libdisplay-info/cta.c
Sebastian Wick 211fa636a3 cta: Return a block struct for type vii timings
Signed-off-by: Sebastian Wick <sebastian.wick@redhat.com>
2024-08-06 12:41:17 +00:00

2147 lines
60 KiB
C

#include <assert.h>
#include <errno.h>
#include <inttypes.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "bits.h"
#include "cta.h"
#include "log.h"
#include "edid.h"
#include "displayid.h"
/**
* Number of bytes in the CTA header (tag + revision + DTD offset + flags).
*/
#define CTA_HEADER_SIZE 4
/**
* Exclusive upper bound for the detailed timing definitions in the CTA block.
*/
#define CTA_DTD_END 127
/**
* Number of bytes in a CTA short audio descriptor.
*/
#define CTA_SAD_SIZE 3
/**
* Number of bytes in a HDMI 3D audio descriptor.
*/
#define CTA_HDMI_AUDIO_3D_DESCRIPTOR_SIZE 4
const struct di_cta_video_format *
di_cta_video_format_from_vic(uint8_t vic)
{
if (vic > _di_cta_video_formats_len ||
_di_cta_video_formats[vic].vic == 0)
return NULL;
return &_di_cta_video_formats[vic];
}
static void
add_failure(struct di_edid_cta *cta, const char fmt[], ...)
{
va_list args;
va_start(args, fmt);
_di_logger_va_add_failure(cta->logger, fmt, args);
va_end(args);
}
static void
add_failure_until(struct di_edid_cta *cta, int revision, const char fmt[], ...)
{
va_list args;
if (cta->revision > revision) {
return;
}
va_start(args, fmt);
_di_logger_va_add_failure(cta->logger, fmt, args);
va_end(args);
}
static struct di_cta_svd *
parse_svd(struct di_edid_cta *cta, uint8_t raw, const char *prefix)
{
struct di_cta_svd svd, *svd_ptr;
if (raw == 0 || raw == 128 || raw >= 254) {
/* Reserved */
add_failure_until(cta, 3,
"%s: Unknown VIC %" PRIu8 ".",
prefix,
raw);
return NULL;
} else if (raw <= 127 || raw >= 193) {
svd = (struct di_cta_svd) {
.vic = raw,
};
} else {
svd = (struct di_cta_svd) {
.vic = get_bit_range(raw, 6, 0),
.native = true,
};
}
svd_ptr = calloc(1, sizeof(*svd_ptr));
if (!svd_ptr)
return NULL;
*svd_ptr = svd;
return svd_ptr;
}
static bool
parse_video_block(struct di_edid_cta *cta, struct di_cta_video_block_priv *video,
const uint8_t *data, size_t size)
{
size_t i;
struct di_cta_svd *svd;
if (size == 0)
add_failure(cta, "Video Data Block: Empty Data Block");
for (i = 0; i < size; i++) {
svd = parse_svd(cta, data[i], "Video Data Block");
if (!svd)
continue;
assert(video->svds_len < EDID_CTA_MAX_VIDEO_BLOCK_ENTRIES);
video->svds[video->svds_len++] = svd;
}
video->base.svds = (const struct di_cta_svd *const *)video->svds;
return true;
}
static bool
parse_ycbcr420_block(struct di_edid_cta *cta,
struct di_cta_ycbcr420_video_block_priv *ycbcr420,
const uint8_t *data, size_t size)
{
size_t i;
struct di_cta_svd *svd;
if (size == 0)
add_failure(cta, "YCbCr 4:2:0 Video Data Block: Empty Data Block");
for (i = 0; i < size; i++) {
svd = parse_svd(cta, data[i], "YCbCr 4:2:0 Video Data Block");
if (!svd)
continue;
assert(ycbcr420->svds_len < EDID_CTA_MAX_VIDEO_BLOCK_ENTRIES);
ycbcr420->svds[ycbcr420->svds_len++] = svd;
}
ycbcr420->base.svds = (const struct di_cta_svd *const *)ycbcr420->svds;
return true;
}
static bool
parse_sad_format(struct di_edid_cta *cta, uint8_t code, uint8_t code_ext,
enum di_cta_audio_format *format, const char *prefix)
{
switch (code) {
case 0x0:
add_failure_until(cta, 3, "%s: Audio Format Code 0x00 is reserved.", prefix);
return false;
case 0x1:
*format = DI_CTA_AUDIO_FORMAT_LPCM;
break;
case 0x2:
*format = DI_CTA_AUDIO_FORMAT_AC3;
break;
case 0x3:
*format = DI_CTA_AUDIO_FORMAT_MPEG1;
break;
case 0x4:
*format = DI_CTA_AUDIO_FORMAT_MP3;
break;
case 0x5:
*format = DI_CTA_AUDIO_FORMAT_MPEG2;
break;
case 0x6:
*format = DI_CTA_AUDIO_FORMAT_AAC_LC;
break;
case 0x7:
*format = DI_CTA_AUDIO_FORMAT_DTS;
break;
case 0x8:
*format = DI_CTA_AUDIO_FORMAT_ATRAC;
break;
case 0x9:
*format = DI_CTA_AUDIO_FORMAT_ONE_BIT_AUDIO;
break;
case 0xA:
*format = DI_CTA_AUDIO_FORMAT_ENHANCED_AC3;
break;
case 0xB:
*format = DI_CTA_AUDIO_FORMAT_DTS_HD;
break;
case 0xC:
*format = DI_CTA_AUDIO_FORMAT_MAT;
break;
case 0xD:
*format = DI_CTA_AUDIO_FORMAT_DST;
break;
case 0xE:
*format = DI_CTA_AUDIO_FORMAT_WMA_PRO;
break;
case 0xF:
switch (code_ext) {
case 0x04:
*format = DI_CTA_AUDIO_FORMAT_MPEG4_HE_AAC;
break;
case 0x05:
*format = DI_CTA_AUDIO_FORMAT_MPEG4_HE_AAC_V2;
break;
case 0x06:
*format = DI_CTA_AUDIO_FORMAT_MPEG4_AAC_LC;
break;
case 0x07:
*format = DI_CTA_AUDIO_FORMAT_DRA;
break;
case 0x08:
*format = DI_CTA_AUDIO_FORMAT_MPEG4_HE_AAC_MPEG_SURROUND;
break;
case 0x0A:
*format = DI_CTA_AUDIO_FORMAT_MPEG4_AAC_LC_MPEG_SURROUND;
break;
case 0x0B:
*format = DI_CTA_AUDIO_FORMAT_MPEGH_3D;
break;
case 0x0C:
*format = DI_CTA_AUDIO_FORMAT_AC4;
break;
case 0x0D:
*format = DI_CTA_AUDIO_FORMAT_LPCM_3D;
break;
default:
add_failure_until(cta, 3, "%s: Unknown Audio Ext Format 0x%02x.",
prefix, code_ext);
return false;
}
break;
default:
add_failure_until(cta, 3, "%s: Unknown Audio Format 0x%02x.", prefix, code);
return false;
}
return true;
}
static bool
parse_sad(struct di_edid_cta *cta, struct di_cta_audio_block_priv *audio,
const uint8_t data[static CTA_SAD_SIZE])
{
enum di_cta_audio_format format;
struct di_cta_sad_priv *priv;
struct di_cta_sad *sad;
struct di_cta_sad_sample_rates *sample_rates;
struct di_cta_sad_lpcm *lpcm;
struct di_cta_sad_mpegh_3d *mpegh_3d;
struct di_cta_sad_mpeg_aac *mpeg_aac;
struct di_cta_sad_mpeg_surround *mpeg_surround;
struct di_cta_sad_mpeg_aac_le *mpeg_aac_le;
struct di_cta_sad_enhanced_ac3 *enhanced_ac3;
struct di_cta_sad_mat *mat;
struct di_cta_sad_wma_pro *wma_pro;
uint8_t code, code_ext;
code = get_bit_range(data[0], 6, 3);
code_ext = get_bit_range(data[2], 7, 3);
if (!parse_sad_format(cta, code, code_ext, &format, "Audio Data Block"))
return true;
priv = calloc(1, sizeof(*priv));
if (!priv)
return false;
sad = &priv->base;
sample_rates = &priv->supported_sample_rates;
lpcm = &priv->lpcm;
mpegh_3d = &priv->mpegh_3d;
mpeg_aac = &priv->mpeg_aac;
mpeg_surround = &priv->mpeg_surround;
mpeg_aac_le = &priv->mpeg_aac_le;
enhanced_ac3 = &priv->enhanced_ac3;
mat = &priv->mat;
wma_pro = &priv->wma_pro;
sad->format = format;
/* TODO: Find DRA documentation */
switch (format) {
case DI_CTA_AUDIO_FORMAT_LPCM:
case DI_CTA_AUDIO_FORMAT_AC3:
case DI_CTA_AUDIO_FORMAT_MPEG1:
case DI_CTA_AUDIO_FORMAT_MP3:
case DI_CTA_AUDIO_FORMAT_MPEG2:
case DI_CTA_AUDIO_FORMAT_AAC_LC:
case DI_CTA_AUDIO_FORMAT_DTS:
case DI_CTA_AUDIO_FORMAT_ATRAC:
case DI_CTA_AUDIO_FORMAT_ONE_BIT_AUDIO:
case DI_CTA_AUDIO_FORMAT_ENHANCED_AC3:
case DI_CTA_AUDIO_FORMAT_DTS_HD:
case DI_CTA_AUDIO_FORMAT_MAT:
case DI_CTA_AUDIO_FORMAT_DST:
case DI_CTA_AUDIO_FORMAT_WMA_PRO:
case DI_CTA_AUDIO_FORMAT_MPEG4_HE_AAC:
case DI_CTA_AUDIO_FORMAT_MPEG4_HE_AAC_V2:
case DI_CTA_AUDIO_FORMAT_MPEG4_AAC_LC:
/* DRA is not documented but this is what edid-decode does */
case DI_CTA_AUDIO_FORMAT_DRA:
case DI_CTA_AUDIO_FORMAT_MPEG4_HE_AAC_MPEG_SURROUND:
case DI_CTA_AUDIO_FORMAT_MPEG4_AAC_LC_MPEG_SURROUND:
sad->max_channels = get_bit_range(data[0], 2, 0) + 1;
break;
case DI_CTA_AUDIO_FORMAT_LPCM_3D:
sad->max_channels = (get_bit_range(data[0], 2, 0) |
(get_bit_range(data[0], 7, 7) << 3) |
(get_bit_range(data[1], 7, 7) << 4)) + 1;
break;
case DI_CTA_AUDIO_FORMAT_MPEGH_3D:
case DI_CTA_AUDIO_FORMAT_AC4:
break;
}
switch (format) {
