libdisplay-info/edid.c
Sebastian Wick 5741163901 edid: Record failures instead of aborting parsing
Signed-off-by: Sebastian Wick <sebastian.wick@redhat.com>
2024-05-08 12:43:20 +02:00

1600 lines
44 KiB
C

#include <assert.h>
#include <errno.h>
#include <stdbool.h>
#include <stdlib.h>
#include <string.h>
#include "bits.h"
#include "dmt.h"
#include "edid.h"
#include "log.h"
/**
* The size of an EDID block, defined in section 2.2.
*/
#define EDID_BLOCK_SIZE 128
/**
* The size of an EDID standard timing, defined in section 3.9.
*/
#define EDID_STANDARD_TIMING_SIZE 2
/**
* The size of an EDID CVT timing code, defined in section 3.10.3.8.
*/
#define EDID_CVT_TIMING_CODE_SIZE 3
/**
* Fixed EDID header, defined in section 3.1.
*/
static const uint8_t header[] = { 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00 };
static void
add_failure(struct di_edid *edid, const char fmt[], ...)
{
va_list args;
va_start(args, fmt);
_di_logger_va_add_failure(edid->logger, fmt, args);
va_end(args);
}
static void
add_failure_until(struct di_edid *edid, int revision, const char fmt[], ...)
{
va_list args;
if (edid->revision > revision) {
return;
}
va_start(args, fmt);
_di_logger_va_add_failure(edid->logger, fmt, args);
va_end(args);
}
static void
parse_version_revision(const uint8_t data[static EDID_BLOCK_SIZE],
int *version, int *revision)
{
*version = (int) data[0x12];
*revision = (int) data[0x13];
}
static size_t
parse_ext_count(const uint8_t data[static EDID_BLOCK_SIZE])
{
return data[0x7E];
}
static bool
validate_block_checksum(const uint8_t data[static EDID_BLOCK_SIZE])
{
uint8_t sum = 0;
size_t i;
for (i = 0; i < EDID_BLOCK_SIZE; i++) {
sum += data[i];
}
return sum == 0;
}
static void
parse_vendor_product(struct di_edid *edid,
const uint8_t data[static EDID_BLOCK_SIZE])
{
struct di_edid_vendor_product *out = &edid->vendor_product;
uint16_t man, raw_week, raw_year;
int year = 0;
/* The ASCII 3-letter manufacturer code is encoded in 5-bit codes. */
man = (uint16_t) ((data[0x08] << 8) | data[0x09]);
out->manufacturer[0] = ((man >> 10) & 0x1F) + '@';
out->manufacturer[1] = ((man >> 5) & 0x1F) + '@';
out->manufacturer[2] = ((man >> 0) & 0x1F) + '@';
out->product = (uint16_t) (data[0x0A] | (data[0x0B] << 8));
out->serial = (uint32_t) (data[0x0C] |
(data[0x0D] << 8) |
(data[0x0E] << 16) |
(data[0x0F] << 24));
raw_week = data[0x10];
raw_year = data[0x11];
if (raw_year >= 0x10 || edid->revision < 4) {
year = data[0x11] + 1990;
} else if (edid->revision == 4) {
add_failure(edid, "Year set to reserved value.");
}
if (raw_week == 0xFF) {
/* Special flag for model year */
out->model_year = year;
} else {
out->manufacture_year = year;
if (raw_week > 54) {
add_failure_until(edid, 4,
"Invalid week %u of manufacture.",
raw_week);
} else if (raw_week > 0) {
out->manufacture_week = raw_week;
}
}
}
static void
parse_video_input_digital(struct di_edid *edid, uint8_t video_input)
{
uint8_t color_bit_depth, interface;
struct di_edid_video_input_digital *digital = &edid->video_input_digital;
if (edid->revision < 2) {
if (get_bit_range(video_input, 6, 0) != 0)
add_failure(edid, "Digital Video Interface Standard set to reserved value 0x%02x.",
video_input);
return;
}
if (edid->revision < 4) {
if (get_bit_range(video_input, 6, 1) != 0)
add_failure(edid, "Digital Video Interface Standard set to reserved value 0x%02x.",
video_input);
digital->dfp1 = has_bit(video_input, 0);
return;
}
color_bit_depth = get_bit_range(video_input, 6, 4);
if (color_bit_depth == 0x07) {
/* Reserved */
add_failure_until(edid, 4, "Color Bit Depth set to reserved value.");
} else if (color_bit_depth != 0) {
digital->color_bit_depth = 2 * color_bit_depth + 4;
}
interface = get_bit_range(video_input, 3, 0);
switch (interface) {
case DI_EDID_VIDEO_INPUT_DIGITAL_UNDEFINED:
case DI_EDID_VIDEO_INPUT_DIGITAL_DVI:
case DI_EDID_VIDEO_INPUT_DIGITAL_HDMI_A:
case DI_EDID_VIDEO_INPUT_DIGITAL_HDMI_B:
case DI_EDID_VIDEO_INPUT_DIGITAL_MDDI:
case DI_EDID_VIDEO_INPUT_DIGITAL_DISPLAYPORT:
digital->interface = interface;
break;
default:
add_failure_until(edid, 4,
"Digital Video Interface Standard set to reserved value 0x%02x.",
interface);
digital->interface = DI_EDID_VIDEO_INPUT_DIGITAL_UNDEFINED;
break;
}
}
static void
parse_video_input_analog(struct di_edid *edid, uint8_t video_input)
{
struct di_edid_video_input_analog *analog = &edid->video_input_analog;
analog->signal_level_std = get_bit_range(video_input, 6, 5);
analog->video_setup = has_bit(video_input, 4);
analog->sync_separate = has_bit(video_input, 3);
analog->sync_composite = has_bit(video_input, 2);
analog->sync_on_green = has_bit(video_input, 1);
analog->sync_serrations = has_bit(video_input, 0);
}
static void
