plane_link->next;
step->plane_idx = prev->plane_idx + 1;
step->alloc = prev->alloc;
step->alloc[prev->plane_idx] = layer;
if (layer != NULL && layer == layer->output->composition_layer) {
assert(!prev->composited);
step->composited = true;
} else {
step->composited = prev->composited;
}
if (layer != NULL && layer != layer->output->composition_layer) {
step->score = prev->score + 1;
} else {
step->score = prev->score;
}
zpos_prop = NULL;
if (layer != NULL) {
zpos_prop = layer_get_core_property(layer, LIFTOFF_PROP_ZPOS);
}
if (zpos_prop != NULL && plane->type != DRM_PLANE_TYPE_PRIMARY) {
step->last_layer_zpos = zpos_prop->value;
} else {
step->last_layer_zpos = prev->last_layer_zpos;
}
if (zpos_prop != NULL && plane->type == DRM_PLANE_TYPE_PRIMARY) {
step->primary_layer_zpos = zpos_prop->value;
step->primary_plane_zpos = plane->zpos;
} else {
step->primary_layer_zpos = prev->primary_layer_zpos;
step->primary_plane_zpos = prev->primary_plane_zpos;
}
if (layer != NULL) {
len = strlen(prev->log_prefix) + 2;
if (len > sizeof(step->log_prefix) - 1) {
len = sizeof(step->log_prefix) - 1;
}
memset(step->log_prefix, ' ', len);
step->log_prefix[len] = '\0';
} else {
memcpy(step->log_prefix, prev->log_prefix,
sizeof(step->log_prefix));
}
}
static bool
is_layer_allocated(struct alloc_step *step, struct liftoff_layer *layer)
{
size_t i;
/* TODO: speed this up with an array of bools indicating whether a layer
* has been allocated */
for (i = 0; i < step->plane_idx; i++) {
if (step->alloc[i] == layer) {
return true;
}
}
return false;
}
static bool
has_composited_layer_over(struct liftoff_output *output,
struct alloc_step *step, struct liftoff_layer *layer)
{
struct liftoff_layer *other_layer;
struct liftoff_layer_property *zpos_prop, *other_zpos_prop;
zpos_prop = layer_get_core_property(layer, LIFTOFF_PROP_ZPOS);
if (zpos_prop == NULL) {
return false;
}
liftoff_list_for_each(other_layer, &output->layers, link) {
if (is_layer_allocated(step, other_layer)) {
continue;
}
other_zpos_prop = layer_get_core_property(other_layer,
LIFTOFF_PROP_ZPOS);
if (other_zpos_prop == NULL) {
continue;
}
if (layer_intersects(layer, other_layer) &&
other_zpos_prop->value > zpos_prop->value) {
return true;
}
}
return false;
}
static bool
has_allocated_layer_over(struct liftoff_output *output, struct alloc_step *step,
struct liftoff_layer *layer)
{
ssize_t i;
struct liftoff_plane *other_plane;
struct liftoff_layer *other_layer;
struct liftoff_layer_property *zpos_prop, *other_zpos_prop;
zpos_prop = layer_get_core_property(layer, LIFTOFF_PROP_ZPOS);
if (zpos_prop == NULL) {
return false;
}
i = -1;
liftoff_list_for_each(other_plane, &output->device->planes, link) {
i++;
if (i >= (ssize_t)step->plane_idx) {
break;
}
if (other_plane->type == DRM_PLANE_TYPE_PRIMARY) {
continue;
}
other_layer = step->alloc[i];
if (other_layer == NULL) {
continue;
}
other_zpos_prop = layer_get_core_property(other_layer,
LIFTOFF_PROP_ZPOS);
if (other_zpos_prop == NULL) {
continue;
}
/* Since plane zpos is descending, this means the other layer is
* supposed to be under but is mapped to a plane over the
* current one. */
if (zpos_prop->value > other_zpos_prop->value &&
layer_intersects(layer, other_layer)) {
return true;