case DI_CTA_AUDIO_FORMAT_LPCM:
case DI_CTA_AUDIO_FORMAT_AC3:
case DI_CTA_AUDIO_FORMAT_MPEG1:
case DI_CTA_AUDIO_FORMAT_MP3:
case DI_CTA_AUDIO_FORMAT_MPEG2:
case DI_CTA_AUDIO_FORMAT_AAC_LC:
case DI_CTA_AUDIO_FORMAT_DTS:
case DI_CTA_AUDIO_FORMAT_ATRAC:
case DI_CTA_AUDIO_FORMAT_ONE_BIT_AUDIO:
case DI_CTA_AUDIO_FORMAT_ENHANCED_AC3:
case DI_CTA_AUDIO_FORMAT_DTS_HD:
case DI_CTA_AUDIO_FORMAT_MAT:
case DI_CTA_AUDIO_FORMAT_DST:
case DI_CTA_AUDIO_FORMAT_WMA_PRO:
/* DRA is not documented but this is what edid-decode does */
case DI_CTA_AUDIO_FORMAT_DRA:
case DI_CTA_AUDIO_FORMAT_MPEGH_3D:
case DI_CTA_AUDIO_FORMAT_LPCM_3D:
sample_rates->has_192_khz = has_bit(data[1], 6);
sample_rates->has_176_4_khz = has_bit(data[1], 5);
/* fallthrough */
case DI_CTA_AUDIO_FORMAT_MPEG4_HE_AAC:
case DI_CTA_AUDIO_FORMAT_MPEG4_HE_AAC_V2:
case DI_CTA_AUDIO_FORMAT_MPEG4_AAC_LC:
case DI_CTA_AUDIO_FORMAT_MPEG4_HE_AAC_MPEG_SURROUND:
case DI_CTA_AUDIO_FORMAT_MPEG4_AAC_LC_MPEG_SURROUND:
sample_rates->has_96_khz = has_bit(data[1], 4);
sample_rates->has_88_2_khz = has_bit(data[1], 3);
sample_rates->has_48_khz = has_bit(data[1], 2);
sample_rates->has_44_1_khz = has_bit(data[1], 1);
sample_rates->has_32_khz = has_bit(data[1], 0);
break;
case DI_CTA_AUDIO_FORMAT_AC4:
sample_rates->has_192_khz = has_bit(data[1], 6);
sample_rates->has_96_khz = has_bit(data[1], 4);
sample_rates->has_48_khz = has_bit(data[1], 2);
sample_rates->has_44_1_khz = has_bit(data[1], 1);
break;
}
sad->supported_sample_rates = sample_rates;
switch (format) {
case DI_CTA_AUDIO_FORMAT_AC3:
case DI_CTA_AUDIO_FORMAT_MPEG1:
case DI_CTA_AUDIO_FORMAT_MP3:
case DI_CTA_AUDIO_FORMAT_MPEG2:
case DI_CTA_AUDIO_FORMAT_AAC_LC:
case DI_CTA_AUDIO_FORMAT_DTS:
case DI_CTA_AUDIO_FORMAT_ATRAC:
sad->max_bitrate_kbs = data[2] * 8;
break;
default:
break;
}
switch (format) {
case DI_CTA_AUDIO_FORMAT_LPCM:
case DI_CTA_AUDIO_FORMAT_LPCM_3D:
lpcm->has_sample_size_24_bits = has_bit(data[2], 2);
lpcm->has_sample_size_20_bits = has_bit(data[2], 1);
lpcm->has_sample_size_16_bits = has_bit(data[2], 0);
sad->lpcm = lpcm;
default:
break;
}
switch (format) {
case DI_CTA_AUDIO_FORMAT_MPEG4_HE_AAC:
case DI_CTA_AUDIO_FORMAT_MPEG4_HE_AAC_V2:
case DI_CTA_AUDIO_FORMAT_MPEG4_AAC_LC:
case DI_CTA_AUDIO_FORMAT_MPEG4_HE_AAC_MPEG_SURROUND:
case DI_CTA_AUDIO_FORMAT_MPEG4_AAC_LC_MPEG_SURROUND:
mpeg_aac->has_frame_length_1024 = has_bit(data[2], 2);
mpeg_aac->has_frame_length_960 = has_bit(data[2], 1);
sad->mpeg_aac = mpeg_aac;
break;
default:
break;
}
if (format == DI_CTA_AUDIO_FORMAT_MPEG4_AAC_LC) {
mpeg_aac_le->supports_multichannel_sound = has_bit(data[2], 0);
sad->mpeg_aac_le = mpeg_aac_le;
}
switch (format) {
case DI_CTA_AUDIO_FORMAT_MPEG4_HE_AAC_MPEG_SURROUND:
case DI_CTA_AUDIO_FORMAT_MPEG4_AAC_LC_MPEG_SURROUND:
mpeg_surround->signaling = has_bit(data[2], 0);
sad->mpeg_surround = mpeg_surround;
break;
default:
break;
}
if (format == DI_CTA_AUDIO_FORMAT_MPEGH_3D) {
mpegh_3d->low_complexity_profile = has_bit(data[2], 0);
mpegh_3d->baseline_profile = has_bit(data[2], 1);
mpegh_3d->level = get_bit_range(data[0], 2, 0);
if (mpegh_3d->level > DI_CTA_SAD_MPEGH_3D_LEVEL_5) {
add_failure_until(cta, 3,
"Unknown MPEG-H 3D Audio Level 0x%02x.",
mpegh_3d->level);
mpegh_3d->level = DI_CTA_SAD_MPEGH_3D_LEVEL_UNSPECIFIED;
}
sad->mpegh_3d = mpegh_3d;
}
if (format == DI_CTA_AUDIO_FORMAT_ENHANCED_AC3) {
enhanced_ac3->supports_joint_object_coding =
has_bit(data[2], 0);
enhanced_ac3->supports_joint_object_coding_ACMOD28 =
has_bit(data[2], 1);
sad->enhanced_ac3 = enhanced_ac3;
}
if (format == DI_CTA_AUDIO_FORMAT_MAT) {
mat->supports_object_audio_and_channel_based =
has_bit(data[2], 0);
if (mat->supports_object_audio_and_channel_based)
mat->requires_hash_calculation = !has_bit(data[2], 0);
sad->mat = mat;
}
if (format == DI_CTA_AUDIO_FORMAT_WMA_PRO) {
wma_pro->profile = get_bit_range(data[2], 2, 0);
sad->wma_pro = wma_pro;
}
switch (format) {
case DI_CTA_AUDIO_FORMAT_ONE_BIT_AUDIO:
case DI_CTA_AUDIO_FORMAT_DTS_HD:
case DI_CTA_AUDIO_FORMAT_DST:
/* TODO data[2] 7:0 contains unknown Audio Format Code dependent value */
break;
default:
break;
}
if (format == DI_CTA_AUDIO_FORMAT_AC4) {
/* TODO data[2] 2:0 contains unknown Audio Format Code dependent value */
}
switch (format) {
case DI_CTA_AUDIO_FORMAT_LPCM:
case DI_CTA_AUDIO_FORMAT_WMA_PRO:
if (has_bit(data[0], 7) || has_bit(data[1], 7) ||
get_bit_range(data[2], 7, 3) != 0)
add_failure_until(cta, 3,
"Bits F17, F27, F37:F33 must be 0.");
break;
case DI_CTA_AUDIO_FORMAT_AC3:
case DI_CTA_AUDIO_FORMAT_MPEG1:
case DI_CTA_AUDIO_FORMAT_MP3:
case DI_CTA_AUDIO_FORMAT_MPEG2:
case DI_CTA_AUDIO_FORMAT_AAC_LC:
case DI_CTA_AUDIO_FORMAT_DTS:
case DI_CTA_AUDIO_FORMAT_ATRAC:
case DI_CTA_AUDIO_FORMAT_ONE_BIT_AUDIO:
case DI_CTA_AUDIO_FORMAT_ENHANCED_AC3:
case DI_CTA_AUDIO_FORMAT_DTS_HD:
case DI_CTA_AUDIO_FORMAT_MAT:
case DI_CTA_AUDIO_FORMAT_DST:
if (has_bit(data[0], 7) || has_bit(data[1], 7))
add_failure_until(cta, 3,
"Bits F17, F27 must be 0.");
break;
case DI_CTA_AUDIO_FORMAT_MPEG4_HE_AAC:
case DI_CTA_AUDIO_FORMAT_MPEG4_HE_AAC_V2:
case DI_CTA_AUDIO_FORMAT_MPEG4_AAC_LC:
case DI_CTA_AUDIO_FORMAT_MPEG4_HE_AAC_MPEG_SURROUND:
case DI_CTA_AUDIO_FORMAT_MPEG4_AAC_LC_MPEG_SURROUND:
if (has_bit(data[0], 7) || get_bit_range(data[2], 7, 5) != 0)
add_failure_until(cta, 3,
"Bits F17, F27:F25 must be 0.");
break;
case DI_CTA_AUDIO_FORMAT_MPEGH_3D:
if (has_bit(data[0], 7) || has_bit(data[1], 7) ||
has_bit(data[2], 2))
add_failure_until(cta, 3,
"Bits F17, F27, F32 must be 0.");
break;
case DI_CTA_AUDIO_FORMAT_AC4:
if ((data[0] & 0x87) != 0 || (data[1] & 0xA9) != 0)
add_failure_until(cta, 3,
"Bits F17, F12:F10, F27, F25, F23, "
"F20 must be 0.");
break;
/* DRA documentation missing */
case DI_CTA_AUDIO_FORMAT_DRA:
case DI_CTA_AUDIO_FORMAT_LPCM_3D:
break;
}
assert(audio->sads_len < EDID_CTA_MAX_AUDIO_BLOCK_ENTRIES);
audio->sads[audio->sads_len++] = priv;
return true;
}
static bool
parse_audio_block(struct di_edid_cta *cta, struct di_cta_audio_block_priv *audio,
const uint8_t *data, size_t size)
{
size_t i;
if (size % 3 != 0)
add_failure(cta, "Broken CTA-861 audio block length %d.", size);
for (i = 0; i + 3 <= size; i += 3) {
if (!parse_sad(cta, audio, &data[i]))
return false;
}
audio->audio.sads = (const struct di_cta_sad *const *) audio->sads;
return true;
}
static bool
parse_speaker_alloc(struct di_edid_cta *cta, struct di_cta_speaker_allocation *speaker_alloc,
const uint8_t data[3], const char *prefix)
{
bool rlc_rrc;
speaker_alloc->flw_frw = has_bit(data[0], 7);
rlc_rrc = has_bit(data[0], 6);
speaker_alloc->flc_frc = has_bit(data[0], 5);
speaker_alloc->bc = has_bit(data[0], 4);
speaker_alloc->bl_br = has_bit(data[0], 3);
speaker_alloc->fc = has_bit(data[0], 2);
speaker_alloc->lfe1 = has_bit(data[0], 1);
speaker_alloc->fl_fr = has_bit(data[0], 0);
if (rlc_rrc) {
if (cta->revision >= 3)
add_failure(cta, "%s: Deprecated bit F16 must be 0.", prefix);
else
speaker_alloc->bl_br = true;
}
speaker_alloc->tpsil_tpsir = has_bit(data[1], 7);
speaker_alloc->sil_sir = has_bit(data[1], 6);
speaker_alloc->tpbc = has_bit(data[1], 5);
speaker_alloc->lfe2 = has_bit(data[1], 4);
speaker_alloc->ls_rs = has_bit(data[1], 3);
speaker_alloc->tpfc = has_bit(data[1], 2);
speaker_alloc->tpc = has_bit(data[1], 1);