parse_basic_params_features(struct di_edid *edid,
const uint8_t data[static EDID_BLOCK_SIZE])
{
uint8_t video_input, width, height, features;
struct di_edid_screen_size *screen_size = &edid->screen_size;
video_input = data[0x14];
edid->is_digital = has_bit(video_input, 7);
if (edid->is_digital) {
parse_video_input_digital(edid, video_input);
} else {
parse_video_input_analog(edid, video_input);
}
/* v1.3 says screen size is undefined if either byte is zero, v1.4 says
* screen size and aspect ratio are undefined if both bytes are zero and
* encodes the aspect ratio if either byte is zero. */
width = data[0x15];
height = data[0x16];
if (width > 0 && height > 0) {
screen_size->width_cm = width;
screen_size->height_cm = height;
} else if (edid->revision >= 4) {
if (width > 0) {
screen_size->landscape_aspect_ratio = ((float) width + 99) / 100;
} else if (height > 0) {
screen_size->portait_aspect_ratio = ((float) height + 99) / 100;
}
}
if (data[0x17] != 0xFF) {
edid->gamma = ((float) data[0x17] + 100) / 100;
} else {
edid->gamma = 0;
}
features = data[0x18];
edid->dpms.standby = has_bit(features, 7);
edid->dpms.suspend = has_bit(features, 6);
edid->dpms.off = has_bit(features, 5);
if (edid->is_digital && edid->revision >= 4) {
edid->color_encoding_formats.rgb444 = true;
edid->color_encoding_formats.ycrcb444 = has_bit(features, 3);
edid->color_encoding_formats.ycrcb422 = has_bit(features, 4);
edid->display_color_type = DI_EDID_DISPLAY_COLOR_UNDEFINED;
} else {
edid->display_color_type = get_bit_range(features, 4, 3);
}
if (edid->revision >= 4) {
edid->misc_features.has_preferred_timing = true;
edid->misc_features.continuous_freq = has_bit(features, 0);
edid->misc_features.preferred_timing_is_native = has_bit(features, 1);
} else {
edid->misc_features.default_gtf = has_bit(features, 0);
edid->misc_features.has_preferred_timing = has_bit(features, 1);
}
edid->misc_features.srgb_is_primary = has_bit(features, 2);
}
static float
decode_chromaticity_coord(uint8_t hi, uint8_t lo)
{
uint16_t raw; /* only 10 bits are used */
raw = (uint16_t) ((hi << 2) | lo);
return (float) raw / 1024;
}
static void
parse_chromaticity_coords(struct di_edid *edid,
const uint8_t data[static EDID_BLOCK_SIZE])
{
uint8_t lo;
bool all_set, any_set;
struct di_edid_chromaticity_coords *coords;
coords = &edid->chromaticity_coords;
lo = data[0x19];
coords->red_x = decode_chromaticity_coord(data[0x1B], get_bit_range(lo, 7, 6));
coords->red_y = decode_chromaticity_coord(data[0x1C], get_bit_range(lo, 5, 4));
coords->green_x = decode_chromaticity_coord(data[0x1D], get_bit_range(lo, 3, 2));
coords->green_y = decode_chromaticity_coord(data[0x1E], get_bit_range(lo, 1, 0));
lo = data[0x1A];
coords->blue_x = decode_chromaticity_coord(data[0x1F], get_bit_range(lo, 7, 6));
coords->blue_y = decode_chromaticity_coord(data[0x20], get_bit_range(lo, 5, 4));
coords->white_x = decode_chromaticity_coord(data[0x21], get_bit_range(lo, 3, 2));
coords->white_y = decode_chromaticity_coord(data[0x22], get_bit_range(lo, 1, 0));
/* Either all primaries coords must be set, either none must be set */
any_set = coords->red_x != 0 || coords->red_y != 0
|| coords->green_x != 0 || coords->green_y != 0
|| coords->blue_x != 0 || coords->blue_y != 0;
all_set = coords->red_x != 0 && coords->red_y != 0
&& coords->green_x != 0 && coords->green_y != 0
&& coords->blue_x != 0 && coords->blue_y != 0;
if (any_set && !all_set) {
add_failure(edid, "Some but not all primaries coordinates are unset.");
}
/* Both white-point coords must be set */
if (coords->white_x == 0 || coords->white_y == 0) {
add_failure(edid, "White-point coordinates are unset.");
}
}
static void
parse_established_timings_i_ii(struct di_edid *edid,
const uint8_t data[static EDID_BLOCK_SIZE])
{
struct di_edid_established_timings_i_ii *timings = &edid->established_timings_i_ii;
timings->has_720x400_70hz = has_bit(data[0x23], 7);
timings->has_720x400_88hz = has_bit(data[0x23], 6);
timings->has_640x480_60hz = has_bit(data[0x23], 5);
timings->has_640x480_67hz = has_bit(data[0x23], 4);
timings->has_640x480_72hz = has_bit(data[0x23], 3);
timings->has_640x480_75hz = has_bit(data[0x23], 2);
timings->has_800x600_56hz = has_bit(data[0x23], 1);
timings->has_800x600_60hz = has_bit(data[0x23], 0);
/* Established timings II */
timings->has_800x600_72hz = has_bit(data[0x24], 7);
timings->has_800x600_75hz = has_bit(data[0x24], 6);
timings->has_832x624_75hz = has_bit(data[0x24], 5);
timings->has_1024x768_87hz_interlaced = has_bit(data[0x24], 4);
timings->has_1024x768_60hz = has_bit(data[0x24], 3);
timings->has_1024x768_70hz = has_bit(data[0x24], 2);
timings->has_1024x768_75hz = has_bit(data[0x24], 1);
timings->has_1280x1024_75hz = has_bit(data[0x24], 0);