}
}
return false;
}
static bool
has_allocated_plane_under(struct liftoff_output *output,
struct alloc_step *step, struct liftoff_layer *layer)
{
struct liftoff_plane *plane, *other_plane;
ssize_t i;
plane = liftoff_container_of(step->plane_link, plane, link);
i = -1;
liftoff_list_for_each(other_plane, &output->device->planes, link) {
i++;
if (i >= (ssize_t)step->plane_idx) {
break;
}
if (other_plane->type == DRM_PLANE_TYPE_PRIMARY) {
continue;
}
if (step->alloc[i] == NULL) {
continue;
}
if (plane->zpos >= other_plane->zpos &&
layer_intersects(layer, step->alloc[i])) {
return true;
}
}
return false;
}
static bool
check_layer_plane_compatible(struct alloc_step *step,
struct liftoff_layer *layer,
struct liftoff_plane *plane)
{
struct liftoff_output *output;
struct liftoff_layer_property *zpos_prop;
output = layer->output;
/* Skip this layer if already allocated */
if (is_layer_allocated(step, layer)) {
return false;
}
zpos_prop = layer_get_core_property(layer, LIFTOFF_PROP_ZPOS);
if (zpos_prop != NULL) {
if ((int)zpos_prop->value > step->last_layer_zpos &&
has_allocated_layer_over(output, step, layer)) {
/* This layer needs to be on top of the last
* allocated one */
liftoff_log(LIFTOFF_DEBUG,
"%s Layer %p -> plane %"PRIu32": "
"layer zpos invalid",
step->log_prefix, (void *)layer, plane->id);
return false;
}
if ((int)zpos_prop->value < step->last_layer_zpos &&
has_allocated_plane_under(output, step, layer)) {
/* This layer needs to be under the last
* allocated one, but this plane isn't under the
* last one (in practice, since planes are
* sorted by zpos it means it has the same zpos,
* ie. undefined ordering). */
liftoff_log(LIFTOFF_DEBUG,
"%s Layer %p -> plane %"PRIu32": "
"plane zpos invalid",
step->log_prefix, (void *)layer, plane->id);
return false;
}
if (plane->type != DRM_PLANE_TYPE_PRIMARY &&
(int)zpos_prop->value < step->primary_layer_zpos &&
plane->zpos > step->primary_plane_zpos) {
/* Primary planes are handled up front, because some
* drivers fail all atomic commits when it's missing.
* However that messes up with our zpos checks. In
* particular, we need to make sure we don't put a layer
* configured to be over the primary plane under it.
* TODO: revisit this once we add underlay support. */
liftoff_log(LIFTOFF_DEBUG,
"%s Layer %p -> plane %"PRIu32": "
"layer zpos under primary",
step->log_prefix, (void *)layer, plane->id);
return false;
}
}
if (plane->type != DRM_PLANE_TYPE_PRIMARY &&
has_composited_layer_over(output, step, layer)) {
liftoff_log(LIFTOFF_DEBUG,
"%s Layer %p -> plane %"PRIu32": "
"has composited layer on top",
step->log_prefix, (void *)layer, plane->id);
return false;
}
if (plane->type != DRM_PLANE_TYPE_PRIMARY &&
layer == layer->output->composition_layer) {
liftoff_log(LIFTOFF_DEBUG,
"%s Layer %p -> plane %"PRIu32": "
"cannot put composition layer on "
"non-primary plane",
step->log_prefix, (void *)layer, plane->id);
return false;
}
return true;
}
static bool
check_alloc_valid(struct liftoff_output *output, struct alloc_result *result,
struct alloc_step *step)
{
/* If composition isn't used, we need to have allocated all
* layers. */
/* TODO: find a way to fail earlier, e.g. when the number of
* layers exceeds the number of planes. */
