#define _POSIX_C_SOURCE 200112L #include #include #include #include #include #include #include #include #include "log.h" #include "private.h" /* Plane allocation algorithm * * Goal: KMS exposes a set of hardware planes, user submitted a set of layers. * We want to map as many layers as possible to planes. * * However, all layers can't be mapped to any plane. There are constraints, * sometimes depending on driver-specific limitations or the configuration of * other planes. * * The only way to discover driver-specific limitations is via an atomic test * commit: we submit a plane configuration, and KMS replies whether it's * supported or not. Thus we need to incrementally build a valid configuration. * * Let's take an example with 2 planes and 3 layers. Plane 1 is only compatible * with layer 2 and plane 2 is only compatible with layer 3. Our algorithm will * discover the solution by building the mapping one plane at a time. It first * starts with plane 1: an atomic commit assigning layer 1 to plane 1 is * submitted. It fails, because this isn't supported by the driver. Then layer * 2 is assigned to plane 1 and the atomic test succeeds. We can go on and * repeat the operation with plane 2. After exploring the whole tree, we end up * with a valid allocation. * * * layer 1 layer 1 * +---------> failure +---------> failure * | | * | | * | | * +---------+ | +---------+ | * | | | layer 2 | | | layer 3 final allocation: * | plane 1 +------------>+ plane 2 +--+---------> plane 1 → layer 2 * | | | | | plane 2 → layer 3 * +---------+ | +---------+ * | * | * | layer 3 * +---------> failure * * * Note how layer 2 isn't considered for plane 2: it's already mapped to plane * 1. Also note that branches are pruned as soon as an atomic test fails. * * In practice, the primary plane is treated separately. This is where layers * that can't be mapped to any plane (e.g. layer 1 in our example) will be * composited. The primary plane is the first that will be allocated, because * some drivers require it to be enabled in order to light up any other plane. * Then all other planes will be allocated, from the topmost one to the * bottommost one. * * The "zpos" property (which defines ordering between layers/planes) is handled * as a special case. If it's set on layers, it adds additional constraints on * their relative ordering. If two layers intersect, their relative zpos needs * to be preserved during plane allocation. * * Implementation-wise, the output_choose_layers function is called at each node * of the tree. It iterates over layers, check constraints, performs an atomic * test commit and calls itself recursively on the next plane. */ /* Global data for the allocation algorithm */ struct alloc_result { drmModeAtomicReq *req; uint32_t flags; size_t planes_len; struct liftoff_layer **best; int best_score; struct timespec started_at; int64_t timeout_ns; /* per-output */ bool has_composition_layer; size_t non_composition_layers_len; }; /* Transient data, arguments for each step */ struct alloc_step { struct liftoff_list *plane_link; /* liftoff_plane.link */ size_t plane_idx; struct liftoff_layer **alloc; /* only items up to plane_idx are valid */ int score; /* number of allocated layers */ int last_layer_zpos; int primary_layer_zpos, primary_plane_zpos; bool composited; /* per-output */ char log_prefix[64]; }; static const int64_t NSEC_PER_SEC = 1000 * 1000 * 1000; static int64_t timespec_to_nsec(struct timespec ts) { return (int64_t)ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec; } static const int64_t DEFAULT_ALLOC_TIMEOUT_NSEC = 1000 * 1000; // 1ms static bool check_deadline(struct timespec start, int64_t timeout_ns) { struct timespec now; if (clock_gettime(CLOCK_MONOTONIC, &now) != 0) { liftoff_log_errno(LIFTOFF_ERROR, "clock_gettime"); return false; } return timespec_to_nsec(now) - timeout_ns < timespec_to_nsec(start); } static void plane_step_init_next(struct alloc_step *step, struct alloc_step *prev, struct liftoff_layer *layer) { struct liftoff_plane *plane; struct liftoff_layer_property *zpos_prop; size_t len; plane = liftoff_container_of(prev->plane_link, plane, link); step->plane_link = prev->plane_link->next; step->plane_idx = prev->plane_idx + 1; step->alloc = prev->alloc; step->alloc[prev->plane_idx] = layer; if (layer != NULL && layer == layer->output->composition_layer) { assert(!prev->composited); step->composited = true; } else { step->composited = prev->composited; } if (layer != NULL && layer != layer->output->composition_layer) { step->score = prev->score + 1; } else { step->score = prev->score; } zpos_prop = NULL; if (layer != NULL) { zpos_prop = layer_get_property(layer, "zpos"); } if (zpos_prop != NULL && plane->type != DRM_PLANE_TYPE_PRIMARY) { step->last_layer_zpos = zpos_prop->value; } else { step->last_layer_zpos = prev->last_layer_zpos; } if (zpos_prop != NULL && plane->type == DRM_PLANE_TYPE_PRIMARY) { step->primary_layer_zpos = zpos_prop->value; step->primary_plane_zpos = plane->zpos; } else { step->primary_layer_zpos = prev->primary_layer_zpos; step->primary_plane_zpos = prev->primary_plane_zpos; } if (layer != NULL) { len = strlen(prev->log_prefix) + 2; if (len > sizeof(step->log_prefix) - 1) { len = sizeof(step->log_prefix) - 1; } memset(step->log_prefix, ' ', len); step->log_prefix[len] = '\0'; } else { memcpy(step->log_prefix, prev->log_prefix, sizeof(step->log_prefix)); } } static bool is_layer_allocated(struct alloc_step *step, struct liftoff_layer *layer) { size_t i; /* TODO: speed this up with an array of bools indicating whether a layer * has been allocated */ for (i = 0; i < step->plane_idx; i++) { if (step->alloc[i] == layer) { return true; } } return false; } static bool has_composited_layer_over(struct liftoff_output *output, struct alloc_step *step, struct liftoff_layer *layer) { struct liftoff_layer *other_layer; struct liftoff_layer_property *zpos_prop, *other_zpos_prop; zpos_prop = layer_get_property(layer, "zpos"); if (zpos_prop == NULL) { return false; } liftoff_list_for_each(other_layer, &output->layers, link) { if (is_layer_allocated(step, other_layer)) { continue; } other_zpos_prop = layer_get_property(other_layer, "zpos"); if (other_zpos_prop == NULL) { continue; } if (layer_intersects(layer, other_layer) && other_zpos_prop->value > zpos_prop->value) { return true; } } return false; } static bool has_allocated_layer_over(struct liftoff_output *output, struct alloc_step *step, struct liftoff_layer *layer) { ssize_t i; struct liftoff_plane *other_plane; struct liftoff_layer *other_layer; struct liftoff_layer_property *zpos_prop, *other_zpos_prop; zpos_prop = layer_get_property(layer, "zpos"); if (zpos_prop == NULL) { return false; } i = -1; liftoff_list_for_each(other_plane, &output->device->planes, link) { i++; if (i >= (ssize_t)step->plane_idx) { break; } if (other_plane->type == DRM_PLANE_TYPE_PRIMARY) { continue; } other_layer = step->alloc[i]; if (other_layer == NULL) { continue; } other_zpos_prop = layer_get_property(other_layer, "zpos"); if (other_zpos_prop == NULL) { continue; } /* Since plane zpos is descending, this means the other layer is * supposed to be under but is mapped to a plane over the * current one. */ if (zpos_prop->value > other_zpos_prop->value && layer_intersects(layer, other_layer)) { return true; } } return false; } static bool has_allocated_plane_under(struct liftoff_output *output, struct alloc_step *step, struct liftoff_layer *layer) { struct liftoff_plane *plane, *other_plane; ssize_t i; plane = liftoff_container_of(step->plane_link, plane, link); i = -1; liftoff_list_for_each(other_plane, &output->device->planes, link) { i++; if (i >= (ssize_t)step->plane_idx) { break; } if (other_plane->type == DRM_PLANE_TYPE_PRIMARY) { continue; } if (step->alloc[i] == NULL) { continue; } if (plane->zpos >= other_plane->zpos && layer_intersects(layer, step->alloc[i])) { return true; } } return false; } static bool check_layer_plane_compatible(struct alloc_step *step, struct liftoff_layer *layer, struct liftoff_plane *plane) { struct