speaker_alloc->tpfl_tpfr = has_bit(data[1], 0);
if (get_bit_range(data[2], 7, 4) != 0)
add_failure(cta, "%s: Bits F37, F36, F34 must be 0.", prefix);
if (cta->revision >= 3 && has_bit(data[2], 3))
add_failure(cta, "%s: Deprecated bit F33 must be 0.", prefix);
speaker_alloc->btfl_btfr = has_bit(data[2], 2);
speaker_alloc->btfc = has_bit(data[2], 1);
speaker_alloc->tpbl_tpbr = has_bit(data[2], 0);
return true;
}
static bool
parse_speaker_alloc_block(struct di_edid_cta *cta,
struct di_cta_speaker_alloc_block *speaker_alloc,
const uint8_t *data, size_t size)
{
if (size < 3) {
add_failure(cta,
"Speaker Allocation Data Block: Empty Data Block with length %zu.",
size);
return false;
}
parse_speaker_alloc(cta, &speaker_alloc->speakers, data,
"Speaker Allocation Data Block");
return true;
}
static bool
parse_video_cap_block(struct di_edid_cta *cta,
struct di_cta_video_cap_block *video_cap,
const uint8_t *data, size_t size)
{
if (size < 1) {
add_failure(cta,
"Video Capability Data Block: Empty Data Block with length %u.",
size);
return false;
}
video_cap->selectable_ycc_quantization_range = has_bit(data[0], 7);
video_cap->selectable_rgb_quantization_range = has_bit(data[0], 6);
video_cap->pt_over_underscan = get_bit_range(data[0], 5, 4);
video_cap->it_over_underscan = get_bit_range(data[0], 3, 2);
video_cap->ce_over_underscan = get_bit_range(data[0], 1, 0);
if (!video_cap->selectable_rgb_quantization_range && cta->revision >= 3)
add_failure(cta,
"Video Capability Data Block: Set Selectable RGB Quantization to avoid interop issues.");
/* TODO: add failure if selectable_ycc_quantization_range is unset,
* the sink supports YCbCr formats and the revision is 3+ */
switch (video_cap->it_over_underscan) {
case DI_CTA_VIDEO_CAP_ALWAYS_OVERSCAN:
if (cta->flags.it_underscan)
add_failure(cta, "Video Capability Data Block: IT video formats are always overscanned, but bit 7 of Byte 3 of the CTA-861 Extension header is set to underscanned.");
break;
case DI_CTA_VIDEO_CAP_ALWAYS_UNDERSCAN:
if (!cta->flags.it_underscan)
add_failure(cta, "Video Capability Data Block: IT video formats are always underscanned, but bit 7 of Byte 3 of the CTA-861 Extension header is set to overscanned.");
default:
break;
}
return true;
}
static bool
check_vesa_display_device_num_channels(enum di_cta_vesa_display_device_interface_type interface,
uint8_t num_channels)
{
switch (interface) {
case DI_CTA_VESA_DISPLAY_DEVICE_INTERFACE_VGA:
case DI_CTA_VESA_DISPLAY_DEVICE_INTERFACE_NAVI_V:
case DI_CTA_VESA_DISPLAY_DEVICE_INTERFACE_NAVI_D:
return num_channels == 0;
case DI_CTA_VESA_DISPLAY_DEVICE_INTERFACE_LVDS:
case DI_CTA_VESA_DISPLAY_DEVICE_INTERFACE_RSDS:
return true;
case DI_CTA_VESA_DISPLAY_DEVICE_INTERFACE_DVI_D:
return num_channels == 1 || num_channels == 2;
case DI_CTA_VESA_DISPLAY_DEVICE_INTERFACE_DVI_I_ANALOG:
return num_channels == 0;
case DI_CTA_VESA_DISPLAY_DEVICE_INTERFACE_DVI_I_DIGITAL:
return num_channels == 1 || num_channels == 2;
case DI_CTA_VESA_DISPLAY_DEVICE_INTERFACE_HDMI_A:
return num_channels == 1;
case DI_CTA_VESA_DISPLAY_DEVICE_INTERFACE_HDMI_B:
return num_channels == 2;
case DI_CTA_VESA_DISPLAY_DEVICE_INTERFACE_MDDI:
return num_channels == 1 || num_channels == 2;
case DI_CTA_VESA_DISPLAY_DEVICE_INTERFACE_DISPLAYPORT:
return num_channels == 1 || num_channels == 2 || num_channels == 4;
case DI_CTA_VESA_DISPLAY_DEVICE_INTERFACE_IEEE_1394:
case DI_CTA_VESA_DISPLAY_DEVICE_INTERFACE_M1_ANALOG:
return num_channels == 0;
case DI_CTA_VESA_DISPLAY_DEVICE_INTERFACE_M1_DIGITAL:
return num_channels == 1 || num_channels == 2;
}
abort(); /* unreachable */
}
static void
parse_vesa_display_device_additional_primary_chromaticity(struct di_cta_vesa_display_device_additional_primary_chromaticity *coords,
uint8_t low,
const uint8_t high[static 2])
{
uint16_t raw_x, raw_y; /* only 10 bits are used */
raw_x = (uint16_t) ((high[0] << 2) | get_bit_range(low, 3, 2));
raw_y = (uint16_t) ((high[1] << 2) | get_bit_range(low, 1, 0));
*coords = (struct di_cta_vesa_display_device_additional_primary_chromaticity) {
.x = (float) raw_x / 1024,
.y = (float) raw_y / 1024,
};
}
static bool
parse_vesa_display_device(struct di_edid_cta *cta, struct di_cta_vesa_display_device_block *dddb,
const uint8_t *data, size_t size)
{
const size_t offset = 2; /* CTA block header */
uint8_t interface_type, num_channels, content_protection, scan_direction,
subpixel_layout;
if (size + offset != 32) {
add_failure(cta, "VESA Video Display Device Data Block: Invalid length %u.", size);
return false;
}
interface_type = get_bit_range(data[0x02 - offset], 7, 4);
num_channels = get_bit_range(data[0x02 - offset], 3, 0);
switch (interface_type) {
case 0x0: /* Analog */
/* Special case: num_channels contains the detailed interface
* type. */
switch (num_channels) {
case 0x0:
dddb->interface_type = DI_CTA_VESA_DISPLAY_DEVICE_INTERFACE_VGA;
break;
case 0x1:
dddb->interface_type = DI_CTA_VESA_DISPLAY_DEVICE_INTERFACE_NAVI_V;
break;
case 0x2:
dddb->interface_type = DI_CTA_VESA_DISPLAY_DEVICE_INTERFACE_NAVI_D;
break;
default:
add_failure(cta,
"VESA Video Display Device Data Block: Unknown analog interface type 0x%x.",
num_channels);
return false;
}
num_channels = 0;
break;
case 0x1:
dddb->interface_type = DI_CTA_VESA_DISPLAY_DEVICE_INTERFACE_LVDS;
break;
case 0x2:
dddb->interface_type = DI_CTA_VESA_DISPLAY_DEVICE_INTERFACE_RSDS;
break;
case 0x3:
dddb->interface_type = DI_CTA_VESA_DISPLAY_DEVICE_INTERFACE_DVI_D;
break;
case 0x4:
dddb->interface_type = DI_CTA_VESA_DISPLAY_DEVICE_INTERFACE_DVI_I_ANALOG;
break;
case 0x5:
dddb->interface_type = DI_CTA_VESA_DISPLAY_DEVICE_INTERFACE_DVI_I_DIGITAL;
break;
case 0x6:
dddb->interface_type = DI_CTA_VESA_DISPLAY_DEVICE_INTERFACE_HDMI_A;
break;
case 0x7:
dddb->interface_type = DI_CTA_VESA_DISPLAY_DEVICE_INTERFACE_HDMI_B;
break;
case 0x8:
dddb->interface_type = DI_CTA_VESA_DISPLAY_DEVICE_INTERFACE_MDDI;
break;
case 0x9:
dddb->interface_type = DI_CTA_VESA_DISPLAY_DEVICE_INTERFACE_DISPLAYPORT;
break;
case 0xA:
dddb->interface_type = DI_CTA_VESA_DISPLAY_DEVICE_INTERFACE_IEEE_1394;
break;
case 0xB:
dddb->interface_type = DI_CTA_VESA_DISPLAY_DEVICE_INTERFACE_M1_ANALOG;
break;
case 0xC:
dddb->interface_type = DI_CTA_VESA_DISPLAY_DEVICE_INTERFACE_M1_DIGITAL;
break;
default:
add_failure(cta,
"VESA Video Display Device Data Block: Unknown interface type 0x%x.",
interface_type);
return false;
}
if (check_vesa_display_device_num_channels(dddb->interface_type, num_channels))
dddb->num_channels = num_channels;
else
add_failure(cta,
"VESA Video Display Device Data Block: Invalid number of lanes/channels %u.",
num_channels);
dddb->interface_version = get_bit_range(data[0x03 - offset], 7, 4);
dddb->interface_release = get_bit_range(data[0x03 - offset], 3, 0);
content_protection = data[0x04 - offset];
switch (content_protection) {
case DI_CTA_VESA_DISPLAY_DEVICE_CONTENT_PROTECTION_NONE:
case DI_CTA_VESA_DISPLAY_DEVICE_CONTENT_PROTECTION_HDCP:
case DI_CTA_VESA_DISPLAY_DEVICE_CONTENT_PROTECTION_DTCP:
case DI_CTA_VESA_DISPLAY_DEVICE_CONTENT_PROTECTION_DPCP:
dddb->content_protection = content_protection;
break;
default:
add_failure(cta,
"VESA Video Display Device Data Block: Invalid content protection 0x%x.",
content_protection);
}