if (result->has_composition_layer && !step->composited &&
step->score != (int)result->non_composition_layers_len) {
liftoff_log(LIFTOFF_DEBUG,
"%sCannot skip composition: some layers "
"are missing a plane", step->log_prefix);
return false;
}
/* On the other hand, if we manage to allocate all layers, we
* don't want to use composition. We don't want to use the
* composition layer at all. */
if (step->composited &&
step->score == (int)result->non_composition_layers_len) {
liftoff_log(LIFTOFF_DEBUG,
"%sRefusing to use composition: all layers "
"have been put in a plane", step->log_prefix);
return false;
}
/* TODO: check allocation isn't empty */
return true;
}
static bool
check_plane_output_compatible(struct liftoff_plane *plane, struct liftoff_output *output)
{
return (plane->possible_crtcs & (1 << output->crtc_index)) != 0;
}
static int
count_remaining_compatible_planes(struct liftoff_output *output,
struct alloc_step *step)
{
struct liftoff_list *link;
struct liftoff_plane *plane;
int remaining = 0;
for (link = step->plane_link; link != &output->device->planes; link = link->next) {
plane = liftoff_container_of(link, plane, link);
if (plane->layer == NULL &&
check_plane_output_compatible(plane, output)) {
remaining++;
}
}
return remaining;
}
static int
output_choose_layers(struct liftoff_output *output, struct alloc_result *result,
struct alloc_step *step)
{
struct liftoff_device *device;
struct liftoff_plane *plane;
struct liftoff_layer *layer;
int cursor, ret;
int remaining_planes;
struct alloc_step next_step = {0};
device = output->device;
if (step->plane_link == &device->planes) { /* Allocation finished */
if (step->score > result->best_score &&
check_alloc_valid(output, result, step)) {
/* We found a better allocation */
liftoff_log(LIFTOFF_DEBUG,
"%sFound a better allocation with score=%d",
step->log_prefix, step->score);
result->best_score = step->score;
memcpy(result->best, step->alloc,
result->planes_len * sizeof(struct liftoff_layer *));
}
return 0;
}
plane = liftoff_container_of(step->plane_link, plane, link);
remaining_planes = count_remaining_compatible_planes(output, step);
if (result->best_score >= step->score + remaining_planes) {
/* Even if we find a layer for all remaining planes, we won't
* find a better allocation. Give up. */
return 0;
}
cursor = drmModeAtomicGetCursor(result->req);
if (plane->layer != NULL || !check_plane_output_compatible(plane, output)) {
goto skip;
}
liftoff_log(LIFTOFF_DEBUG,
"%sPerforming allocation for plane %"PRIu32" (%zu/%zu)",
step->log_prefix, plane->id, step->plane_idx + 1, result->planes_len);
liftoff_list_for_each(layer, &output->layers, link) {
if (layer->plane != NULL) {
continue;
}
if (!layer_is_visible(layer)) {
continue;
}
if (!check_layer_plane_compatible(step, layer, plane)) {
continue;
}
if (!check_deadline(result->started_at, result->timeout_ns)) {
liftoff_log(LIFTOFF_DEBUG, "%s Deadline exceeded",
step->log_prefix);
break;
}
/* Try to use this layer for the current plane */
ret = plane_apply(plane, layer, result->req);
if (ret == -EINVAL) {
liftoff_log(LIFTOFF_DEBUG,
"%s Layer %p -> plane %"PRIu32": "
"incompatible properties",
step->log_prefix, (void *)layer, plane->id);