liftoff_output *output; struct liftoff_layer_property *zpos_prop; output = layer->output; /* Skip this layer if already allocated */ if (is_layer_allocated(step, layer)) { return false; } zpos_prop = layer_get_property(layer, "zpos"); if (zpos_prop != NULL) { if ((int)zpos_prop->value > step->last_layer_zpos && has_allocated_layer_over(output, step, layer)) { /* This layer needs to be on top of the last * allocated one */ liftoff_log(LIFTOFF_DEBUG, "%s Layer %p -> plane %"PRIu32": " "layer zpos invalid", step->log_prefix, (void *)layer, plane->id); return false; } if ((int)zpos_prop->value < step->last_layer_zpos && has_allocated_plane_under(output, step, layer)) { /* This layer needs to be under the last * allocated one, but this plane isn't under the * last one (in practice, since planes are * sorted by zpos it means it has the same zpos, * ie. undefined ordering). */ liftoff_log(LIFTOFF_DEBUG, "%s Layer %p -> plane %"PRIu32": " "plane zpos invalid", step->log_prefix, (void *)layer, plane->id); return false; } if (plane->type != DRM_PLANE_TYPE_PRIMARY && (int)zpos_prop->value < step->primary_layer_zpos && plane->zpos > step->primary_plane_zpos) { /* Primary planes are handled up front, because some * drivers fail all atomic commits when it's missing. * However that messes up with our zpos checks. In * particular, we need to make sure we don't put a layer * configured to be over the primary plane under it. * TODO: revisit this once we add underlay support. */ liftoff_log(LIFTOFF_DEBUG, "%s Layer %p -> plane %"PRIu32": " "layer zpos under primary", step->log_prefix, (void *)layer, plane->id); return false; } } if (plane->type != DRM_PLANE_TYPE_PRIMARY && has_composited_layer_over(output, step, layer)) { liftoff_log(LIFTOFF_DEBUG, "%s Layer %p -> plane %"PRIu32": " "has composited layer on top", step->log_prefix, (void *)layer, plane->id); return false; } if (plane->type != DRM_PLANE_TYPE_PRIMARY && layer == layer->output->composition_layer) { liftoff_log(LIFTOFF_DEBUG, "%s Layer %p -> plane %"PRIu32": " "cannot put composition layer on " "non-primary plane", step->log_prefix, (void *)layer, plane->id); return false; } return true; } static bool check_alloc_valid(struct liftoff_output *output, struct alloc_result *result, struct alloc_step *step) { /* If composition isn't used, we need to have allocated all * layers. */ /* TODO: find a way to fail earlier, e.g. when the number of * layers exceeds the number of planes. */ if (result->has_composition_layer && !step->composited && step->score != (int)result->non_composition_layers_len) { liftoff_log(LIFTOFF_DEBUG, "%sCannot skip composition: some layers " "are missing a plane", step->log_prefix); return false; } /* On the other hand, if we manage to allocate all layers, we * don't want to use composition. We don't want to use the * composition layer at all. */ if (step->composited && step->score == (int)result->non_composition_layers_len) { liftoff_log(LIFTOFF_DEBUG, "%sRefusing to use composition: all layers " "have been put in a plane", step->log_prefix); return false; } /* TODO: check allocation isn't empty */ return true; } static bool check_plane_output_compatible(struct liftoff_plane *plane, struct liftoff_output *output) { return (plane->possible_crtcs & (1 << output->crtc_index)) != 0; } static int count_remaining_compatible_planes(struct liftoff_output *output, struct alloc_step *step) { struct liftoff_list *link; struct liftoff_plane *plane; int remaining = 0; for (link = step->plane_link; link != &output->device->planes; link = link->next) { plane = liftoff_container_of(link, plane, link); if (plane->layer == NULL && check_plane_output_compatible(plane, output)) { remaining++; } } return remaining; } static int output_choose_layers(struct liftoff_output *output, struct alloc_result *result, struct alloc_step *step) { struct liftoff_device *device; struct liftoff_plane *plane; struct liftoff_layer *layer; int cursor, ret; int remaining_planes; struct alloc_step next_step = {0}; device = output->device; if (step->plane_link == &device->planes) { /* Allocation finished */ if (step->score > result->best_score && check_alloc_valid(output, result, step)) { /* We found a better allocation */ liftoff_log(LIFTOFF_DEBUG, "%sFound a better allocation with score=%d", step->log_prefix, step->score); result->best_score = step->score; memcpy(result->best, step->alloc, result->planes_len * sizeof(struct liftoff_layer *)); } return 0; } plane = liftoff_container_of(step->plane_link, plane, link); remaining_planes = count_remaining_compatible_planes(output, step); if (result->best_score >= step->score + remaining_planes) { /* Even if we find a layer for all remaining planes, we won't * find a better allocation. Give up. */ return 0; } cursor = drmModeAtomicGetCursor(result->req); if (plane->layer != NULL || !check_plane_output_compatible(plane, output)) { goto skip; } liftoff_log(LIFTOFF_DEBUG, "%sPerforming allocation for plane %"PRIu32" (%zu/%zu)", step->log_prefix, plane->id, step->plane_idx + 1, result->planes_len); liftoff_list_for_each(layer, &output->layers, link) { if (layer->plane != NULL) { continue; } if (!layer_is_visible(layer)) { continue; } if (!check_layer_plane_compatible(step, layer, plane)) { continue; } if (!check_deadline(result->started_at, result->timeout_ns)) { liftoff_log(LIFTOFF_DEBUG, "%s Deadline exceeded", step->log_prefix); break; } /* Try to use this layer for the current plane */ ret = plane_apply(plane, layer, result->req); if (ret == -EINVAL) { liftoff_log(LIFTOFF_DEBUG, "%s Layer %p -> plane %"PRIu32": " "incompatible properties", step->log_prefix, (void *)layer, plane->id); continue; } else if (ret != 0) { return ret; } layer_add_candidate_plane(layer, plane); /* If composition is forced, wait until after the * layer_add_candidate_plane() call to reject the plane: we want * to return a meaningful list of candidate planes so that the * API user has the opportunity to re-allocate its buffers with * scanout-capable ones. Same deal for the FB check. */ if (layer->force_composition || !plane_check_layer_fb(plane, layer)) { drmModeAtomicSetCursor(result->req, cursor); continue; } ret = device_test_commit(device, result->req, result->flags); if (ret == 0) { liftoff_log(LIFTOFF_DEBUG, "%s Layer %p -> plane %"PRIu32": success", step->log_prefix, (void *)layer, plane->id); /* Continue with the next plane */ plane_step_init_next(&next_step, step, layer); ret = output_choose_layers(output, result, &next_step); if (ret != 0) { return ret; } } else if (ret != -EINVAL && ret != -ERANGE && ret != -ENOSPC) { return ret; } else { liftoff_log(LIFTOFF_DEBUG, "%s Layer %p -> plane %"PRIu32": " "test-only commit failed (%s)", step->log_prefix, (void *)layer, plane->id, strerror(-ret)); } drmModeAtomicSetCursor(result->req, cursor); } skip: /* Try not to use the current plane */ plane_step_init_next(&next_step, step, NULL); ret = output_choose_layers(output, result, &next_step); if (ret != 0) { return ret; } drmModeAtomicSetCursor(result->req, cursor); return 0; } static int apply_current(struct liftoff_device *device, drmModeAtomicReq *req) { struct liftoff_plane *plane; int cursor, ret; cursor = drmModeAtomicGetCursor(req); liftoff_list_for_each(plane, &device->planes, link) { ret = plane_apply(plane, plane->layer, req); if (ret != 0) { drmModeAtomicSetCursor(req, cursor); return ret; } } return 0; } static bool fb_info_needs_realloc(const drmModeFB2 *a, const drmModeFB2 *b) { if (a->width != b->width || a->height != b->height || a->pixel_format != b->pixel_format || a->modifier != b->modifier) { return true; } /* TODO: consider checking pitch and offset? */ return false; } static bool layer_intersection_changed(struct liftoff_layer *this, struct liftoff_output *output) { struct liftoff_layer *other; struct liftoff_rect this_cur, this_prev, other_cur, other_prev; layer_get_rect(this, &this_cur); layer_get_prev_rect(this, &this_prev); liftoff_list_for_each(other, &output->layers, link) { if (this == other) { continue; } layer_get_rect(other, &other_cur); layer_get_prev_rect(other, &other_prev); if (rect_intersects(&this_cur, &other_cur) != rect_intersects(&this_prev, &other_prev)) { return true; } } return false; } static bool layer_needs_realloc(struct liftoff_layer *layer, struct liftoff_output *output) { struct liftoff_layer_property *prop; bool check_crtc_intersect = false; size_t i; if (layer->changed) { liftoff_log(LIFTOFF_DEBUG, "Cannot re-use previous allocation: " "layer property added or force composition changed"); return true; } for (i = 0; i < layer->props_len; i++) { prop = &layer->props[i]; /* If FB_ID changes from non-zero to zero, we don't need to * display this layer anymore, so we may be able to re-use its * plane for another layer. If FB_ID changes from zero to * non-zero, we might be able to find a plane for this layer. * If FB_ID changes from non-zero to non-zero and the FB * attributes didn't change, we can try to re-use the previous * allocation. */ if (strcmp(prop->name, "FB_ID") == 0) { if (prop->value == 0 && prop->prev_value == 0) { continue; } if (prop->value == 0 || prop->prev_value == 0) { liftoff_log(LIFTOFF_DEBUG, "Cannot re-use previous allocation: " "layer enabled or disabled"); return true; } if (fb_info_needs_realloc(&layer->fb_info, &layer->prev_fb_info)) { liftoff_log(LIFTOFF_DEBUG, "Cannot re-use previous allocation: " "FB info changed"); return true; } continue; } /* For all properties except FB_ID, we can skip realloc if the * value didn't change. */ if (prop->value == prop->prev_value) { continue; } /* If the layer was or becomes completely transparent or * completely opaque, we might be able to find a better * allocation. Otherwise, we can keep the current one. */ if (strcmp(prop->name, "alpha") == 0) { if (prop->value == 0 || prop->prev_value == 0 || prop->value == 0xFFFF || prop->prev_value == 0xFFFF) { liftoff_log(LIFTOFF_DEBUG, "Cannot re-use previous allocation: " "alpha changed"); return true; } continue; } /* We should never need a re-alloc when IN_FENCE_FD or * FB_DAMAGE_CLIPS changes. */ if (strcmp(prop->name, "IN_FENCE_FD") == 0 || strcmp(prop->name, "FB_DAMAGE_CLIPS") == 0) { continue; } /* If CRTC_* changed, check for intersection later */ if (strcmp(prop->name, "CRTC_X") == 0 || strcmp(prop->name, "CRTC_Y") == 0 || strcmp(prop->name, "CRTC_W") == 0 || strcmp(prop->name, "CRTC_H") == 0) { check_crtc_intersect = true; continue; } liftoff_log(LIFTOFF_DEBUG, "Cannot re-use previous allocation: " "property \"%s\" changed", prop->name); return true; } if (check_crtc_intersect && layer_intersection_changed(layer, output)) { liftoff_log(LIFTOFF_DEBUG, "Cannot re-use previous allocation: " "intersection with other layer(s) changed"); return true; } return false; } static bool layer_is_higher_priority(struct liftoff_layer *this, struct liftoff_layer *other) { struct liftoff_layer_property *this_zpos, *other_zpos; bool this_visible, other_visible, intersects; // The composition layer should be highest priority. if (this->output->composition_layer == this) { return true; } else if (this->output->composition_layer == other) { return false; } // Invisible layers are given lowest priority. Pass-thru if both have // same visibility this_visible = layer_is_visible(this); other_visible = layer_is_visible(other); if (this_visible != other_visible) { return this_visible; } // A layer's overall priority is determined by a combination of it's // current_priority, it's zpos, and whether it intersects with others. // // Consider two layers. If they do not intersect, the layer with higher // priority is given overall priority. However if both layers have // identical priority, then the layer with higher zpos is given overall // priority. // // If the layers intersect, their zpos determines the overall priority. // If their zpos are identical, then simply fallback to looking at // current_priority. Otherwise, the layer with higher zpos is given // overall priority, since the top layer needs to be offloaded in order // to offload the bottom layer. this_zpos = layer_get_property(this, "zpos"); other_zpos = layer_get_property(other, "zpos"); intersects = layer_intersects(this, other); if (this_zpos != NULL && other_zpos != NULL) { if (intersects) { return this_zpos->value == other_zpos->value ? this->current_priority > other->current_priority : this_zpos->value > other_zpos->value; } else { return this->current_priority == other->current_priority ? this_zpos->value > other_zpos->value : this->current_priority > other->current_priority; } } else if (this_zpos == NULL && other_zpos == NULL) { return this->current_priority > other->current_priority; } else { // Either this or other zpos is null return this_zpos != NULL; } } static bool update_layers_order(struct liftoff_output *output) { struct liftoff_list *search, *max, *cur, *head; struct liftoff_layer *this_layer, *other_layer; bool order_changed = false; head = &output->layers; cur = head; // Run a insertion sort to order layers by priority. while (cur->next != head) { cur = cur->next; max = cur; search = cur; while (search->next != head) { search = search->next; this_layer = liftoff_container_of(search, this_layer, link); other_layer = liftoff_container_of(max, other_layer, link); if (layer_is_higher_priority(this_layer, other_layer)) { max = search; } } if (cur != max) { liftoff_list_swap(cur, max); // max is now where iterator cur was, relocate to continue cur = max; order_changed = true; } } return order_changed; } static int reuse_previous_alloc(struct liftoff_output *output, drmModeAtomicReq *req, uint32_t flags) { struct liftoff_device *device; struct liftoff_layer *layer; int cursor, ret; bool layer_order_changed; device = output->device; layer_order_changed = update_layers_order(output); if (output->layers_changed) { liftoff_log(LIFTOFF_DEBUG, "Cannot re-use previous allocation: " "a layer has been added or removed"); return -EINVAL; } liftoff_list_for_each(layer, &output->layers, link) { if (layer_needs_realloc(layer, output)) { return -EINVAL; } } if (layer_order_changed) { liftoff_log(LIFTOFF_DEBUG, "Cannot re-use previous allocation: " "layer priority order changed."); return -EINVAL; } cursor = drmModeAtomicGetCursor(req); ret = apply_current(device, req); if (ret != 0) { return ret; } ret = device_test_commit(device, req, flags); if (ret != 0) { drmModeAtomicSetCursor(req, cursor); } return ret; } static void mark_layers_clean(struct liftoff_output *output) { struct liftoff_layer *layer; output->layers_changed = false; liftoff_list_for_each(layer, &output->layers, link) { layer_mark_clean(layer); } } static void update_layers_priority(struct liftoff_device *device) { struct liftoff_output *output; struct liftoff_layer *layer; bool period_elapsed; device->page_flip_counter++; period_elapsed = device->page_flip_counter >= LIFTOFF_PRIORITY_PERIOD; if (period_elapsed) { device->page_flip_counter = 0; } liftoff_list_for_each(output, &device->outputs, link) { liftoff_list_for_each(layer, &output->layers, link) { layer_update_priority(layer, period_elapsed); } } } static void update_layers_fb_info(struct liftoff_output *output) { struct liftoff_layer *layer; /* We don't know what the library user did in-between * liftoff_output_apply() calls. They might've removed the FB and * re-created a completely different one which happens to have the same * FB ID. */ liftoff_list_for_each(layer, &output->layers, link) { layer->fb_info = (drmModeFB2){0}; layer_cache_fb_info(layer); /* TODO: propagate error? */ } } static void log_reuse(struct liftoff_output *output) { if (output->alloc_reused_counter == 0) { liftoff_log(LIFTOFF_DEBUG, "Reusing previous plane allocation on output %"PRIu32, output->crtc_id); } output->alloc_reused_counter++; } static void log_no_reuse(struct liftoff_output *output) { liftoff_log(LIFTOFF_DEBUG, "Computing plane allocation on output %"PRIu32, output->crtc_id); if (output->alloc_reused_counter != 0) { liftoff_log(LIFTOFF_DEBUG, "Stopped reusing previous plane allocation on " "output %"PRIu32" (had reused it %d