timings->has_1152x870_75hz = has_bit(data[0x25], 7);
/* TODO: manufacturer specified timings in bits 6:0 */
}
static bool
parse_standard_timing(struct di_edid *edid,
const uint8_t data[static EDID_STANDARD_TIMING_SIZE],
struct di_edid_standard_timing **out)
{
struct di_edid_standard_timing *t;
*out = NULL;
if (data[0] == 0x01 && data[1] == 0x01) {
/* Unused */
return true;
}
if (data[0] == 0x00) {
add_failure_until(edid, 4,
"Use 0x0101 as the invalid Standard Timings code, not 0x%02x%02x.",
data[0], data[1]);
return true;
}
t = calloc(1, sizeof(*t));
if (!t) {
return false;
}
t->horiz_video = ((int32_t) data[0] + 31) * 8;
t->aspect_ratio = get_bit_range(data[1], 7, 6);
t->refresh_rate_hz = (int32_t) get_bit_range(data[1], 5, 0) + 60;
*out = t;
return true;
}
struct di_edid_detailed_timing_def_priv *
_di_edid_parse_detailed_timing_def(const uint8_t data[static EDID_BYTE_DESCRIPTOR_SIZE])
{
struct di_edid_detailed_timing_def_priv *priv;
struct di_edid_detailed_timing_def *def;
struct di_edid_detailed_timing_analog_composite *analog_composite;
struct di_edid_detailed_timing_bipolar_analog_composite *bipolar_analog_composite;
struct di_edid_detailed_timing_digital_composite *digital_composite;
struct di_edid_detailed_timing_digital_separate *digital_separate;
int raw;
uint8_t flags, stereo_hi, stereo_lo;
priv = calloc(1, sizeof(*priv));
if (!priv) {
return NULL;
}
def = &priv->base;
raw = (data[1] << 8) | data[0];
def->pixel_clock_hz = raw * 10 * 1000;
def->horiz_video = (get_bit_range(data[4], 7, 4) << 8) | data[2];
def->horiz_blank = (get_bit_range(data[4], 3, 0) << 8) | data[3];
def->vert_video = (get_bit_range(data[7], 7, 4) << 8) | data[5];
def->vert_blank = (get_bit_range(data[7], 3, 0) << 8) | data[6];
def->horiz_front_porch = (get_bit_range(data[11], 7, 6) << 8) | data[8];
def->horiz_sync_pulse = (get_bit_range(data[11], 5, 4) << 8) | data[9];
def->vert_front_porch = (get_bit_range(data[11], 3, 2) << 4)
| get_bit_range(data[10], 7, 4);
def->vert_sync_pulse = (get_bit_range(data[11], 1, 0) << 4)
| get_bit_range(data[10], 3, 0);
def->horiz_image_mm = (get_bit_range(data[14], 7, 4) << 8) | data[12];
def->vert_image_mm = (get_bit_range(data[14], 3, 0) << 8) | data[13];
if ((def->horiz_image_mm == 16 && def->vert_image_mm == 9)
|| (def->horiz_image_mm == 4 && def->vert_image_mm == 3)) {
/* Table 3.21 note 18.2: these are special cases and define the
* aspect ratio rather than the size in mm.
* TODO: expose these values */
def->horiz_image_mm = def->vert_image_mm = 0;
}
def->horiz_border = data[15];
def->vert_border = data[16];
flags = data[17];
def->interlaced = has_bit(flags, 7);
stereo_hi = get_bit_range(flags, 6, 5);
stereo_lo = get_bit_range(flags, 0, 0);
if (stereo_hi == 0) {
def->stereo = DI_EDID_DETAILED_TIMING_DEF_STEREO_NONE;
} else {
switch ((stereo_hi << 1) | stereo_lo) {
case (1 << 1) | 0:
def->stereo = DI_EDID_DETAILED_TIMING_DEF_STEREO_FIELD_SEQ_RIGHT;
break;
case (2 << 1) | 0:
def->stereo = DI_EDID_DETAILED_TIMING_DEF_STEREO_FIELD_SEQ_LEFT;
break;
case (1 << 1) | 1:
def->stereo = DI_EDID_DETAILED_TIMING_DEF_STEREO_2_WAY_INTERLEAVED_RIGHT;
break;
case (2 << 1) | 1:
def->stereo = DI_EDID_DETAILED_TIMING_DEF_STEREO_2_WAY_INTERLEAVED_LEFT;
break;
case (3 << 1) | 0:
def->stereo = DI_EDID_DETAILED_TIMING_DEF_STEREO_4_WAY_INTERLEAVED;
break;
case (3 << 1) | 1:
def->stereo = DI_EDID_DETAILED_TIMING_DEF_STEREO_SIDE_BY_SIDE_INTERLEAVED;
break;
default:
abort(); /* unreachable */
}
}
def->signal_type = get_bit_range(flags, 4, 3);
switch (def->signal_type) {
case DI_EDID_DETAILED_TIMING_DEF_SIGNAL_ANALOG_COMPOSITE:
analog_composite = &priv->analog_composite;
analog_composite->sync_serrations = has_bit(flags, 2);
analog_composite->sync_on_green = !has_bit(flags, 1);
def->analog_composite = analog_composite;
break;
case DI_EDID_DETAILED_TIMING_DEF_SIGNAL_BIPOLAR_ANALOG_COMPOSITE:
bipolar_analog_composite = &priv->bipolar_analog_composite;
bipolar_analog_composite->sync_serrations = has_bit(flags, 2);
bipolar_analog_composite->sync_on_green = !has_bit(flags, 1);
def->bipolar_analog_composite = bipolar_analog_composite;
break;
case DI_EDID_DETAILED_TIMING_DEF_SIGNAL_DIGITAL_COMPOSITE:
digital_composite = &priv->digital_composite;
digital_composite->sync_serrations = has_bit(flags, 2);
digital_composite->sync_horiz_polarity = has_bit(flags, 1);
def->digital_composite = digital_composite;
break;
case DI_EDID_DETAILED_TIMING_DEF_SIGNAL_DIGITAL_SEPARATE:
digital_separate = &priv->digital_separate;
digital_separate->sync_vert_polarity = has_bit(flags, 2);
digital_separate->sync_horiz_polarity = has_bit(flags, 1);
def->digital_separate = digital_separate;
break;
}
return priv;
}