continue;
} else if (ret != 0) {
return ret;
}
layer_add_candidate_plane(layer, plane);
/* If composition is forced, wait until after the
* layer_add_candidate_plane() call to reject the plane: we want
* to return a meaningful list of candidate planes so that the
* API user has the opportunity to re-allocate its buffers with
* scanout-capable ones. Same deal for the FB check. */
if (layer->force_composition || !plane_check_layer_fb(plane, layer)) {
drmModeAtomicSetCursor(result->req, cursor);
continue;
}
ret = device_test_commit(device, result->req, result->flags);
if (ret == 0) {
liftoff_log(LIFTOFF_DEBUG,
"%s Layer %p -> plane %"PRIu32": success",
step->log_prefix, (void *)layer, plane->id);
/* Continue with the next plane */
plane_step_init_next(&next_step, step, layer);
ret = output_choose_layers(output, result, &next_step);
if (ret != 0) {
return ret;
}
} else if (ret != -EINVAL && ret != -ERANGE && ret != -ENOSPC) {
return ret;
} else {
liftoff_log(LIFTOFF_DEBUG,
"%s Layer %p -> plane %"PRIu32": "
"test-only commit failed (%s)",
step->log_prefix, (void *)layer, plane->id,
strerror(-ret));
}
drmModeAtomicSetCursor(result->req, cursor);
}
skip:
/* Try not to use the current plane */
plane_step_init_next(&next_step, step, NULL);
ret = output_choose_layers(output, result, &next_step);
if (ret != 0) {
return ret;
}
drmModeAtomicSetCursor(result->req, cursor);
return 0;
}
static int
apply_current(struct liftoff_device *device, drmModeAtomicReq *req)
{
struct liftoff_plane *plane;
int cursor, ret;
cursor = drmModeAtomicGetCursor(req);
liftoff_list_for_each(plane, &device->planes, link) {
ret = plane_apply(plane, plane->layer, req);
if (ret != 0) {
drmModeAtomicSetCursor(req, cursor);
return ret;
}
}
return 0;
}
static bool
fb_info_needs_realloc(const drmModeFB2 *a, const drmModeFB2 *b)
{
if (a->width != b->width || a->height != b->height ||
a->pixel_format != b->pixel_format || a->modifier != b->modifier) {
return true;
}
/* TODO: consider checking pitch and offset? */
return false;
}
static bool
layer_intersection_changed(struct liftoff_layer *this,
struct liftoff_output *output)
{
struct liftoff_layer *other;
struct liftoff_rect this_cur, this_prev, other_cur, other_prev;
layer_get_rect(this, &this_cur);
layer_get_prev_rect(this, &this_prev);
liftoff_list_for_each(other, &output->layers, link) {
if (this == other) {
continue;
}
layer_get_rect(other, &other_cur);
layer_get_prev_rect(other, &other_prev);
if (rect_intersects(&this_cur, &other_cur) !=
rect_intersects(&this_prev, &other_prev)) {
return true;
}
}
return false;
}
static bool
layer_needs_realloc(struct liftoff_layer *layer, struct liftoff_output *output)
{
struct liftoff_layer_property *prop;
bool check_crtc_intersect = false;
size_t i;
if (layer->changed) {
liftoff_log(LIFTOFF_DEBUG, "Cannot re-use previous allocation: "
"layer property added or force composition changed");
return true;
}
for (i = 0; i < layer->props_len; i++) {
prop = &layer->props[i];
/* If FB_ID changes from non-zero to zero, we don't need to
* display this layer anymore, so we may be able to re-use its
* plane for another layer. If FB_ID changes from zero to
* non-zero, we might be able to find a plane for this layer.
