#include #include #include #include #include #include #include #include "log.h" #include "private.h" /* Plane allocation algorithm * * Goal: KMS exposes a set of hardware planes, user submitted a set of layers. * We want to map as many layers as possible to planes. * * However, all layers can't be mapped to any plane. There are constraints, * sometimes depending on driver-specific limitations or the configuration of * other planes. * * The only way to discover driver-specific limitations is via an atomic test * commit: we submit a plane configuration, and KMS replies whether it's * supported or not. Thus we need to incrementally build a valid configuration. * * Let's take an example with 2 planes and 3 layers. Plane 1 is only compatible * with layer 2 and plane 2 is only compatible with layer 3. Our algorithm will * discover the solution by building the mapping one plane at a time. It first * starts with plane 1: an atomic commit assigning layer 1 to plane 1 is * submitted. It fails, because this isn't supported by the driver. Then layer * 2 is assigned to plane 1 and the atomic test succeeds. We can go on and * repeat the operation with plane 2. After exploring the whole tree, we end up * with a valid allocation. * * * layer 1 layer 1 * +---------> failure +---------> failure * | | * | | * | | * +---------+ | +---------+ | * | | | layer 2 | | | layer 3 final allocation: * | plane 1 +------------>+ plane 2 +--+---------> plane 1 → layer 2 * | | | | | plane 2 → layer 3 * +---------+ | +---------+ * | * | * | layer 3 * +---------> failure * * * Note how layer 2 isn't considered for plane 2: it's already mapped to plane * 1. Also note that branches are pruned as soon as an atomic test fails. * * In practice, the primary plane is treated separately. This is where layers * that can't be mapped to any plane (e.g. layer 1 in our example) will be * composited. The primary plane is the first that will be allocated. Then all * other planes will be allocated, from the topmost one to the bottommost one. * * The "zpos" property (which defines ordering between layers/planes) is handled * as a special case. If it's set on layers, it adds additional constraints on * their relative ordering. If two layers intersect, their relative zpos needs * to be preserved during plane allocation. * * Implementation-wise, the output_choose_layers function is called at each node * of the tree. It iterates over layers, check constraints, performs an atomic * test commit and calls itself recursively on the next plane. */ /* Global data for the allocation algorithm */ struct alloc_result { drmModeAtomicReq *req; uint32_t flags; size_t planes_len; struct liftoff_layer **best; int best_score; /* per-output */ bool has_composition_layer; size_t non_composition_layers_len; }; /* Transient data, arguments for each step */ struct alloc_step { struct liftoff_list *plane_link; /* liftoff_plane.link */ size_t plane_idx; struct liftoff_layer **alloc; /* only items up to plane_idx are valid */ int score; /* number of allocated layers */ int last_layer_zpos; bool composited; /* per-output */ }; static void plane_step_init_next(struct alloc_step *step, struct alloc_step *prev, struct liftoff_layer *layer) { struct liftoff_plane *plane; struct liftoff_layer_property *zpos_prop; plane = liftoff_container_of(prev->plane_link, plane, link); step->plane_link = prev->plane_link->next; step->plane_idx = prev->plane_idx + 1; step->alloc = prev->alloc; step->alloc[prev->plane_idx] = layer; if (layer != NULL && layer == layer->output->composition_layer) { assert(!prev->composited); step->composited = true; } else { step->composited = prev->composited; } if (layer != NULL && layer != layer->output->composition_layer) { step->score = prev->score + 1; } else { step->score = prev->score; } zpos_prop = NULL; if (layer != NULL) { zpos_prop = layer_get_property(layer, "zpos"); } if (zpos_prop != NULL && plane->type != DRM_PLANE_TYPE_PRIMARY) { step->last_layer_zpos = zpos_prop->value; } else { step->last_layer_zpos = prev->last_layer_zpos; } } static bool is_layer_allocated(struct alloc_step *step, struct liftoff_layer *layer) { size_t i; /* TODO: speed this up with an array of bools indicating whether a layer * has been allocated */ for (i = 0; i < step->plane_idx; i++) { if (step->alloc[i] == layer) { return true; } } return false; } static bool has_composited_layer_over(struct liftoff_output *output, struct alloc_step *step, struct liftoff_layer *layer) { struct liftoff_layer *other_layer; struct liftoff_layer_property *zpos_prop, *other_zpos_prop; zpos_prop = layer_get_property(layer, "zpos"); if (zpos_prop == NULL) { return false; } liftoff_list_for_each(other_layer, &output->layers, link) { if (is_layer_allocated(step, other_layer)) { continue; } other_zpos_prop = layer_get_property(other_layer, "zpos"); if (other_zpos_prop == NULL) { continue; } if (layer_intersects(layer, other_layer) && other_zpos_prop->value > zpos_prop->value) { return true; } } return false; } static bool has_allocated_layer_over(struct liftoff_output *output, struct alloc_step *step, struct liftoff_layer *layer) { ssize_t i; struct liftoff_plane *other_plane; struct liftoff_layer *other_layer; struct liftoff_layer_property *zpos_prop, *other_zpos_prop; zpos_prop = layer_get_property(layer, "zpos"); if (zpos_prop == NULL) { return false; } i = -1; liftoff_list_for_each(other_plane, &output->device->planes, link) { i++; if (i >= (ssize_t)step->plane_idx) { break; } if (other_plane->type == DRM_PLANE_TYPE_PRIMARY) { continue; } other_layer = step->alloc[i]; if (other_layer == NULL) { continue; } other_zpos_prop = layer_get_property(other_layer, "zpos"); if (other_zpos_prop == NULL) { continue; } /* Since plane zpos is descending, this means the other layer is * supposed to be under but is mapped to a plane over the * current one. */ if (zpos_prop->value > other_zpos_prop->value && layer_intersects(layer, other_layer)) { return true; } } return false; } static bool has_allocated_plane_under(struct liftoff_output *output, struct alloc_step *step, struct liftoff_layer *layer) { struct liftoff_plane *plane, *other_plane; ssize_t i; plane = liftoff_container_of(step->plane_link, plane, link); i = -1; liftoff_list_for_each(other_plane, &output->device->planes, link) { i++; if (i >= (ssize_t)step->plane_idx) { break; } if (other_plane->type == DRM_PLANE_TYPE_PRIMARY) { continue; } if (step->alloc[i] == NULL) { continue; } if (plane->zpos >= other_plane->zpos && layer_intersects(layer, step->alloc[i])) { return true; } } return false; } bool check_layer_plane_compatible(struct alloc_step *step, struct liftoff_layer *layer, struct liftoff_plane *plane) { struct liftoff_output *output; struct liftoff_layer_property *zpos_prop; output = layer->output; /* Skip this layer if already allocated */ if (is_layer_allocated(step, layer)) { return false; } zpos_prop = layer_get_property(layer, "zpos"); if (zpos_prop != NULL) { if ((int)zpos_prop->value > step->last_layer_zpos && has_allocated_layer_over(output, step, layer)) { /* This layer needs to be on top of the last * allocated one */ liftoff_log(LIFTOFF_DEBUG, "Layer %p -> plane %"PRIu32": " "layer zpos invalid", (void *)layer, plane->id); return false; } if ((int)zpos_prop->value < step->last_layer_zpos && has_allocated_plane_under(output, step, layer)) { /* This layer needs to be under the last * allocated one, but this plane isn't under the * last one (in practice, since planes are * sorted by zpos it means it has the same zpos, * ie. undefined ordering). */ liftoff_log(LIFTOFF_DEBUG, "Layer %p -> plane %"PRIu32": " "plane zpos invalid", (void *)layer, plane->id); return false; } } if (plane->type != DRM_PLANE_TYPE_PRIMARY && has_composited_layer_over(output, step, layer)) { liftoff_log(LIFTOFF_DEBUG, "Layer %p -> plane %"PRIu32": " "has composited layer on top", (void *)layer, plane->id); return false; } if (plane->type != DRM_PLANE_TYPE_PRIMARY && layer == layer->output->composition_layer) { liftoff_log(LIFTOFF_DEBUG, "Layer %p -> plane %"PRIu32": " "cannot put composition layer on " "non-primary plane", (void *)layer, plane->id); return false; } return true; } bool check_alloc_valid(struct alloc_result *result, struct alloc_step *step) { /* If composition isn't used, we need to have allocated all * layers. */ /* TODO: find a way to fail earlier, e.g. when the number of * layers exceeds the number of planes. */ if (result->has_composition_layer && !step->composited && step->score != (int)result->non_composition_layers_len) { liftoff_log(LIFTOFF_DEBUG, "Cannot skip composition: some layers " "are missing a plane"); return false; } /* On the other hand, if we manage to allocate all layers, we * don't want to use composition. We don't want to use the * composition layer at all. */ if (step->composited && step->score == (int)result->non_composition_layers_len) { liftoff_log(LIFTOFF_DEBUG, "Refusing to use composition: all layers " "have been put in a plane"); return false; } /* TODO: check allocation isn't empty */ return true; } int output_choose_layers(struct liftoff_output *output, struct alloc_result *result, struct alloc_step *step) { struct