static bool
decode_display_range_limits_offset(struct di_edid *edid, uint8_t flags,
int *max_offset, int *min_offset)
{
switch (flags) {
case 0x00:
/* No offset */
break;
case 0x02:
*max_offset = 255;
break;
case 0x03:
*max_offset = 255;
*min_offset = 255;
break;
default:
add_failure_until(edid, 4,
"Range offset flags set to reserved value 0x%02x.",
flags);
return false;
}
return true;
}
static bool
parse_display_range_limits(struct di_edid *edid,
const uint8_t data[static EDID_BYTE_DESCRIPTOR_SIZE],
struct di_edid_display_range_limits_priv *priv)
{
uint8_t offset_flags, vert_offset_flags, horiz_offset_flags;
uint8_t support_flags, preferred_aspect_ratio;
int max_vert_offset = 0, min_vert_offset = 0;
int max_horiz_offset = 0, min_horiz_offset = 0;
size_t i;
struct di_edid_display_range_limits *base;
struct di_edid_display_range_limits_secondary_gtf *secondary_gtf;
struct di_edid_display_range_limits_cvt *cvt;
base = &priv->base;
offset_flags = data[4];
if (edid->revision >= 4) {
vert_offset_flags = get_bit_range(offset_flags, 1, 0);
horiz_offset_flags = get_bit_range(offset_flags, 3, 2);
if (!decode_display_range_limits_offset(edid,
vert_offset_flags,
&max_vert_offset,
&min_vert_offset)) {
return false;
}
if (!decode_display_range_limits_offset(edid,
horiz_offset_flags,
&max_horiz_offset,
&min_horiz_offset)) {
return false;
}
if (edid->revision <= 4 &&
get_bit_range(offset_flags, 7, 4) != 0) {
add_failure(edid, "Display Range Limits: Bits 7:4 of the range offset flags are reserved.");
}
} else if (offset_flags != 0) {
add_failure(edid, "Display Range Limits: Range offset flags are unsupported in EDID 1.3.");
}
if (edid->revision <= 4 && (data[5] == 0 || data[6] == 0 ||
data[7] == 0 || data[8] == 0)) {
add_failure(edid, "Display Range Limits: Range limits set to reserved values.");
return false;
}
base->min_vert_rate_hz = data[5] + min_vert_offset;
base->max_vert_rate_hz = data[6] + max_vert_offset;
base->min_horiz_rate_hz = (data[7] + min_horiz_offset) * 1000;
base->max_horiz_rate_hz = (data[8] + max_horiz_offset) * 1000;
if (base->min_vert_rate_hz > base->max_vert_rate_hz) {
add_failure(edid, "Display Range Limits: Min vertical rate > max vertical rate.");
return false;
}
if (base->min_horiz_rate_hz > base->max_horiz_rate_hz) {
add_failure(edid, "Display Range Limits: Min horizontal freq > max horizontal freq.");
return false;
}
base->max_pixel_clock_hz = (int64_t) data[9] * 10 * 1000 * 1000;
if (edid->revision == 4 && base->max_pixel_clock_hz == 0) {
add_failure(edid, "Display Range Limits: EDID 1.4 block does not set max dotclock.");
}
support_flags = data[10];
switch (support_flags) {
case 0x00:
/* For EDID 1.4 and later, always indicates support for default
* GTF. For EDID 1.3 and earlier, a misc features bit indicates
* support for default GTF. */
if (edid->revision >= 4 || edid->misc_features.default_gtf) {
base->type = DI_EDID_DISPLAY_RANGE_LIMITS_DEFAULT_GTF;
} else {
base->type = DI_EDID_DISPLAY_RANGE_LIMITS_BARE;
}
break;
case 0x01:
if (edid->revision < 4) {
/* Reserved */
add_failure(edid, "Display Range Limits: 'Bare Limits' is not allowed for EDID < 1.4.");
return false;
}
base->type = DI_EDID_DISPLAY_RANGE_LIMITS_BARE;
break;
case 0x02:
base->type = DI_EDID_DISPLAY_RANGE_LIMITS_SECONDARY_GTF;
break;
case 0x04:
if (edid->revision < 4) {
/* Reserved */
add_failure(edid, "Display Range Limits: 'CVT' is not allowed for EDID < 1.4.");
return false;
}
base->type = DI_EDID_DISPLAY_RANGE_LIMITS_CVT;
break;
default:
/* Reserved */
if (edid->revision <= 4) {
add_failure(edid,
"Display Range Limits: Unknown range class (0x%02x).",
support_flags);
return false;
}
base->type = DI_EDID_DISPLAY_RANGE_LIMITS_BARE;
break;
}
/* Some types require the display to support continuous frequencies, but
* this flag is only set for EDID 1.4 and later */
if (edid->revision >= 4 && !edid->misc_features.continuous_freq) {
switch (base->type) {
case DI_EDID_DISPLAY_RANGE_LIMITS_DEFAULT_GTF:
add_failure(edid, "Display Range Limits: GTF is supported, but the display does not support continuous frequencies.");
return false;
case DI_EDID_DISPLAY_RANGE_LIMITS_SECONDARY_GTF:
add_failure(edid, "Display Range Limits: Secondary GTF is supported, but the display does not support continuous frequencies.");
return false;
case DI_EDID_DISPLAY_RANGE_LIMITS_CVT:
add_failure(edid, "Display Range Limits: CVT is supported, but the display does not support continuous frequencies.");
return false;
default:
break;
}
}
switch (base->type) {
case DI_EDID_DISPLAY_RANGE_LIMITS_SECONDARY_GTF:
secondary_gtf = &priv->secondary_gtf;
if (data[11] != 0)
add_failure(edid,
"Display Range Limits: Byte 11 is 0x%02x instead of 0x00.",
data[11]);