* If FB_ID changes from non-zero to non-zero and the FB
* attributes didn't change, we can try to re-use the previous
* allocation. */
if (prop->core_index == LIFTOFF_PROP_FB_ID) {
if (prop->value == 0 && prop->prev_value == 0) {
continue;
}
if (prop->value == 0 || prop->prev_value == 0) {
liftoff_log(LIFTOFF_DEBUG, "Cannot re-use previous allocation: "
"layer enabled or disabled");
return true;
}
if (fb_info_needs_realloc(&layer->fb_info,
&layer->prev_fb_info)) {
liftoff_log(LIFTOFF_DEBUG, "Cannot re-use previous allocation: "
"FB info changed");
return true;
}
continue;
}
/* For all properties except FB_ID, we can skip realloc if the
* value didn't change. */
if (prop->value == prop->prev_value) {
continue;
}
/* If the layer was or becomes completely transparent or
* completely opaque, we might be able to find a better
* allocation. Otherwise, we can keep the current one. */
if (prop->core_index == LIFTOFF_PROP_ALPHA) {
if (prop->value == 0 || prop->prev_value == 0 ||
prop->value == 0xFFFF || prop->prev_value == 0xFFFF) {
liftoff_log(LIFTOFF_DEBUG, "Cannot re-use previous allocation: "
"alpha changed");
return true;
}
continue;
}
/* We should never need a re-alloc when IN_FENCE_FD or
* FB_DAMAGE_CLIPS changes. */
if (strcmp(prop->name, "IN_FENCE_FD") == 0 ||
strcmp(prop->name, "FB_DAMAGE_CLIPS") == 0) {
continue;
}
/* If CRTC_* changed, check for intersection later */
if (strcmp(prop->name, "CRTC_X") == 0 ||
strcmp(prop->name, "CRTC_Y") == 0 ||
strcmp(prop->name, "CRTC_W") == 0 ||
strcmp(prop->name, "CRTC_H") == 0) {
check_crtc_intersect = true;
continue;
}
liftoff_log(LIFTOFF_DEBUG, "Cannot re-use previous allocation: "
"property \"%s\" changed", prop->name);
return true;
}
if (check_crtc_intersect &&
layer_intersection_changed(layer, output)) {
liftoff_log(LIFTOFF_DEBUG, "Cannot re-use previous allocation: "
"intersection with other layer(s) changed");
return true;
}
return false;
}
static bool
layer_is_higher_priority(struct liftoff_layer *this, struct liftoff_layer *other)
{
struct liftoff_layer_property *this_zpos, *other_zpos;
bool this_visible, other_visible, intersects;
// The composition layer should be highest priority.
if (this->output->composition_layer == this) {
return true;
} else if (this->output->composition_layer == other) {
return false;
}
// Invisible layers are given lowest priority. Pass-thru if both have
// same visibility
this_visible = layer_is_visible(this);
other_visible = layer_is_visible(other);
if (this_visible != other_visible) {
return this_visible;
}
// A layer's overall priority is determined by a combination of it's
// current_priority, it's zpos, and whether it intersects with others.
//
// Consider two layers. If they do not intersect, the layer with higher
// priority is given overall priority. However if both layers have
// identical priority, then the layer with higher zpos is given overall
// priority.
//
// If the layers intersect, their zpos determines the overall priority.
// If their zpos are identical, then simply fallback to looking at
// current_priority. Otherwise, the layer with higher zpos is given
// overall priority, since the top layer needs to be offloaded in order
// to offload the bottom layer.
this_zpos = layer_get_core_property(this, LIFTOFF_PROP_ZPOS);
other_zpos = layer_get_core_property(other, LIFTOFF_PROP_ZPOS);
intersects = layer_intersects(this, other);
if (this_zpos != NULL && other_zpos != NULL) {
if (intersects) {
return this_zpos->value == other_zpos->value ?
this->current_priority > other->current_priority :
this_zpos->value > other_zpos->value;
} else {
return this->current_priority == other->current_priority ?
this_zpos->value > other_zpos->value :
this->current_priority > other->current_priority;
}
} else if (this_zpos == NULL && other_zpos == NULL) {
return this->current_priority > other->current_priority;
} else {
// Either this or other zpos is null
return this_zpos != NULL;
}
}
static bool
update_layers_order(struct liftoff_output *output)
{
struct liftoff_list *search, *max, *cur, *head;
struct liftoff_layer *this_layer, *other_layer;
bool order_changed = false;
head = &output->layers;
cur = head;
// Run a insertion sort to order layers by priority.