times)", output->crtc_id, output->alloc_reused_counter); output->alloc_reused_counter = 0; } } static size_t non_composition_layers_length(struct liftoff_output *output) { struct liftoff_layer *layer; size_t n; n = 0; liftoff_list_for_each(layer, &output->layers, link) { if (layer_is_visible(layer) && output->composition_layer != layer) { n++; } } return n; } int liftoff_output_apply(struct liftoff_output *output, drmModeAtomicReq *req, uint32_t flags, const struct liftoff_output_apply_options *options) { struct liftoff_device *device; struct liftoff_plane *plane; struct liftoff_layer *layer; struct alloc_result result = {0}; struct alloc_step step = {0}; const struct liftoff_output_apply_options default_options = {0}; size_t i, candidate_planes; int ret; bool found_layer; if (options == NULL) { options = &default_options; } device = output->device; update_layers_priority(device); update_layers_fb_info(output); ret = reuse_previous_alloc(output, req, flags); if (ret == 0) { log_reuse(output); mark_layers_clean(output); return 0; } log_no_reuse(output); /* Reset layers' candidate planes */ liftoff_list_for_each(layer, &output->layers, link) { layer_reset_candidate_planes(layer); } device->test_commit_counter = 0; output_log_layers(output); /* Unset all existing plane and layer mappings. */ liftoff_list_for_each(plane, &device->planes, link) { if (plane->layer != NULL && plane->layer->output == output) { plane->layer->plane = NULL; plane->layer = NULL; } } /* Disable all planes we might use. Do it before building mappings to * make sure not to hit bandwidth limits because too many planes are * enabled. */ candidate_planes = 0; liftoff_list_for_each(plane, &device->planes, link) { if (plane->layer == NULL) { candidate_planes++; liftoff_log(LIFTOFF_DEBUG, "Disabling plane %"PRIu32, plane->id); ret = plane_apply(plane, NULL, req); assert(ret != -EINVAL); if (ret != 0) { return ret; } } } result.req = req; result.flags = flags; result.planes_len = liftoff_list_length(&device->planes); step.alloc = malloc(result.planes_len * sizeof(step.alloc[0])); result.best = malloc(result.planes_len * sizeof(result.best[0])); if (step.alloc == NULL || result.best == NULL) { liftoff_log_errno(LIFTOFF_ERROR, "malloc"); return -ENOMEM; } if (clock_gettime(CLOCK_MONOTONIC, &result.started_at) != 0) { liftoff_log_errno(LIFTOFF_ERROR, "clock_gettime"); return -errno; } result.timeout_ns = options->timeout_ns; if (result.timeout_ns == 0) { result.timeout_ns = DEFAULT_ALLOC_TIMEOUT_NSEC; } /* For each plane, try to find a layer. Don't do it the other * way around (ie. for each layer, try to find a plane) because * some drivers want user-space to enable the primary plane * before any other plane. */ result.best_score = -1; memset(result.best, 0, result.planes_len * sizeof(result.best[0])); result.has_composition_layer = output->composition_layer != NULL; result.non_composition_layers_len = non_composition_layers_length(output); step.plane_link = device->planes.next; step.plane_idx = 0; step.score = 0; step.last_layer_zpos = INT_MAX; step.primary_layer_zpos = INT_MIN; step.primary_plane_zpos = INT_MAX; step.composited = false; ret = output_choose_layers(output, &result, &step); if (ret != 0) { return ret; } liftoff_log(LIFTOFF_DEBUG, "Found plane allocation for output %"PRIu32" " "(score: %d, candidate planes: %zu, tests: %d):", output->crtc_id, result.best_score, candidate_planes, device->test_commit_counter); /* Apply the best allocation */ i = 0; found_layer = false; liftoff_list_for_each(plane, &device->planes, link) { layer = result.best[i]; i++; if (layer == NULL) { continue; } liftoff_log(LIFTOFF_DEBUG, " Layer %p -> plane %"PRIu32, (void *)layer, plane->id); assert(plane->layer == NULL); assert(layer->plane == NULL); plane->layer = layer; layer->plane = plane; found_layer = true; } if (!found_layer) { liftoff_log(LIFTOFF_DEBUG, " (No layer has a plane)"); } ret = apply_current(device, req); if (ret != 0) { return ret; } free(step.alloc); free(result.best); mark_layers_clean(output); return 0; }