secondary_gtf->start_freq_hz = data[12] * 2 * 1000;
secondary_gtf->c = (float) data[13] / 2;
secondary_gtf->m = (float) ((data[15] << 8) | data[14]);
secondary_gtf->k = (float) data[16];
secondary_gtf->j = (float) data[17] / 2;
base->secondary_gtf = secondary_gtf;
break;
case DI_EDID_DISPLAY_RANGE_LIMITS_CVT:
cvt = &priv->cvt;
cvt->version = get_bit_range(data[11], 7, 4);
cvt->revision = get_bit_range(data[11], 3, 0);
base->max_pixel_clock_hz -= get_bit_range(data[12], 7, 2) * 250 * 1000;
cvt->max_horiz_px = 8 * ((get_bit_range(data[12], 1, 0) << 8) | data[13]);
cvt->supported_aspect_ratio = data[14];
if (get_bit_range(data[14], 2, 0) != 0)
add_failure_until(edid, 4,
"Display Range Limits: Reserved bits of byte 14 are non-zero.");
preferred_aspect_ratio = get_bit_range(data[15], 7, 5);
switch (preferred_aspect_ratio) {
case 0:
cvt->preferred_aspect_ratio = DI_EDID_CVT_ASPECT_RATIO_4_3;
break;
case 1:
cvt->preferred_aspect_ratio = DI_EDID_CVT_ASPECT_RATIO_16_9;
break;
case 2:
cvt->preferred_aspect_ratio = DI_EDID_CVT_ASPECT_RATIO_16_10;
break;
case 3:
cvt->preferred_aspect_ratio = DI_EDID_CVT_ASPECT_RATIO_5_4;
break;
case 4:
cvt->preferred_aspect_ratio = DI_EDID_CVT_ASPECT_RATIO_15_9;
break;
default:
/* Reserved */
add_failure_until(edid, 4,
"Display Range Limits: Invalid preferred aspect ratio 0x%02x.",
preferred_aspect_ratio);
return false;
}
cvt->standard_blanking = has_bit(data[15], 3);
cvt->reduced_blanking = has_bit(data[15], 4);
if (get_bit_range(data[15], 2, 0) != 0)
add_failure_until(edid, 4,
"Display Range Limits: Reserved bits of byte 15 are non-zero.");
cvt->supported_scaling = data[16];
if (get_bit_range(data[16], 3, 0) != 0)
add_failure_until(edid, 4,
"Display Range Limits: Reserved bits of byte 16 are non-zero.");
cvt->preferred_vert_refresh_hz = data[17];
if (cvt->preferred_vert_refresh_hz == 0) {
add_failure_until(edid, 4,
"Display Range Limits: Preferred vertical refresh rate must be specified.");
return false;
}
base->cvt = cvt;
break;
case DI_EDID_DISPLAY_RANGE_LIMITS_BARE:
case DI_EDID_DISPLAY_RANGE_LIMITS_DEFAULT_GTF:
if (data[11] != 0x0A)
add_failure(edid,
"Display Range Limits: Byte 11 is 0x%02x instead of 0x0a.",
data[11]);
for (i = 12; i < EDID_BYTE_DESCRIPTOR_SIZE; i++) {
if (data[i] != 0x20) {
add_failure(edid,
"Display Range Limits: Bytes 12-17 must be 0x20.");
break;
}
}
break;
}
return true;
}
static bool
parse_standard_timings_descriptor(struct di_edid *edid,
const uint8_t data[static EDID_BYTE_DESCRIPTOR_SIZE],
struct di_edid_display_descriptor *desc)
{
struct di_edid_standard_timing *t;
size_t i;
const uint8_t *timing_data;
for (i = 0; i < EDID_MAX_DESCRIPTOR_STANDARD_TIMING_COUNT; i++) {
timing_data = &data[5 + i * EDID_STANDARD_TIMING_SIZE];
if (!parse_standard_timing(edid, timing_data, &t))
return false;
if (t) {
assert(desc->standard_timings_len < EDID_MAX_DESCRIPTOR_STANDARD_TIMING_COUNT);
desc->standard_timings[desc->standard_timings_len++] = t;
}
}
if (data[17] != 0x0A)
add_failure_until(edid, 4,
"Standard Timing Identifications: Last byte must be a line feed.");
return true;
}
/**
* Mapping table for established timings III.
*
* Contains one entry per bit, with the value set to the DMT ID.
*/
static const uint8_t established_timings_iii[] = {
/* 0x06 */
0x01, /* 640 x 350 @ 85 Hz */
0x02, /* 640 x 400 @ 85 Hz */
0x03, /* 720 x 400 @ 85 Hz */
0x07, /* 640 x 480 @ 85 Hz */
0x0e, /* 848 x 480 @ 60 Hz */
0x0c, /* 800 x 600 @ 85 Hz */
0x13, /* 1024 x 768 @ 85 Hz */
0x15, /* 1152 x 864 @ 75 Hz */
/* 0x07 */
0x16, /* 1280 x 768 @ 60 Hz (RB) */
0x17, /* 1280 x 768 @ 60 Hz */
0x18, /* 1280 x 768 @ 75 Hz */
0x19, /* 1280 x 768 @ 85 Hz */
0x20, /* 1280 x 960 @ 60 Hz */
0x21, /* 1280 x 960 @ 85 Hz */
0x23, /* 1280 x 1024 @ 60 Hz */
0x25, /* 1280 x 1024 @ 85 Hz */
/* 0x08 */
0x27, /* 1360 x 768 @ 60 Hz */
0x2e, /* 1440 x 900 @ 60 Hz (RB) */
0x2f, /* 1440 x 900 @ 60 Hz */
0x30, /* 1440 x 900 @ 75 Hz */
0x31, /* 1440 x 900 @ 85 Hz */
0x29, /* 1400 x 1050 @ 60 Hz (RB) */
0x2a, /* 1400 x 1050 @ 60 Hz */
0x2b, /* 1400 x 1050 @ 75 Hz */
/* 0x09 */
0x2c, /* 1400 x 1050 @ 85 Hz */
0x39, /* 1680 x 1050 @ 60 Hz (RB) */
0x3a, /* 1680 x 1050 @ 60 Hz */
0x3b, /* 1680 x 1050 @ 75 Hz */
0x3c, /* 1680 x 1050 @ 85 Hz */
0x33, /* 1600 x 1200 @ 60 Hz */
0x34, /* 1600 x 1200 @ 65 Hz */
0x35, /* 1600 x 1200 @ 70 Hz */
/* 0x0a */
0x36, /* 1600 x 1200 @ 75 Hz */
0x37, /* 1600 x 1200 @ 85 Hz */
0x3e, /* 1792 x 1344 @ 60 Hz */
0x3f, /* 1792 x 1344 @ 75 Hz */
0x41, /* 1856 x 1392 @ 60 Hz */
0x42, /* 1856 x 1392 @ 75 Hz */
0x44, /* 1920 x 1200 @ 60 Hz (RB) */
0x45, /* 1920 x 1200 @ 60 Hz */
/* 0x0b */
0x46, /* 1920 x 1200 @ 75 Hz */
0x47, /* 1920 x 1200 @ 85 Hz */
0x49, /* 1920 x 1440 @ 60 Hz */