dddb->min_clock_freq_mhz = get_bit_range(data[0x05 - offset], 7, 2);
dddb->max_clock_freq_mhz =
(get_bit_range(data[0x05 - offset], 1, 0) << 8) | data[0x06 - offset];
if (dddb->min_clock_freq_mhz > dddb->max_clock_freq_mhz) {
add_failure(cta,
"VESA Video Display Device Data Block: Minimum clock frequency (%d MHz) greater than maximum (%d MHz).",
dddb->min_clock_freq_mhz, dddb->max_clock_freq_mhz);
dddb->min_clock_freq_mhz = dddb->max_clock_freq_mhz = 0;
}
dddb->native_horiz_pixels = data[0x07 - offset] | (data[0x08 - offset] << 8);
dddb->native_vert_pixels = data[0x09 - offset] | (data[0x0A - offset] << 8);
dddb->aspect_ratio = (float)data[0x0B - offset] / 100 + 1;
dddb->default_orientation = get_bit_range(data[0x0C - offset], 7, 6);
dddb->rotation_cap = get_bit_range(data[0x0C - offset], 5, 4);
dddb->zero_pixel_location = get_bit_range(data[0x0C - offset], 3, 2);
scan_direction = get_bit_range(data[0x0C - offset], 1, 0);
if (scan_direction != 3)
dddb->scan_direction = scan_direction;
else
add_failure(cta,
"VESA Video Display Device Data Block: Invalid scan direction 0x%x.",
scan_direction);
subpixel_layout = data[0x0D - offset];
switch (subpixel_layout) {
case DI_CTA_VESA_DISPLAY_DEVICE_SUBPIXEL_UNDEFINED:
case DI_CTA_VESA_DISPLAY_DEVICE_SUBPIXEL_RGB_VERT:
case DI_CTA_VESA_DISPLAY_DEVICE_SUBPIXEL_RGB_HORIZ:
case DI_CTA_VESA_DISPLAY_DEVICE_SUBPIXEL_EDID_CHROM_VERT:
case DI_CTA_VESA_DISPLAY_DEVICE_SUBPIXEL_EDID_CHROM_HORIZ:
case DI_CTA_VESA_DISPLAY_DEVICE_SUBPIXEL_QUAD_RGGB:
case DI_CTA_VESA_DISPLAY_DEVICE_SUBPIXEL_QUAD_GBRG:
case DI_CTA_VESA_DISPLAY_DEVICE_SUBPIXEL_DELTA_RGB:
case DI_CTA_VESA_DISPLAY_DEVICE_SUBPIXEL_MOSAIC:
case DI_CTA_VESA_DISPLAY_DEVICE_SUBPIXEL_QUAD_ANY:
case DI_CTA_VESA_DISPLAY_DEVICE_SUBPIXEL_FIVE:
case DI_CTA_VESA_DISPLAY_DEVICE_SUBPIXEL_SIX:
case DI_CTA_VESA_DISPLAY_DEVICE_SUBPIXEL_CLAIRVOYANTE_PENTILE:
dddb->subpixel_layout = subpixel_layout;
break;
default:
add_failure(cta,
"VESA Video Display Device Data Block: Invalid subpixel layout 0x%x.",
subpixel_layout);
}
dddb->horiz_pitch_mm = (float)data[0x0E - offset] * 0.01f;
dddb->vert_pitch_mm = (float)data[0x0F - offset] * 0.01f;
dddb->dithering_type = get_bit_range(data[0x10 - offset], 7, 6);
dddb->direct_drive = has_bit(data[0x10 - offset], 5);
dddb->overdrive_not_recommended = has_bit(data[0x10 - offset], 4);
dddb->deinterlacing = has_bit(data[0x10 - offset], 3);
if (get_bit_range(data[0x10 - offset], 2, 0) != 0)
add_failure(cta, "VESA Video Display Device Data Block: Reserved miscellaneous display capabilities bits 2-0 must be 0.");
dddb->audio_support = has_bit(data[0x11 - offset], 7);
dddb->separate_audio_inputs = has_bit(data[0x11 - offset], 6);
dddb->audio_input_override = has_bit(data[0x11 - offset], 5);
if (get_bit_range(data[0x11 - offset], 4, 0) != 0)
add_failure(cta, "VESA Video Display Device Data Block: Reserved audio bits 4-0 must be 0.");
dddb->audio_delay_provided = data[0x12 - offset] != 0;
dddb->audio_delay_ms = 2 * get_bit_range(data[0x12 - offset], 6, 0);
if (!has_bit(data[0x12 - offset], 7))
dddb->audio_delay_ms = -dddb->audio_delay_ms;
dddb->frame_rate_conversion = get_bit_range(data[0x13 - offset], 7, 6);
dddb->frame_rate_range_hz = get_bit_range(data[0x13 - offset], 5, 0);
dddb->frame_rate_native_hz = data[0x14 - offset];
dddb->bit_depth_interface = get_bit_range(data[0x15 - offset], 7, 4) + 1;
dddb->bit_depth_display = get_bit_range(data[0x15 - offset], 3, 0) + 1;
dddb->additional_primary_chromaticities_len = get_bit_range(data[0x17 - offset], 1, 0);
parse_vesa_display_device_additional_primary_chromaticity(&dddb->additional_primary_chromaticities[0],
get_bit_range(data[0x16 - offset], 7, 4),
&data[0x18 - offset]);
parse_vesa_display_device_additional_primary_chromaticity(&dddb->additional_primary_chromaticities[1],
get_bit_range(data[0x16 - offset], 3, 0),
&data[0x1A - offset]);
parse_vesa_display_device_additional_primary_chromaticity(&dddb->additional_primary_chromaticities[2],
get_bit_range(data[0x17 - offset], 7, 4),
&data[0x1C - offset]);
if (get_bit_range(data[0x17 - offset], 3, 2) != 0)
add_failure(cta, "VESA Video Display Device Data Block: Reserved additional primary chromaticities bits 3-2 of byte 0x17 must be 0.");
dddb->resp_time_transition = has_bit(data[0x1E - offset], 7);
dddb->resp_time_ms = get_bit_range(data[0x1E - offset], 6, 0);
dddb->overscan_horiz_pct = get_bit_range(data[0x1F - offset], 7, 4);
dddb->overscan_vert_pct = get_bit_range(data[0x1F - offset], 3, 0);
return true;
}
static bool
parse_colorimetry_block(struct di_edid_cta *cta,
struct di_cta_colorimetry_block *colorimetry,
const uint8_t *data, size_t size)
{
if (size < 2) {
add_failure(cta, "Colorimetry Data Block: Empty Data Block with length %u.",
size);
return false;
}
colorimetry->bt2020_rgb = has_bit(data[0], 7);
colorimetry->bt2020_ycc = has_bit(data[0], 6);
colorimetry->bt2020_cycc = has_bit(data[0], 5);
colorimetry->oprgb = has_bit(data[0], 4);
colorimetry->opycc_601 = has_bit(data[0], 3);
colorimetry->sycc_601 = has_bit(data[0], 2);
colorimetry->xvycc_709 = has_bit(data[0], 1);
colorimetry->xvycc_601 = has_bit(data[0], 0);
colorimetry->st2113_rgb = has_bit(data[1], 7);
colorimetry->ictcp = has_bit(data[1], 6);
if (get_bit_range(data[1], 5, 0) != 0)
add_failure_until(cta, 3,
"Colorimetry Data Block: Reserved bits MD0-MD3 must be 0.");
return true;
}
static float
parse_max_luminance(uint8_t raw)
{
if (raw == 0)
return 0;
return 50 * powf(2, (float) raw / 32);
}
static float
parse_min_luminance(uint8_t raw, float max)
{
if (raw == 0)
return 0;
return max * powf((float) raw / 255, 2) / 100;
}
static bool
parse_hdr_static_metadata_block(struct di_edid_cta *cta,
struct di_cta_hdr_static_metadata_block_priv *metadata,
const uint8_t *data, size_t size)
{
uint8_t eotfs, descriptors;
if (size < 2) {
add_failure(cta, "HDR Static Metadata Data Block: Empty Data Block with length %u.",
size);
return false;
}
metadata->base.eotfs = &metadata->eotfs;
metadata->base.descriptors = &metadata->descriptors;
eotfs = data[0];
metadata->eotfs.traditional_sdr = has_bit(eotfs, 0);
metadata->eotfs.traditional_hdr = has_bit(eotfs, 1);
metadata->eotfs.pq = has_bit(eotfs, 2);
metadata->eotfs.hlg = has_bit(eotfs, 3);
if (get_bit_range(eotfs, 7, 4))
add_failure_until(cta, 3, "HDR Static Metadata Data Block: Unknown EOTF.");
descriptors = data[1];
metadata->descriptors.type1 = has_bit(descriptors, 0);
if (get_bit_range(descriptors, 7, 1))
add_failure_until(cta, 3, "HDR Static Metadata Data Block: Unknown descriptor type.");
if (size > 2)
metadata->base.desired_content_max_luminance = parse_max_luminance(data[2]);
if (size > 3)
metadata->base.desired_content_max_frame_avg_luminance = parse_max_luminance(data[3]);
if (size > 4) {
if (metadata->base.desired_content_max_luminance == 0)
add_failure(cta, "HDR Static Metadata Data Block: Desired content min luminance is set, but max luminance is unset.");
else
metadata->base.desired_content_min_luminance =
parse_min_luminance(data[4], metadata->base.desired_content_max_luminance);
}
return true;
}
static bool
parse_hdr_dynamic_metadata_block(struct di_edid_cta *cta,
struct di_cta_hdr_dynamic_metadata_block_priv *priv,
const uint8_t *data, size_t size)
{
struct di_cta_hdr_dynamic_metadata_block *base;