while (cur->next != head) {
cur = cur->next;
max = cur;
search = cur;
while (search->next != head) {
search = search->next;
this_layer = liftoff_container_of(search, this_layer, link);
other_layer = liftoff_container_of(max, other_layer, link);
if (layer_is_higher_priority(this_layer, other_layer)) {
max = search;
}
}
if (cur != max) {
liftoff_list_swap(cur, max);
// max is now where iterator cur was, relocate to continue
cur = max;
order_changed = true;
}
}
return order_changed;
}
static int
reuse_previous_alloc(struct liftoff_output *output, drmModeAtomicReq *req,
uint32_t flags)
{
struct liftoff_device *device;
struct liftoff_layer *layer;
int cursor, ret;
bool layer_order_changed;
device = output->device;
layer_order_changed = update_layers_order(output);
if (output->layers_changed) {
liftoff_log(LIFTOFF_DEBUG, "Cannot re-use previous allocation: "
"a layer has been added or removed");
return -EINVAL;
}
liftoff_list_for_each(layer, &output->layers, link) {
if (layer_needs_realloc(layer, output)) {
return -EINVAL;
}
}
if (layer_order_changed) {
liftoff_log(LIFTOFF_DEBUG, "Cannot re-use previous allocation: "
"layer priority order changed.");
return -EINVAL;
}
cursor = drmModeAtomicGetCursor(req);
ret = apply_current(device, req);
if (ret != 0) {
return ret;
}
ret = device_test_commit(device, req, flags);
if (ret != 0) {
drmModeAtomicSetCursor(req, cursor);
}
return ret;
}
static void
mark_layers_clean(struct liftoff_output *output)
{
struct liftoff_layer *layer;
output->layers_changed = false;
liftoff_list_for_each(layer, &output->layers, link) {
layer_mark_clean(layer);
}
}
static void
update_layers_priority(struct liftoff_device *device)
{
struct liftoff_output *output;
struct liftoff_layer *layer;
bool period_elapsed;
device->page_flip_counter++;
period_elapsed = device->page_flip_counter >= LIFTOFF_PRIORITY_PERIOD;
if (period_elapsed) {
device->page_flip_counter = 0;
}
liftoff_list_for_each(output, &device->outputs, link) {
liftoff_list_for_each(layer, &output->layers, link) {
layer_update_priority(layer, period_elapsed);
}
}
}
static void
update_layers_fb_info(struct liftoff_output *output)
{
struct liftoff_layer *layer;
/* We don't know what the library user did in-between
* liftoff_output_apply() calls. They might've removed the FB and
* re-created a completely different one which happens to have the same
* FB ID. */
liftoff_list_for_each(layer, &output->layers, link) {
layer->fb_info = (drmModeFB2){0};
layer_cache_fb_info(layer);
/* TODO: propagate error? */
}
}
static void
log_reuse(struct liftoff_output *output)
{
if (output->alloc_reused_counter == 0) {
liftoff_log(LIFTOFF_DEBUG,
"Reusing previous plane allocation on output %"PRIu32,
output->crtc_id);
}
output->alloc_reused_counter++;
}
static void
log_no_reuse(struct liftoff_output *output)
{
liftoff_log(LIFTOFF_DEBUG, "Computing plane allocation on output %"PRIu32,
output->crtc_id);
if (output->alloc_reused_counter != 0) {
liftoff_log(LIFTOFF_DEBUG,
"Stopped reusing previous plane allocation on "
"output %"PRIu32" (had reused it %d times)",
output->crtc_id, output->alloc_reused_counter);
output->alloc_reused_counter = 0;
}
}
static size_t
non_composition_layers_length(struct liftoff_output *output)
{
struct liftoff_layer *layer;
size_t n;
n = 0;
liftoff_list_for_each(layer, &output->layers, link) {
if (layer_is_visible(layer) &&
output->composition_layer != layer) {
n++;
}
}
return n;
}
int
liftoff_output_apply(struct liftoff_output *output, drmModeAtomicReq *req,
uint32_t flags,
const struct liftoff_output_apply_options *options)