0x4a, /* 1920 x 1440 @ 75 Hz */
};
static_assert(EDID_MAX_DESCRIPTOR_ESTABLISHED_TIMING_III_COUNT
== sizeof(established_timings_iii) / sizeof(established_timings_iii[0]),
"Invalid number of established timings III in table");
static const struct di_dmt_timing *
get_dmt_timing(uint8_t dmt_id)
{
size_t i;
const struct di_dmt_timing *t;
for (i = 0; i < _di_dmt_timings_len; i++) {
t = &_di_dmt_timings[i];
if (t->dmt_id == dmt_id)
return t;
}
return NULL;
}
static void
parse_established_timings_iii_descriptor(struct di_edid *edid,
const uint8_t data[static EDID_BYTE_DESCRIPTOR_SIZE],
struct di_edid_display_descriptor *desc)
{
size_t i, offset, bit;
uint8_t dmt_id;
const struct di_dmt_timing *t;
bool has_zeroes;
if (edid->revision < 4)
add_failure(edid, "Established timings III: Not allowed for EDID < 1.4.");
for (i = 0; i < EDID_MAX_DESCRIPTOR_ESTABLISHED_TIMING_III_COUNT; i++) {
dmt_id = established_timings_iii[i];
offset = 0x06 + i / 8;
bit = 7 - i % 8;
assert(offset < EDID_BYTE_DESCRIPTOR_SIZE);
if (has_bit(data[offset], bit)) {
t = get_dmt_timing(dmt_id);
assert(t != NULL);
desc->established_timings_iii[desc->established_timings_iii_len++] = t;
}
}
has_zeroes = get_bit_range(data[11], 3, 0) == 0;
for (i = 12; i < EDID_BYTE_DESCRIPTOR_SIZE; i++) {
has_zeroes = has_zeroes && data[i] == 0;
}
if (!has_zeroes) {
add_failure_until(edid, 4,
"Established timings III: Reserved bits must be set to zero.");
}
}
static bool
parse_color_point_descriptor(struct di_edid *edid,
const uint8_t data[static EDID_BYTE_DESCRIPTOR_SIZE],
struct di_edid_display_descriptor *desc)
{
struct di_edid_color_point *c;
if (data[5] == 0) {
add_failure(edid, "White Point Index Number set to reserved value 0");
}
c = calloc(1, sizeof(*c));
if (!c) {
return false;
}
c->index = data[5];
c->white_x = decode_chromaticity_coord(data[7], get_bit_range(data[6], 3, 2));
c->white_y = decode_chromaticity_coord(data[8], get_bit_range(data[6], 1, 0));
if (data[9] != 0xFF) {
c->gamma = ((float) data[9] + 100) / 100;
}
desc->color_points[desc->color_points_len++] = c;
if (data[10] == 0) {
return true;
}
c = calloc(1, sizeof(*c));
if (!c) {
return false;
}
c->index = data[10];
c->white_x = decode_chromaticity_coord(data[12], get_bit_range(data[11], 3, 2));
c->white_y = decode_chromaticity_coord(data[13], get_bit_range(data[11], 1, 0));
if (data[14] != 0xFF) {
c->gamma = ((float) data[14] + 100) / 100;
}
desc->color_points[desc->color_points_len++] = c;
return true;
}
static void
parse_color_management_data_descriptor(struct di_edid *edid,
const uint8_t data[static EDID_BYTE_DESCRIPTOR_SIZE],
struct di_edid_display_descriptor *desc)
{
desc->dcm_data.version = data[5];
desc->dcm_data.red_a3 = (uint16_t)(data[6] | (data[7] << 8)) / 100.0f;
desc->dcm_data.red_a2 = (uint16_t)(data[8] | (data[9] << 8)) / 100.0f;
desc->dcm_data.green_a3 = (uint16_t)(data[10] | (data[11] << 8)) / 100.0f;
desc->dcm_data.green_a2 = (uint16_t)(data[12] | (data[13] << 8)) / 100.0f;
desc->dcm_data.blue_a3 = (uint16_t)(data[14] | (data[15] << 8)) / 100.0f;
desc->dcm_data.blue_a2 = (uint16_t)(data[16] | (data[17] << 8)) / 100.0f;
if (desc->dcm_data.version != 3) {
add_failure_until(edid, 4,
"Color Management Data version must be 3");
}
}
static bool
is_cvt_timing_code_preferred_vrate_supported(const struct di_edid_cvt_timing_code *t)
{
switch (t->preferred_vertical_rate) {
case DI_EDID_CVT_TIMING_CODE_PREFERRED_VRATE_50HZ:
return t->supports_50hz_sb;
case DI_EDID_CVT_TIMING_CODE_PREFERRED_VRATE_60HZ:
return t->supports_60hz_sb || t->supports_60hz_rb;
case DI_EDID_CVT_TIMING_CODE_PREFERRED_VRATE_75HZ:
return t->supports_75hz_sb;
case DI_EDID_CVT_TIMING_CODE_PREFERRED_VRATE_85HZ:
return t->supports_85hz_sb;
}
abort(); /* unreachable */
}
static bool
parse_cvt_timing_code(struct di_edid *edid,
const uint8_t data[static EDID_CVT_TIMING_CODE_SIZE],
struct di_edid_cvt_timing_code **out,
bool first)
{
struct di_edid_cvt_timing_code *t;
int32_t raw;
*out = NULL;
if (!first && data[0] == 0 && data[1] == 0 && data[2] == 0) {
/* Unused */
return true;
}
if (data[0] == 0) {
add_failure(edid,
"CVT byte 0 is 0, which is a reserved value.");
}
t = calloc(1, sizeof(*t));
if (!t) {
return false;
}
raw = (int32_t)(data[0] | (get_bit_range(data[1], 7, 4) << 8));
t->addressable_lines_per_field = (raw + 1) * 2;
t->aspect_ratio = get_bit_range(data[1], 3, 2);
if (get_bit_range(data[1], 1, 0) != 0) {
add_failure(edid,
"Reserved bits of CVT byte 1 are non-zero.");
}
t->supports_50hz_sb = has_bit(data[2], 4);
t->supports_60hz_sb = has_bit(data[2], 3);
t->supports_75hz_sb = has_bit(data[2], 2);
t->supports_85hz_sb = has_bit(data[2], 1);
t->supports_60hz_rb = has_bit(data[2], 0);