struct di_cta_hdr_dynamic_metadata_type1 *type1;
struct di_cta_hdr_dynamic_metadata_type2 *type2;
struct di_cta_hdr_dynamic_metadata_type3 *type3;
struct di_cta_hdr_dynamic_metadata_type4 *type4;
struct di_cta_hdr_dynamic_metadata_type256 *type256;
size_t length;
int type;
base = &priv->base;
type1 = &priv->type1;
type2 = &priv->type2;
type3 = &priv->type3;
type4 = &priv->type4;
type256 = &priv->type256;
if (size < 3) {
add_failure(cta, "HDR Dynamic Metadata Data Block: Empty Data Block with length %u.",
size);
return false;
}
while (size >= 3) {
length = data[0];
if (size < length + 1) {
add_failure(cta, "HDR Dynamic Metadata Data Block: Length of type bigger than block size.");
return false;
}
if (length < 2) {
add_failure(cta, "HDR Dynamic Metadata Data Block: Type has wrong length.");
return false;
}
type = (data[2] << 8) | data[1];
switch (type) {
case 0x0001:
if (length < 3) {
add_failure(cta, "HDR Dynamic Metadata Data Block: Type 1 missing Support Flags.");
break;
}
if (length != 3)
add_failure(cta, "HDR Dynamic Metadata Data Block: Type 1 length must be 3.");
type1->type_1_hdr_metadata_version = get_bit_range(data[3], 3, 0);
base->type1 = type1;
if (get_bit_range(data[3], 7, 4) != 0)
add_failure(cta, "HDR Dynamic Metadata Data Block: Type 1 support flags bits 7-4 must be 0.");
break;
case 0x0002:
if (length < 3) {
add_failure(cta, "HDR Dynamic Metadata Data Block: Type 2 missing Support Flags.");
break;
}
if (length != 3)
add_failure(cta, "HDR Dynamic Metadata Data Block: Type 2 length must be 3.");
type2->ts_103_433_spec_version = get_bit_range(data[3], 3, 0);
if (type2->ts_103_433_spec_version == 0) {
add_failure(cta, "HDR Dynamic Metadata Data Block: Type 2 spec version of 0 is not allowed.");
break;
}
type2->ts_103_433_1_capable = has_bit(data[3], 4);
type2->ts_103_433_2_capable = has_bit(data[3], 5);
type2->ts_103_433_3_capable = has_bit(data[3], 6);
base->type2 = type2;
if (has_bit(data[3], 7) != 0)
add_failure(cta, "HDR Dynamic Metadata Data Block: Type 1 support flags bit 7 must be 0.");
break;
case 0x0003:
if (length != 2)
add_failure(cta, "HDR Dynamic Metadata Data Block: Type 3 length must be 2.");
base->type3 = type3;
break;
case 0x0004:
if (length < 3) {
add_failure(cta, "HDR Dynamic Metadata Data Block: Type 4 missing Support Flags.");
break;
}
if (length != 3)
add_failure(cta, "HDR Dynamic Metadata Data Block: Type 4 length must be 3.");
type4->type_4_hdr_metadata_version = get_bit_range(data[3], 3, 0);
base->type4 = type4;
if (get_bit_range(data[3], 7, 4) != 0)
add_failure(cta, "HDR Dynamic Metadata Data Block: Type 4 support flags bits 7-4 must be 0.");
break;
case 0x0100:
if (length < 3) {
add_failure(cta, "HDR Dynamic Metadata Data Block: Type 256 missing Support Flags.");
break;
}
if (length != 3)
add_failure(cta, "HDR Dynamic Metadata Data Block: Type 256 length must be 3.");
type256->graphics_overlay_flag_version = get_bit_range(data[3], 3, 0);
base->type256 = type256;
if (get_bit_range(data[3], 7, 4) != 0)
add_failure(cta, "HDR Dynamic Metadata Data Block: Type 256 support flags bits 7-4 must be 0.");
break;
default:
add_failure(cta, "HDR Dynamic Metadata Data Block: Unknown Type 0x%04x.", type);
break;
}
size -= length + 1;
data += length + 1;
}
return true;
}
static bool
parse_vesa_transfer_characteristics_block(struct di_edid_cta *cta,
struct di_cta_vesa_transfer_characteristics_block *tf,
const uint8_t *data, size_t size)
{
size_t i;
if (size != 7 && size != 15 && size != 31) {
add_failure(cta, "Invalid length %u.", size);
return false;
}
tf->points_len = (uint8_t) size + 1;
tf->usage = get_bit_range(data[0], 7, 6);
tf->points[0] = get_bit_range(data[0], 5, 0) / 1023.0f;
for (i = 1; i < size; i++)
tf->points[i] = tf->points[i - 1] + data[i] / 1023.0f;
tf->points[i] = 1.0f;
return true;
}
static bool
parse_video_format_pref_block(struct di_edid_cta *cta,
struct di_cta_video_format_pref_priv *vfpdb,
const uint8_t *data, size_t size)
{
struct di_cta_svr *svr;
size_t i;
uint8_t code;
for (i = 0; i < size; i++) {
code = data[i];
if (code == 0 ||
code == 128 ||
(code >= 161 && code <= 192) ||
code == 255) {
add_failure(cta, "Video Format Preference Data Block: "
"using reserved Short Video Reference value %u.",
code);
continue;
}
svr = calloc(1, sizeof(*svr));
if (!svr)
return false;
if ((code >= 1 && code <= 127) ||
(code >= 193 && code <= 253)) {
svr->type = DI_CTA_SVR_TYPE_VIC;
svr->vic = code;
} else if (code >= 129 && code <= 144) {
svr->type = DI_CTA_SVR_TYPE_DTD_INDEX;
svr->dtd_index = code - 129;
} else if (code >= 145 && code <= 160) {
svr->type = DI_CTA_SVR_TYPE_T7T10VTDB;
svr->dtd_index = code - 145;
} else if (code == 254) {
svr->type = DI_CTA_SVR_TYPE_FIRST_T8VTDB;
} else {
abort(); /* unreachable */
}
assert(vfpdb->svrs_len < EDID_CTA_MAX_VIDEO_FORMAT_PREF_BLOCK_ENTRIES);
vfpdb->svrs[vfpdb->svrs_len++] = svr;
}
vfpdb->base.svrs = (const struct di_cta_svr *const *)vfpdb->svrs;
return true;
}
static void
parse_ycbcr420_cap_map(struct di_edid_cta *cta,
struct di_cta_ycbcr420_cap_map_block *ycbcr420_cap_map,
const uint8_t *data, size_t size)
{
if (size == 0) {
ycbcr420_cap_map->all = true;
return;
}
assert(size <= sizeof(ycbcr420_cap_map->svd_bitmap));
memcpy(ycbcr420_cap_map->svd_bitmap, data, size);
}
static bool
parse_hdmi_audio_3d_descriptor(struct di_edid_cta *cta,
struct di_cta_sad_priv *sad,
const uint8_t *data, size_t size)
{
/* Contains the same data as the Short Audio Descriptor, packed differently */
struct di_cta_sad *base = &sad->base;
struct di_cta_sad_sample_rates *sample_rate = &sad->supported_sample_rates;
struct di_cta_sad_lpcm *lpcm = &sad->lpcm;
uint8_t code;
assert(size >= CTA_HDMI_AUDIO_3D_DESCRIPTOR_SIZE);
code = get_bit_range(data[0], 3, 0);
if (!parse_sad_format(cta, code, 0, &base->format, "HDMI Audio Data Block"))
return false;
if (base->format != DI_CTA_AUDIO_FORMAT_LPCM &&
base->format != DI_CTA_AUDIO_FORMAT_ONE_BIT_AUDIO) {
add_failure(cta,
"HDMI Audio Data Block: Unsupported 3D Audio Format 0x%04x.",
code);
return false;
}
base->max_channels = get_bit_range(data[1], 4, 0) + 1;
sample_rate->has_192_khz = has_bit(data[2], 6);
sample_rate->has_176_4_khz = has_bit(data[2], 5);
sample_rate->has_96_khz = has_bit(data[2], 4);
sample_rate->has_88_2_khz = has_bit(data[2], 3);
sample_rate->has_48_khz = has_bit(data[2], 2);
sample_rate->has_44_1_khz = has_bit(data[2], 1);
sample_rate->has_32_khz = has_bit(data[2], 0);
base->supported_sample_rates = sample_rate;
if (base->format == DI_CTA_AUDIO_FORMAT_LPCM) {
lpcm->has_sample_size_24_bits = has_bit(data[3], 2);
lpcm->has_sample_size_20_bits = has_bit(data[3], 1);
lpcm->has_sample_size_16_bits = has_bit(data[3], 0);
base->lpcm = lpcm;
}
if (base->format == DI_CTA_AUDIO_FORMAT_ONE_BIT_AUDIO) {
/* TODO data[3] 7:0 contains unknown Audio Format Code dependent value */
}
return true;
}
static bool
parse_hdmi_audio_block(struct di_edid_cta *cta,
struct di_cta_hdmi_audio_block_priv *priv,
const uint8_t *data, size_t size)
{
struct di_cta_hdmi_audio_block *hdmi_audio = &priv->base;
struct di_cta_hdmi_audio_multi_stream *ms = &priv->ms;
struct di_cta_hdmi_audio_3d *a3d = &priv->a3d;
uint8_t multi_stream;
bool ms_non_mixed;
size_t num_3d_audio_descs;