liftoff_device *device; struct liftoff_plane *plane; struct liftoff_layer *layer; int cursor, ret; size_t remaining_planes; struct alloc_step next_step; device = output->device; if (step->plane_link == &device->planes) { /* Allocation finished */ if (step->score > result->best_score && check_alloc_valid(result, step)) { /* We found a better allocation */ liftoff_log(LIFTOFF_DEBUG, "Found a better allocation with score=%d", step->score); result->best_score = step->score; memcpy(result->best, step->alloc, result->planes_len * sizeof(struct liftoff_layer *)); } return 0; } plane = liftoff_container_of(step->plane_link, plane, link); remaining_planes = result->planes_len - step->plane_idx; if (result->best_score >= step->score + (int)remaining_planes) { /* Even if we find a layer for all remaining planes, we won't * find a better allocation. Give up. */ /* TODO: change remaining_planes to only count those whose * possible CRTC match and which aren't allocated */ return 0; } cursor = drmModeAtomicGetCursor(result->req); if (plane->layer != NULL) { goto skip; } if ((plane->possible_crtcs & (1 << output->crtc_index)) == 0) { goto skip; } liftoff_log(LIFTOFF_DEBUG, "Performing allocation for plane %"PRIu32" (%zu/%zu)", plane->id, step->plane_idx + 1, result->planes_len); liftoff_list_for_each(layer, &output->layers, link) { if (layer->plane != NULL || layer->force_composition) { continue; } if (!layer_is_visible(layer)) { continue; } if (!check_layer_plane_compatible(step, layer, plane)) { continue; } /* Try to use this layer for the current plane */ liftoff_log(LIFTOFF_DEBUG, " Layer %p -> plane %"PRIu32": " "applying properties...", (void *)layer, plane->id); ret = plane_apply(plane, layer, result->req); if (ret == -EINVAL) { liftoff_log(LIFTOFF_DEBUG, " Layer %p -> plane %"PRIu32": " "incompatible properties", (void *)layer, plane->id); continue; } else if (ret != 0) { return ret; } ret = device_test_commit(device, result->req, result->flags); if (ret == 0) { liftoff_log(LIFTOFF_DEBUG, " Layer %p -> plane %"PRIu32": success", (void *)layer, plane->id); /* Continue with the next plane */ plane_step_init_next(&next_step, step, layer); ret = output_choose_layers(output, result, &next_step); if (ret != 0) { return ret; } } else if (ret != -EINVAL && ret != -ERANGE) { return ret; } drmModeAtomicSetCursor(result->req, cursor); } skip: /* Try not to use the current plane */ plane_step_init_next(&next_step, step, NULL); ret = output_choose_layers(output, result, &next_step); if (ret != 0) { return ret; } drmModeAtomicSetCursor(result->req, cursor); return 0; } static int apply_current(struct liftoff_device *device, drmModeAtomicReq *req) { struct liftoff_plane *plane; int cursor, ret; cursor = drmModeAtomicGetCursor(req); liftoff_list_for_each(plane, &device->planes, link) { ret = plane_apply(plane, plane->layer, req); assert(ret != -EINVAL); if (ret != 0) { drmModeAtomicSetCursor(req, cursor); return ret; } } return 0; } static bool layer_needs_realloc(struct liftoff_layer *layer) { size_t i; struct liftoff_layer_property *prop; if (layer->changed) { return true; } for (i = 0; i < layer->props_len; i++) { prop = &layer->props[i]; if (prop->value == prop->prev_value) { continue; } /* If FB_ID changes from non-zero to zero, we don't need to * display this layer anymore, so we may be able to re-use its * plane for another layer. If FB_ID changes from zero to * non-zero, we might be able to find a plane for this layer. * If FB_ID changes from non-zero to non-zero, we can try to * re-use the previous allocation. */ if (strcmp(prop->name, "FB_ID") == 0) { if (prop->value == 0 || prop->prev_value == 0) { return true; } /* TODO: check format/modifier is the same? */ continue; } /* If the layer was or becomes completely transparent or * completely opaque, we might be able to find a better * allocation. Otherwise, we can keep the current one. */ if (strcmp(prop->name, "alpha") == 0) { if (prop->value == 0 || prop->prev_value == 0 || prop->value == 0xFFFF || prop->prev_value == 0xFFFF) { return true; } continue; } /* We should never need a re-alloc when IN_FENCE_FD or * FB_DAMAGE_CLIPS changes. */ if (strcmp(prop->name, "IN_FENCE_FD") == 0 || strcmp(prop->name, "FB_DAMAGE_CLIPS") == 0) { continue; } /* TODO: if CRTC_{X,Y,W,H} changed but intersection with other * layers hasn't changed, don't realloc */ return true; } return false; } static int reuse_previous_alloc(struct liftoff_output *output, drmModeAtomicReq *req, uint32_t flags) { struct liftoff_device *device; struct liftoff_layer *layer; int cursor, ret; device = output->device; if (output->layers_changed) { return -EINVAL; } liftoff_list_for_each(layer, &output->layers, link) { if (layer_needs_realloc(layer)) { return -EINVAL; } } cursor = drmModeAtomicGetCursor(req); ret = apply_current(device, req); if (ret != 0) { return ret; } ret = device_test_commit(device, req, flags); if (ret != 0) { drmModeAtomicSetCursor(req, cursor); } return ret; } static void mark_layers_clean(struct liftoff_output *output) { struct liftoff_layer *layer; output->layers_changed = false; liftoff_list_for_each(layer, &output->layers, link) { layer_mark_clean(layer); } } static void update_layers_priority(struct liftoff_device *device) { struct liftoff_output *output; struct liftoff_layer *layer; device->page_flip_counter++; bool period_elapsed = device->page_flip_counter >= LIFTOFF_PRIORITY_PERIOD; if (period_elapsed) { device->page_flip_counter = 0; } liftoff_list_for_each(output, &device->outputs, link) { liftoff_list_for_each(layer, &output->layers, link) { layer_update_priority(layer, period_elapsed); } } } static void log_reuse(struct liftoff_output *output) { if (output->alloc_reused_counter == 0) { liftoff_log(LIFTOFF_DEBUG, "Reusing previous plane allocation on output %p", (void *)output); } output->alloc_reused_counter++; } static void log_no_reuse(struct liftoff_output *output) { liftoff_log(LIFTOFF_DEBUG, "Computing plane allocation on output %p", (void *)output); if (output->alloc_reused_counter != 0) { liftoff_log(LIFTOFF_DEBUG, "Stopped reusing previous plane allocation on " "output %p (had reused it %d times)", (void *)output, output->alloc_reused_counter); output->alloc_reused_counter = 0; } } static size_t non_composition_layers_length(struct liftoff_output *output) { struct liftoff_layer *layer; size_t n; n = 0; liftoff_list_for_each(layer, &output->layers, link) { if (layer_is_visible(layer) && output->composition_layer != layer) { n++; } } return n; } int liftoff_output_apply(struct liftoff_output *output, drmModeAtomicReq *req, uint32_t flags) { struct liftoff_device *device; struct liftoff_plane *plane; struct liftoff_layer *layer; struct alloc_result result; struct alloc_step step; size_t i; int ret; device = output->device; update_layers_priority(device); ret = reuse_previous_alloc(output, req, flags); if (ret == 0) { log_reuse(output); return 0; } log_no_reuse(output); output_log_layers(output); /* Unset all existing plane and layer mappings. */ liftoff_list_for_each(plane, &device->planes, link) { if (plane->layer != NULL && plane->layer->output == output) { plane->layer->plane = NULL; plane->layer = NULL; } } /* Disable all planes. Do it before building mappings to make sure not to hit bandwidth limits because too many planes are enabled. */ liftoff_list_for_each(plane, &device->planes, link) { if (plane->layer == NULL) { liftoff_log(LIFTOFF_DEBUG, "Disabling plane %"PRIu32, plane->id); ret = plane_apply(plane, NULL, req); assert(ret != -EINVAL); if (ret != 0) { return ret; } } } result.req = req; result.flags = flags; result.planes_len = liftoff_list_length(&device->planes); step.alloc = malloc(result.planes_len * sizeof(*step.alloc)); result.best = malloc(result.planes_len * sizeof(*result.best)); if (step.alloc == NULL || result.best == NULL) { liftoff_log_errno(LIFTOFF_ERROR, "malloc"); return -ENOMEM; } /* For each plane, try to find a layer. Don't do it the other * way around (ie. for each layer, try to find a plane) because * some drivers want user-space to enable the primary plane * before any other plane. */ result.best_score = -1; memset(result.best, 0, result.planes_len * sizeof(*result.best)); result.has_composition_layer = output->composition_layer != NULL; result.non_composition_layers_len = non_composition_layers_length(output); step.plane_link = device->planes.next; step.plane_idx = 0; step.score = 0; step.last_layer_zpos = INT_MAX; step.composited = false; ret = output_choose_layers(output, &result, &step); if (ret != 0) { return ret; } liftoff_log(LIFTOFF_DEBUG, "Found plane allocation for output %p with " "score=%d:", (void *)output, result.best_score); /* Apply the best allocation */ i = 0; liftoff_list_for_each(plane, &device->planes, link) { layer = result.best[i]; i++; if (layer == NULL) { continue; } liftoff_log(LIFTOFF_DEBUG, " Layer %p -> plane %"PRIu32, (void *)layer, plane->id); assert(plane->layer == NULL); assert(layer->plane == NULL); plane->layer = layer; layer->plane = plane; } ret = apply_current(device, req); if (ret != 0) { return ret; } free(step.alloc); free(result.best); mark_layers_clean(output); return 0; }