if (get_bit_range(data[2], 4, 0) == 0) {
add_failure(edid,
"CVT byte 2 does not support any vertical rates.");
}
t->preferred_vertical_rate = get_bit_range(data[2], 6, 5);
if (has_bit(data[2], 7) != 0) {
add_failure(edid,
"Reserved bit of CVT byte 2 is non-zero.");
}
if (!is_cvt_timing_code_preferred_vrate_supported(t))
add_failure(edid, "The preferred CVT Vertical Rate is not supported.");
*out = t;
return true;
}
static bool
parse_cvt_timing_codes_descriptor(struct di_edid *edid,
const uint8_t data[static EDID_BYTE_DESCRIPTOR_SIZE],
struct di_edid_display_descriptor *desc)
{
struct di_edid_cvt_timing_code *t;
size_t i;
const uint8_t *timing_data;
if (data[5] != 1) {
add_failure_until(edid, 4, "Invalid version number %u.",
data[5]);
}
for (i = 0; i < EDID_MAX_DESCRIPTOR_CVT_TIMING_CODES_COUNT; i++) {
timing_data = &data[6 + i * EDID_CVT_TIMING_CODE_SIZE];
if (!parse_cvt_timing_code(edid, timing_data, &t, !i))
return false;
if (t) {
assert(desc->cvt_timing_codes_len < EDID_MAX_DESCRIPTOR_CVT_TIMING_CODES_COUNT);
desc->cvt_timing_codes[desc->cvt_timing_codes_len++] = t;
}
}
return true;
}
static bool
parse_byte_descriptor(struct di_edid *edid,
const uint8_t data[static EDID_BYTE_DESCRIPTOR_SIZE])
{
struct di_edid_display_descriptor *desc;
struct di_edid_detailed_timing_def_priv *detailed_timing_def;
uint8_t tag;
char *newline;
if (data[0] || data[1]) {
if (edid->display_descriptors_len > 0) {
/* A detailed timing descriptor is not allowed after a
* display descriptor per note 3 of table 3.20. */
add_failure(edid, "Invalid detailed timing descriptor ordering.");
}
detailed_timing_def = _di_edid_parse_detailed_timing_def(data);
if (!detailed_timing_def) {
return false;
}
assert(edid->detailed_timing_defs_len < EDID_BYTE_DESCRIPTOR_COUNT);
edid->detailed_timing_defs[edid->detailed_timing_defs_len++] = detailed_timing_def;
return true;
}
if (edid->revision >= 3 && edid->revision <= 4 &&
edid->detailed_timing_defs_len == 0) {
/* Per section 3.10.1 */
add_failure(edid,
"The first byte descriptor must contain the preferred timing.");
}
desc = calloc(1, sizeof(*desc));
if (!desc) {
return false;
}
tag = data[3];
switch (tag) {
case DI_EDID_DISPLAY_DESCRIPTOR_PRODUCT_SERIAL:
case DI_EDID_DISPLAY_DESCRIPTOR_DATA_STRING:
case DI_EDID_DISPLAY_DESCRIPTOR_PRODUCT_NAME:
memcpy(desc->str, &data[5], 13);
/* A newline (if any) indicates the end of the string. */
newline = strchr(desc->str, '\n');
if (newline) {
newline[0] = '\0';
}
break;
case DI_EDID_DISPLAY_DESCRIPTOR_RANGE_LIMITS:
if (!parse_display_range_limits(edid, data, &desc->range_limits)) {
free(desc);
return true;
}
break;
case DI_EDID_DISPLAY_DESCRIPTOR_STD_TIMING_IDS:
if (!parse_standard_timings_descriptor(edid, data, desc)) {
free(desc);
return false;
}
break;
case DI_EDID_DISPLAY_DESCRIPTOR_ESTABLISHED_TIMINGS_III:
parse_established_timings_iii_descriptor(edid, data, desc);
break;
case DI_EDID_DISPLAY_DESCRIPTOR_COLOR_POINT:
if (!parse_color_point_descriptor(edid, data, desc)) {
free(desc);
return false;
}
break;
case DI_EDID_DISPLAY_DESCRIPTOR_DCM_DATA:
parse_color_management_data_descriptor(edid, data, desc);
break;
case DI_EDID_DISPLAY_DESCRIPTOR_CVT_TIMING_CODES:
if (!parse_cvt_timing_codes_descriptor(edid, data, desc)) {
free(desc);
return false;
}
break;
case DI_EDID_DISPLAY_DESCRIPTOR_DUMMY:
break; /* Ignore */
default:
free(desc);
if (tag <= 0x0F) {
/* Manufacturer-specific */
} else {
add_failure_until(edid, 4, "Unknown Type 0x%02hhx.", tag);
}
return true;
}
desc->tag = tag;
assert(edid->display_descriptors_len < EDID_BYTE_DESCRIPTOR_COUNT);
edid->display_descriptors[edid->display_descriptors_len++] = desc;
return true;
}
static bool
parse_ext(struct di_edid *edid, const uint8_t data[static EDID_BLOCK_SIZE])
{
struct di_edid_ext *ext;
uint8_t tag;
struct di_logger logger;
char section_name[64];
if (!validate_block_checksum(data)) {
errno = EINVAL;
return false;
}
ext = calloc(1, sizeof(*ext));
if (!ext) {
return false;
}
tag = data[0x00];
switch (tag) {
case DI_EDID_EXT_CEA:
snprintf(section_name, sizeof(section_name),
"Block %zu, CTA-861 Extension Block",
edid->exts_len + 1);
logger = (struct di_logger) {
.f = edid->logger->f,
.section = section_name,
};
if (!_di_edid_cta_parse(&ext->cta, data, EDID_BLOCK_SIZE, &logger)) {
free(ext);
return errno == EINVAL;
}
break;
case DI_EDID_EXT_VTB:
case DI_EDID_EXT_DI:
case DI_EDID_EXT_LS:
case DI_EDID_EXT_DPVL:
case DI_EDID_EXT_BLOCK_MAP:
case DI_EDID_EXT_VENDOR:
/* Supported */
break;
case DI_EDID_EXT_DISPLAYID:
snprintf(section_name, sizeof(section_name),
"Block %zu, DisplayID Extension Block",
edid->exts_len + 1);
logger = (struct di_logger) {
.f = edid->logger->f,
.section = section_name,
};