size_t num_descs;
struct di_cta_sad_priv *sad_priv;
uint8_t channels;
if (size < 1) {
add_failure(cta, "HDMI Audio Data Block: Empty Data Block with length 0.");
return false;
}
multi_stream = get_bit_range(data[0], 1, 0);
ms_non_mixed = has_bit(data[0], 2);
if (multi_stream > 0) {
hdmi_audio->multi_stream = ms;
ms->max_streams = multi_stream + 1;
ms->supports_non_mixed = ms_non_mixed;
} else if (ms_non_mixed) {
add_failure(cta, "HDMI Audio Data Block: MS NonMixed support indicated but "
"Max Stream Count == 0.");
}
if (size < 2)
return true;
num_3d_audio_descs = get_bit_range(data[1], 2, 0);
if (num_3d_audio_descs == 0)
return true;
/* If there are 3d Audio Descriptors, there is one last Speaker Allocation Descriptor */
num_descs = num_3d_audio_descs + 1;
/* Skip to the first descriptor */
size -= 2;
data += 2;
/* Make sure there is enough space for the descriptors */
if (num_descs > size / CTA_HDMI_AUDIO_3D_DESCRIPTOR_SIZE) {
add_failure(cta, "HDMI Audio Data Block: More descriptors indicated than block size allows.");
return true;
}
hdmi_audio->audio_3d = a3d;
a3d->sads = (const struct di_cta_sad * const*)priv->sads;
/* First the 3D Audio Descriptors, the last one is the 3D Speaker Allocation Descriptor */
while (num_descs > 1) {
sad_priv = calloc(1, sizeof(*sad_priv));
if (!sad_priv)
return false;
if (!parse_hdmi_audio_3d_descriptor(cta, sad_priv, data, size)) {
free(sad_priv);
goto skip;
}
assert(priv->sads_len < EDID_CTA_MAX_HDMI_AUDIO_BLOCK_ENTRIES);
priv->sads[priv->sads_len++] = sad_priv;
skip:
num_descs--;
size -= CTA_HDMI_AUDIO_3D_DESCRIPTOR_SIZE;
data += CTA_HDMI_AUDIO_3D_DESCRIPTOR_SIZE;
}
channels = get_bit_range(data[3], 7, 4);
switch (channels) {
case DI_CTA_HDMI_AUDIO_3D_CHANNELS_UNKNOWN:
case DI_CTA_HDMI_AUDIO_3D_CHANNELS_10_2:
case DI_CTA_HDMI_AUDIO_3D_CHANNELS_22_2:
case DI_CTA_HDMI_AUDIO_3D_CHANNELS_30_2:
a3d->channels = channels;
break;
default:
a3d->channels = DI_CTA_HDMI_AUDIO_3D_CHANNELS_UNKNOWN;
break;
}
parse_speaker_alloc(cta, &a3d->speakers, data, "Room Configuration Data Block");
return true;
}
static struct di_cta_infoframe_descriptor *
parse_infoframe(struct di_edid_cta *cta, uint8_t type,
const uint8_t *data, size_t size)
{
struct di_cta_infoframe_descriptor infoframe = {0};
struct di_cta_infoframe_descriptor *ifp;
if (type >= 8 && type <= 0x1f) {
add_failure(cta, "InfoFrame Data Block: Type code %u is reserved.",
type);
return NULL;
}
if (type >= 0x20) {
add_failure(cta, "InfoFrame Data Block: Type code %u is forbidden.",
type);
return NULL;
}
if (type == 1) {
/* No known vendor specific InfoFrames, yet */
return NULL;
} else {
switch (type) {
case 0x02:
infoframe.type = DI_CTA_INFOFRAME_TYPE_AUXILIARY_VIDEO_INFORMATION;
break;
case 0x03:
infoframe.type = DI_CTA_INFOFRAME_TYPE_SOURCE_PRODUCT_DESCRIPTION;
break;
case 0x04:
infoframe.type = DI_CTA_INFOFRAME_TYPE_AUDIO;
break;
case 0x05:
infoframe.type = DI_CTA_INFOFRAME_TYPE_MPEG_SOURCE;
break;
case 0x06:
infoframe.type = DI_CTA_INFOFRAME_TYPE_NTSC_VBI;
break;
case 0x07:
infoframe.type = DI_CTA_INFOFRAME_TYPE_DYNAMIC_RANGE_AND_MASTERING;
break;
default:
abort(); /* unreachable */
}
}
ifp = calloc(1, sizeof(*ifp));
if (!ifp)
return NULL;
*ifp = infoframe;
return ifp;
}
static bool
parse_infoframe_block(struct di_edid_cta *cta,
struct di_cta_infoframe_block_priv *ifb,
const uint8_t *data, size_t size)
{
size_t index = 0, length;
uint8_t type;
struct di_cta_infoframe_descriptor *infoframe;
if (size < 2) {
add_failure(cta, "InfoFrame Data Block: Empty Data Block with length %u.",
size);
return false;
}
ifb->base.num_simultaneous_vsifs = data[1] + 1;
ifb->base.infoframes = (const struct di_cta_infoframe_descriptor *const *)ifb->infoframes;
index = get_bit_range(data[0], 7, 5) + 2;
if (get_bit_range(data[0], 4, 0) != 0)
add_failure(cta, "InfoFrame Data Block: InfoFrame Processing "
"Descriptor Header bits F14-F10 shall be 0.");
while (true) {
if (index == size)
break;
if (index > size) {
add_failure(cta, "InfoFrame Data Block: Payload length exceeds block size.");
return false;
}
length = get_bit_range(data[index], 7, 5);
type = get_bit_range(data[index], 4, 0);
if (type == 0) {
add_failure(cta, "InfoFrame Data Block: Short InfoFrame Descriptor with type 0 is forbidden.");
return false;
} else if (type == 1) {
length += 4;
} else {
length += 1;
}
if (index + length > size) {
add_failure(cta, "InfoFrame Data Block: Payload length exceeds block size.");
return false;
}
infoframe = parse_infoframe(cta, type, &data[index], length);
if (infoframe) {
assert(ifb->infoframes_len < EDID_CTA_INFOFRAME_BLOCK_ENTRIES);
ifb->infoframes[ifb->infoframes_len++] = infoframe;
}
index += length;
}
return true;
}
static double
decode_coord(unsigned char x)
{
signed char s = (signed char)x;
return s / 64.0;
}
static bool
parse_room_config_block(struct di_edid_cta *cta,
struct di_cta_room_configuration_block *rc,
const uint8_t *data, size_t size)
{
bool has_display_coords;
bool has_speaker_count;
if (size < 4) {
add_failure(cta, "Room Configuration Data Block: Empty Data Block with length %u.",
size);
return false;
}
has_display_coords = has_bit(data[0], 7);
has_speaker_count = has_bit(data[0], 6);
rc->has_speaker_location_descriptors = has_bit(data[0], 5);
if (has_speaker_count) {
rc->speaker_count = get_bit_range(data[0], 4, 0) + 1;
} else {
if (get_bit_range(data[0], 4, 0) != 0) {
add_failure(cta, "Room Configuration Data Block: "
"'Speaker' flag is 0, but the Speaker Count is not 0.");
}
if (rc->has_speaker_location_descriptors) {
add_failure(cta, "Room Configuration Data Block: "
"'Speaker' flag is 0, but there are "
"Speaker Location Descriptors.");
}
}
parse_speaker_alloc(cta, &rc->speakers, &data[1], "Room Configuration Data Block");
rc->max_x = 16;
rc->max_y = 16;
rc->max_z = 8;
rc->display_x = 0.0;
rc->display_y = 1.0;
rc->display_z = 0.0;
if (size < 7) {
if (has_display_coords)
add_failure(cta, "Room Configuration Data Block: "
"'Display' flag is 1, but the Display and Maximum coordinates are not present.");
return true;
}
rc->max_x = data[4];
rc->max_y = data[5];
rc->max_z = data[6];
if (size < 10) {
if (has_display_coords)
add_failure(cta, "Room Configuration Data Block: "
"'Display' flag is 1, but the Display coordinates are not present.");
return true;
}
rc->display_x = decode_coord(data[7]);
rc->display_y = decode_coord(data[8]);
rc->display_z = decode_coord(data[9]);
return true;
}
static bool
parse_speaker_location_block(struct di_edid_cta *cta,
struct di_cta_speaker_location_priv *sldb,
const uint8_t *data, size_t size)
{
struct di_cta_speaker_location_descriptor speaker_loc, *slp;
if (size < 2) {
add_failure(cta, "Speaker Location Data Block: Empty Data Block with length %u.",
size);
return false;
}
while (size >= 2) {
speaker_loc.has_coords = has_bit(data[0], 6);
speaker_loc.is_active = has_bit(data[0], 5);
speaker_loc.channel_index = get_bit_range(data[0], 4, 0);
speaker_loc.speaker_id = get_bit_range(data[1], 4, 0);
if (has_bit(data[0], 7) || get_bit_range(data[1], 7, 5) != 0) {
add_failure(cta, "Speaker Location Data Block: Bits F27-F25, F17 must be 0.");
}
if (speaker_loc.has_coords && size >= 5) {
speaker_loc.x = decode_coord(data[2]);
speaker_loc.y = decode_coord(data[3]);