{
struct liftoff_device *device;
struct liftoff_plane *plane;
struct liftoff_layer *layer;
struct alloc_result result = {0};
struct alloc_step step = {0};
const struct liftoff_output_apply_options default_options = {0};
size_t i, candidate_planes;
int ret;
bool found_layer;
if (options == NULL) {
options = &default_options;
}
device = output->device;
update_layers_priority(device);
update_layers_fb_info(output);
ret = reuse_previous_alloc(output, req, flags);
if (ret == 0) {
log_reuse(output);
mark_layers_clean(output);
return 0;
}
log_no_reuse(output);
/* Reset layers' candidate planes */
liftoff_list_for_each(layer, &output->layers, link) {
layer_reset_candidate_planes(layer);
}
device->test_commit_counter = 0;
output_log_layers(output);
/* Unset all existing plane and layer mappings. */
liftoff_list_for_each(plane, &device->planes, link) {
if (plane->layer != NULL && plane->layer->output == output) {
plane->layer->plane = NULL;
plane->layer = NULL;
}
}
/* Disable all planes we might use. Do it before building mappings to
* make sure not to hit bandwidth limits because too many planes are
* enabled. */
candidate_planes = 0;
liftoff_list_for_each(plane, &device->planes, link) {
if (plane->layer == NULL) {
candidate_planes++;
liftoff_log(LIFTOFF_DEBUG,
"Disabling plane %"PRIu32, plane->id);
ret = plane_apply(plane, NULL, req);
assert(ret != -EINVAL);
if (ret != 0) {
return ret;
}
}
}
result.req = req;
result.flags = flags;
result.planes_len = liftoff_list_length(&device->planes);
step.alloc = malloc(result.planes_len * sizeof(step.alloc[0]));
result.best = malloc(result.planes_len * sizeof(result.best[0]));
if (step.alloc == NULL || result.best == NULL) {
liftoff_log_errno(LIFTOFF_ERROR, "malloc");
return -ENOMEM;
}
if (clock_gettime(CLOCK_MONOTONIC, &result.started_at) != 0) {
liftoff_log_errno(LIFTOFF_ERROR, "clock_gettime");
return -errno;
}
result.timeout_ns = options->timeout_ns;
if (result.timeout_ns == 0) {
result.timeout_ns = DEFAULT_ALLOC_TIMEOUT_NSEC;
}
/* For each plane, try to find a layer. Don't do it the other
* way around (ie. for each layer, try to find a plane) because
* some drivers want user-space to enable the primary plane
* before any other plane. */
result.best_score = -1;
memset(result.best, 0, result.planes_len * sizeof(result.best[0]));
result.has_composition_layer = output->composition_layer != NULL;
result.non_composition_layers_len =
non_composition_layers_length(output);
step.plane_link = device->planes.next;
step.plane_idx = 0;
step.score = 0;
step.last_layer_zpos = INT_MAX;
step.primary_layer_zpos = INT_MIN;
step.primary_plane_zpos = INT_MAX;
step.composited = false;
ret = output_choose_layers(output, &result, &step);
if (ret != 0) {
return ret;
}
liftoff_log(LIFTOFF_DEBUG,
"Found plane allocation for output %"PRIu32" "
"(score: %d, candidate planes: %zu, tests: %d):",
output->crtc_id, result.best_score, candidate_planes,
device->test_commit_counter);
/* Apply the best allocation */
i = 0;
found_layer = false;
liftoff_list_for_each(plane, &device->planes, link) {
layer = result.best[i];
i++;
if (layer == NULL) {
continue;
}
liftoff_log(LIFTOFF_DEBUG, " Layer %p -> plane %"PRIu32,
(void *)layer, plane->id);
assert(plane->layer == NULL);
assert(layer->plane == NULL);
plane->layer = layer;
layer->plane = plane;
found_layer = true;
}
if (!found_layer) {
liftoff_log(LIFTOFF_DEBUG, " (No layer has a plane)");
}
ret = apply_current(device, req);
if (ret != 0) {
return ret;
}
free(step.alloc);
free(result.best);
mark_layers_clean(output);
return 0;
}