speaker_loc.z = decode_coord(data[4]);
size -= 5;
data += 5;
} else if (speaker_loc.has_coords) {
add_failure(cta, "Speaker Location Data Block: COORD bit "
"set but contains no Coordinates.");
return false;
} else {
size -= 2;
data += 2;
}
slp = calloc(1, sizeof(*slp));
if (!slp)
return false;
*slp = speaker_loc;
assert(sldb->locations_len < EDID_CTA_MAX_SPEAKER_LOCATION_BLOCK_ENTRIES);
sldb->locations[sldb->locations_len++] = slp;
}
sldb->base.locations =
(const struct di_cta_speaker_location_descriptor *const *)sldb->locations;
return true;
}
static bool
parse_did_type_vii_timing(struct di_edid_cta *cta,
struct di_cta_type_vii_timing_priv *t,
const uint8_t *data, size_t size)
{
uint8_t revision;
if (size != 21) {
add_failure(cta, "DisplayID Type VII Video Timing Data Block: "
"Empty Data Block with length %u.", size);
return false;
}
if (get_bit_range(data[0], 6, 4) != 0) {
add_failure(cta, "DisplayID Type VII Video Timing Data Block: "
"T7_M shall be 000b.");
return false;
}
revision = get_bit_range(data[0], 2, 0);
if (revision != 2) {
add_failure(cta, "DisplayID Type VII Video Timing Data Block: "
"Unexpected revision (%u != %u).",
revision, 2);
return false;
}
if (has_bit(data[0], 3)) {
add_failure(cta, "DisplayID Type VII Video Timing Data Block: "
"DSC_PT shall be 0.");
}
if (has_bit(data[0], 7)) {
add_failure(cta, "DisplayID Type VII Video Timing Data Block: "
"Block Revision and Other Data Bit 7 must be 0.");
}
data += 1;
size -= 1;
if (!_di_displayid_parse_type_1_7_timing(&t->timing, cta->logger,
"DisplayID Type VII Video Timing Data Block",
data, true))
return false;
t->base.timing = &t->timing;
return true;
}
static void
destroy_data_block(struct di_cta_data_block *data_block)
{
size_t i;
struct di_cta_video_block_priv *video;
struct di_cta_audio_block_priv *audio;
struct di_cta_infoframe_block_priv *infoframe;
struct di_cta_speaker_location_priv *speaker_location;
struct di_cta_video_format_pref_priv *vfpdb;
struct di_cta_hdmi_audio_block_priv *hdmi_audio;
struct di_cta_ycbcr420_video_block_priv *ycbcr420;
switch (data_block->tag) {
case DI_CTA_DATA_BLOCK_VIDEO:
video = &data_block->video;
for (i = 0; i < video->svds_len; i++)
free(video->svds[i]);
break;
case DI_CTA_DATA_BLOCK_YCBCR420:
ycbcr420 = &data_block->ycbcr420;
for (i = 0; i < ycbcr420->svds_len; i++)
free(ycbcr420->svds[i]);
break;
case DI_CTA_DATA_BLOCK_AUDIO:
audio = &data_block->audio;
for (i = 0; i < audio->sads_len; i++)
free(audio->sads[i]);
break;
case DI_CTA_DATA_BLOCK_INFOFRAME:
infoframe = &data_block->infoframe;
for (i = 0; i < infoframe->infoframes_len; i++)
free(infoframe->infoframes[i]);
break;
case DI_CTA_DATA_BLOCK_SPEAKER_LOCATION:
speaker_location = &data_block->speaker_location;
for (i = 0; i < speaker_location->locations_len; i++)
free(speaker_location->locations[i]);
break;
case DI_CTA_DATA_BLOCK_VIDEO_FORMAT_PREF:
vfpdb = &data_block->video_format_pref;
for (i = 0; i < vfpdb->svrs_len; i++)
free(vfpdb->svrs[i]);
break;
case DI_CTA_DATA_BLOCK_HDMI_AUDIO:
hdmi_audio = &data_block->hdmi_audio;
for (i = 0; i < hdmi_audio->sads_len; i++)
free(hdmi_audio->sads[i]);
break;
default:
break; /* Nothing to do */
}
free(data_block);
}
static bool
parse_data_block(struct di_edid_cta *cta, uint8_t raw_tag, const uint8_t *data, size_t size)
{
enum di_cta_data_block_tag tag;
uint8_t extended_tag;
struct di_cta_data_block *data_block;
data_block = calloc(1, sizeof(*data_block));
if (!data_block) {
return false;
}
switch (raw_tag) {
case 1:
tag = DI_CTA_DATA_BLOCK_AUDIO;
if (!parse_audio_block(cta, &data_block->audio, data, size))
goto error;
break;
case 2:
tag = DI_CTA_DATA_BLOCK_VIDEO;
if (!parse_video_block(cta, &data_block->video, data, size))
goto error;
break;
case 3:
/* Vendor-Specific Data Block */
goto skip;
case 4:
tag = DI_CTA_DATA_BLOCK_SPEAKER_ALLOC;
if (!parse_speaker_alloc_block(cta, &data_block->speaker_alloc,
data, size))
goto error;
break;
case 5:
tag = DI_CTA_DATA_BLOCK_VESA_DISPLAY_TRANSFER_CHARACTERISTIC;
if (!parse_vesa_transfer_characteristics_block(cta,
&data_block->vesa_transfer_characteristics,
data, size))
goto error;
break;
case 6:
tag = DI_CTA_DATA_BLOCK_VIDEO_FORMAT;
break;
case 7:
/* Use Extended Tag */
if (size < 1) {
add_failure(cta, "Empty block with extended tag.");
goto skip;
}
extended_tag = data[0];
data = &data[1];
size--;
switch (extended_tag) {
case 0:
tag = DI_CTA_DATA_BLOCK_VIDEO_CAP;
if (!parse_video_cap_block(cta, &data_block->video_cap,
data, size))
goto skip;
break;
case 2:
tag = DI_CTA_DATA_BLOCK_VESA_DISPLAY_DEVICE;
if (!parse_vesa_display_device(cta, &data_block->vesa_display_device,
data, size))
goto skip;
break;
case 5:
tag = DI_CTA_DATA_BLOCK_COLORIMETRY;
if (!parse_colorimetry_block(cta,
&data_block->colorimetry,
data, size))
goto skip;
break;
case 6:
tag = DI_CTA_DATA_BLOCK_HDR_STATIC_METADATA;
if (!parse_hdr_static_metadata_block(cta,
&data_block->hdr_static_metadata,
data, size))
goto skip;
break;
case 7:
tag = DI_CTA_DATA_BLOCK_HDR_DYNAMIC_METADATA;
if (!parse_hdr_dynamic_metadata_block(cta,
&data_block->hdr_dynamic_metadata,
data, size))
goto skip;
break;
case 8:
tag = DI_CTA_DATA_BLOCK_NATIVE_VIDEO_RESOLUTION;
break;
case 13:
tag = DI_CTA_DATA_BLOCK_VIDEO_FORMAT_PREF;
if (!parse_video_format_pref_block(cta,
&data_block->video_format_pref,
data, size))
goto skip;
break;
case 14:
tag = DI_CTA_DATA_BLOCK_YCBCR420;
if (!parse_ycbcr420_block(cta,
&data_block->ycbcr420,
data, size))
goto skip;
break;
case 15:
tag = DI_CTA_DATA_BLOCK_YCBCR420_CAP_MAP;
parse_ycbcr420_cap_map(cta,
&data_block->ycbcr420_cap_map,
data, size);
break;
case 18:
tag = DI_CTA_DATA_BLOCK_HDMI_AUDIO;
if (!parse_hdmi_audio_block(cta,
&data_block->hdmi_audio,
data, size))
goto skip;
break;
case 19:
tag = DI_CTA_DATA_BLOCK_ROOM_CONFIG;
if (!parse_room_config_block(cta,
&data_block->room_config,
data, size))
goto skip;
break;
case 20:
tag = DI_CTA_DATA_BLOCK_SPEAKER_LOCATION;
if (!parse_speaker_location_block(cta,
&data_block->speaker_location,
data, size))
goto skip;
break;
case 32:
tag = DI_CTA_DATA_BLOCK_INFOFRAME;
if (!parse_infoframe_block(cta,
&data_block->infoframe,
data, size))
goto skip;
break;
case 34:
tag = DI_CTA_DATA_BLOCK_DISPLAYID_VIDEO_TIMING_VII;
if (!parse_did_type_vii_timing(cta,
&data_block->did_vii_timing,
data, size))
goto skip;
break;
case 35:
tag = DI_CTA_DATA_BLOCK_DISPLAYID_VIDEO_TIMING_VIII;
break;
case 42:
tag = DI_CTA_DATA_BLOCK_DISPLAYID_VIDEO_TIMING_X;
break;
case 120:
tag = DI_CTA_DATA_BLOCK_HDMI_EDID_EXT_OVERRIDE;
break;
case 121:
tag = DI_CTA_DATA_BLOCK_HDMI_SINK_CAP;
break;
case 1: /* Vendor-Specific Video Data Block */
case 17: /* Vendor-Specific Audio Data Block */
goto skip;
default:
/* Reserved */
add_failure_until(cta, 3,
"Unknown CTA-861 Data Block (extended tag 0x"PRIx8", length %zu).",
extended_tag, size);
goto skip;
}
break;
default:
/* Reserved */
add_failure_until(cta, 3, "Unknown CTA-861 Data Block (tag 0x"PRIx8", length %zu).",
raw_tag, size);
goto skip;
}
data_block->tag = tag;
assert(cta->data_blocks_len < EDID_CTA_MAX_DATA_BLOCKS);
cta->data_blocks[cta->data_blocks_len++] = data_block;
return true;
skip:
free(data_block);
return true;
error:
destroy_data_block(data_block);
return false;
}
bool
_di_edid_cta_parse(struct di_edid_cta *cta, const uint8_t *data, size_t size,
struct di_logger *logger)
{
uint8_t flags, dtd_start;
uint8_t data_block_header, data_block_tag, data_block_size;
size_t i;
struct di_edid_detailed_timing_def_priv *detailed_timing_def;
assert(size == 128);
assert(data[0] == 0x02);
cta->logger = logger;
cta->revision = data[1];
dtd_start = data[2];
flags = data[3];
if (cta->revision >= 2) {
cta->flags.it_underscan = has_bit(flags, 7);
cta->flags.basic_audio = has_bit(flags, 6);
cta->flags.ycc444 = has_bit(flags, 5);
cta->flags.ycc422 = has_bit(flags, 4);
cta->flags.native_dtds = get_bit_range(flags, 3, 0);
} else if (flags != 0) {
/* Reserved */
add_failure(cta, "Non-zero byte 3.");
}
if (dtd_start == 0) {
return true;
} else if (dtd_start < CTA_HEADER_SIZE || dtd_start >= size) {
errno = EINVAL;
return false;
}
i = CTA_HEADER_SIZE;
while (i < dtd_start) {
data_block_header = data[i];
data_block_tag = get_bit_range(data_block_header, 7, 5);
data_block_size = get_bit_range(data_block_header, 4, 0);
if (i + 1 + data_block_size > dtd_start) {
add_failure(cta, "Data Block at offset %zu overlaps Detailed Timing "
"Definitions. Skipping all further Data Blocks.", i);
break;
}
if (!parse_data_block(cta, data_block_tag,
&data[i + 1], data_block_size)) {
_di_edid_cta_finish(cta);
return false;
}
i += 1 + data_block_size;
}
if (i != dtd_start)
add_failure(cta, "Offset is %"PRIu8", but should be %zu.",
dtd_start, i);
for (i = dtd_start; i + EDID_BYTE_DESCRIPTOR_SIZE <= CTA_DTD_END;
i += EDID_BYTE_DESCRIPTOR_SIZE) {
if (data[i] == 0)
break;
detailed_timing_def = _di_edid_parse_detailed_timing_def(&data[i]);
if (!detailed_timing_def) {
_di_edid_cta_finish(cta);
return false;
}
assert(cta->detailed_timing_defs_len < EDID_CTA_MAX_DETAILED_TIMING_DEFS);
cta->detailed_timing_defs[cta->detailed_timing_defs_len++] = detailed_timing_def;
}
/* All padding bytes after the last DTD must be zero */
while (i < CTA_DTD_END) {
if (data[i] != 0) {
add_failure(cta, "Padding: Contains non-zero bytes.");
break;
}
i++;
}
cta->logger = NULL;
return true;
}
void
_di_edid_cta_finish(struct di_edid_cta *cta)
{
size_t i;
for (i = 0; i < cta->data_blocks_len; i++) {
destroy_data_block(cta->data_blocks[i]);
}
for (i = 0; i < cta->detailed_timing_defs_len; i++) {
free(cta->detailed_timing_defs[i]);
}
}
int
di_edid_cta_get_revision(const struct di_edid_cta *cta)
{
return cta->revision;
}
const struct di_edid_cta_flags *
di_edid_cta_get_flags(const struct di_edid_cta *cta)
{
return &cta->flags;
}
const struct di_cta_data_block *const *
di_edid_cta_get_data_blocks(const struct di_edid_cta *cta)
{
return (const struct di_cta_data_block *const *) cta->data_blocks;
}
enum di_cta_data_block_tag
di_cta_data_block_get_tag(const struct di_cta_data_block *block)
{
return block->tag;
}
const struct di_cta_video_block *
di_cta_data_block_get_video(const struct di_cta_data_block *block)
{
if (block->tag != DI_CTA_DATA_BLOCK_VIDEO) {
return NULL;
}
return &block->video.base;
}
const struct di_cta_ycbcr420_video_block *
di_cta_data_block_get_ycbcr420_video(const struct di_cta_data_block *block)
{
if (block->tag != DI_CTA_DATA_BLOCK_YCBCR420) {
return NULL;
}
return &block->ycbcr420.base;
}
const struct di_cta_video_format_pref_block *
di_cta_data_block_get_video_format_pref(const struct di_cta_data_block *block)
{
if (block->tag != DI_CTA_DATA_BLOCK_VIDEO_FORMAT_PREF) {
return NULL;
}
return &block->video_format_pref.base;
}
const struct di_cta_audio_block *
di_cta_data_block_get_audio(const struct di_cta_data_block *block)
{
if (block->tag != DI_CTA_DATA_BLOCK_AUDIO) {
return NULL;
}
return &block->audio.audio;
}
const struct di_cta_speaker_alloc_block *
di_cta_data_block_get_speaker_alloc(const struct di_cta_data_block *block)
{
if (block->tag != DI_CTA_DATA_BLOCK_SPEAKER_ALLOC) {
return NULL;
}
return &block->speaker_alloc;
}
const struct di_cta_colorimetry_block *
di_cta_data_block_get_colorimetry(const struct di_cta_data_block *block)
{
if (block->tag != DI_CTA_DATA_BLOCK_COLORIMETRY) {
return NULL;
}
return &block->colorimetry;
}
const struct di_cta_hdr_static_metadata_block *
di_cta_data_block_get_hdr_static_metadata(const struct di_cta_data_block *block)
{
if (block->tag != DI_CTA_DATA_BLOCK_HDR_STATIC_METADATA) {
return NULL;
}
return &block->hdr_static_metadata.base;
}
const struct di_cta_hdr_dynamic_metadata_block *
di_cta_data_block_get_hdr_dynamic_metadata(const struct di_cta_data_block *block)
{
if (block->tag != DI_CTA_DATA_BLOCK_HDR_DYNAMIC_METADATA) {
return NULL;
}
return &block->hdr_dynamic_metadata.base;
}
const struct di_cta_video_cap_block *
di_cta_data_block_get_video_cap(const struct di_cta_data_block *block)
{
if (block->tag != DI_CTA_DATA_BLOCK_VIDEO_CAP) {
return NULL;
}
return &block->video_cap;
}
const struct di_cta_vesa_display_device_block *
di_cta_data_block_get_vesa_display_device(const struct di_cta_data_block *block)
{
if (block->tag != DI_CTA_DATA_BLOCK_VESA_DISPLAY_DEVICE) {
return NULL;
}
return &block->vesa_display_device;
}
bool
di_cta_ycbcr420_cap_map_supported(const struct di_cta_ycbcr420_cap_map_block *cap_map,
size_t svd_index)
{
size_t byte, bit;
if (cap_map->all)
return true;
byte = svd_index / 8;
bit = svd_index % 8;
if (byte >= EDID_CTA_MAX_YCBCR420_CAP_MAP_BLOCK_ENTRIES)
return false;
return cap_map->svd_bitmap[byte] & (1 << bit);
}
const struct di_cta_ycbcr420_cap_map_block *
di_cta_data_block_get_ycbcr420_cap_map(const struct di_cta_data_block *block)
{
if (block->tag != DI_CTA_DATA_BLOCK_YCBCR420_CAP_MAP) {
return NULL;
}
return &block->ycbcr420_cap_map;
}
const struct di_cta_hdmi_audio_block *
di_cta_data_block_get_hdmi_audio(const struct di_cta_data_block *block)
{
if (block->tag != DI_CTA_DATA_BLOCK_HDMI_AUDIO) {
return NULL;
}
return &block->hdmi_audio.base;
}
const struct di_cta_infoframe_block *
di_cta_data_block_get_infoframe(const struct di_cta_data_block *block)
{
if (block->tag != DI_CTA_DATA_BLOCK_INFOFRAME) {
return NULL;
}
return &block->infoframe.base;
}
const struct di_cta_speaker_location_block *
di_cta_data_block_get_speaker_locations(const struct di_cta_data_block *block)
{
if (block->tag != DI_CTA_DATA_BLOCK_SPEAKER_LOCATION) {
return NULL;
}
return &block->speaker_location.base;
}
const struct di_cta_type_vii_timing_block *
di_cta_data_block_get_did_type_vii_timing(const struct di_cta_data_block *block)
{
if (block->tag != DI_CTA_DATA_BLOCK_DISPLAYID_VIDEO_TIMING_VII) {
return NULL;
}
return &block->did_vii_timing.base;
}
const struct di_edid_detailed_timing_def *const *
di_edid_cta_get_detailed_timing_defs(const struct di_edid_cta *cta)
{
return (const struct di_edid_detailed_timing_def *const *) cta->detailed_timing_defs;
}
const struct di_cta_vesa_transfer_characteristics_block *
di_cta_data_block_get_vesa_transfer_characteristics(const struct di_cta_data_block *block)
{
if (block->tag != DI_CTA_DATA_BLOCK_VESA_DISPLAY_TRANSFER_CHARACTERISTIC) {
return NULL;
}
return &block->vesa_transfer_characteristics;
}
const struct di_cta_room_configuration_block *
di_cta_data_block_get_room_configuration(const struct di_cta_data_block *block)
{
if (block->tag != DI_CTA_DATA_BLOCK_ROOM_CONFIG) {
return NULL;
}
return &block->room_config;
}