if (!_di_displayid_parse(&ext->displayid, &data[1],
EDID_BLOCK_SIZE - 2, &logger)) {
free(ext);
return errno == ENOTSUP || errno == EINVAL;
}
break;
default:
/* Unsupported */
free(ext);
add_failure_until(edid, 4, "Unknown Extension Block.");
return true;
}
ext->tag = tag;
assert(edid->exts_len < EDID_MAX_BLOCK_COUNT - 1);
edid->exts[edid->exts_len++] = ext;
return true;
}
struct di_edid *
_di_edid_parse(const void *data, size_t size, FILE *failure_msg_file)
{
struct di_edid *edid;
struct di_logger logger;
int version, revision;
size_t exts_len, parsed_ext_len, i;
const uint8_t *standard_timing_data, *byte_desc_data, *ext_data;
struct di_edid_standard_timing *standard_timing;
if (size < EDID_BLOCK_SIZE) {
errno = EINVAL;
return NULL;
}
if (memcmp(data, header, sizeof(header)) != 0) {
errno = EINVAL;
return NULL;
}
parse_version_revision(data, &version, &revision);
if (version != 1) {
/* Only EDID version 1 is supported -- as per section 2.1.7
* subsequent versions break the structure */
errno = ENOTSUP;
return NULL;
}
if (!validate_block_checksum(data)) {
errno = EINVAL;
return NULL;
}
edid = calloc(1, sizeof(*edid));
if (!edid) {
return NULL;
}
logger = (struct di_logger) {
.f = failure_msg_file,
.section = "Block 0, Base EDID",
};
edid->logger = &logger;
edid->version = version;
edid->revision = revision;
if (size % EDID_BLOCK_SIZE != 0)
add_failure(edid, "The data is not a multiple of the block size.");
if (size > EDID_MAX_BLOCK_COUNT * EDID_BLOCK_SIZE)
add_failure(edid, "The data is exceeding the maximum block count.");
exts_len = (size / EDID_BLOCK_SIZE) - 1;
parsed_ext_len = parse_ext_count(data);
if (exts_len != parsed_ext_len)
add_failure(edid, "The data size does not match the encoded block count.");
if (parsed_ext_len < exts_len)
exts_len = parsed_ext_len;
assert(exts_len < EDID_MAX_BLOCK_COUNT);
parse_vendor_product(edid, data);
parse_basic_params_features(edid, data);
parse_chromaticity_coords(edid, data);
parse_established_timings_i_ii(edid, data);
for (i = 0; i < EDID_MAX_STANDARD_TIMING_COUNT; i++) {
standard_timing_data = (const uint8_t *) data
+ 0x26 + i * EDID_STANDARD_TIMING_SIZE;
if (!parse_standard_timing(edid, standard_timing_data,
&standard_timing)) {
_di_edid_destroy(edid);
return NULL;
}
if (standard_timing) {
assert(edid->standard_timings_len < EDID_MAX_STANDARD_TIMING_COUNT);
edid->standard_timings[edid->standard_timings_len++] = standard_timing;
}
}
for (i = 0; i < EDID_BYTE_DESCRIPTOR_COUNT; i++) {
byte_desc_data = (const uint8_t *) data
+ 0x36 + i * EDID_BYTE_DESCRIPTOR_SIZE;
if (!parse_byte_descriptor(edid, byte_desc_data)) {
_di_edid_destroy(edid);
return NULL;
}
}
for (i = 0; i < exts_len; i++) {
ext_data = (const uint8_t *) data + (i + 1) * EDID_BLOCK_SIZE;
if (!parse_ext(edid, ext_data)) {
_di_edid_destroy(edid);
return NULL;
}
}
edid->logger = NULL;
return edid;
}
static void
destroy_display_descriptor(struct di_edid_display_descriptor *desc)
{
size_t i;
switch (desc->tag) {
case DI_EDID_DISPLAY_DESCRIPTOR_STD_TIMING_IDS:
for (i = 0; i < desc->standard_timings_len; i++) {
free(desc->standard_timings[i]);
}
break;
case DI_EDID_DISPLAY_DESCRIPTOR_COLOR_POINT:
for (i = 0; i < desc->color_points_len; i++) {
free(desc->color_points[i]);
}
break;
case DI_EDID_DISPLAY_DESCRIPTOR_CVT_TIMING_CODES:
for (i = 0; i < desc->cvt_timing_codes_len; i++) {
free(desc->cvt_timing_codes[i]);
}
break;
default:
break; /* Nothing to do */
}
free(desc);
}
void
_di_edid_destroy(struct di_edid *edid)
{
size_t i;
struct di_edid_ext *ext;
for (i = 0; i < edid->standard_timings_len; i++) {
free(edid->standard_timings[i]);
}
for (i = 0; i < edid->detailed_timing_defs_len; i++) {
free(edid->detailed_timing_defs[i]);
}
for (i = 0; i < edid->display_descriptors_len; i++) {
destroy_display_descriptor(edid->display_descriptors[i]);
}
for (i = 0; edid->exts[i] != NULL; i++) {
ext = edid->exts[i];
switch (ext->tag) {
case DI_EDID_EXT_CEA:
_di_edid_cta_finish(&ext->cta);
break;
case DI_EDID_EXT_DISPLAYID:
_di_displayid_finish(&ext->displayid);
break;
default:
break; /* Nothing to do */
}
free(ext);
}
free(edid);
}
int
di_edid_get_version(const struct di_edid *edid)
{
return edid->version;
}
int
di_edid_get_revision(const struct di_edid *edid)
{
return edid->revision;
}
const struct di_edid_vendor_product *
di_edid_get_vendor_product(const struct di_edid *edid)
{
return &edid->vendor_product;
}
const struct di_edid_video_input_analog *
di_edid_get_video_input_analog(const struct di_edid *edid)
{
return edid->is_digital ? NULL : &edid->video_input_analog;
}
const struct di_edid_video_input_digital *
di_edid_get_video_input_digital(const struct di_edid *edid)
{
return edid->is_digital ? &edid->video_input_digital : NULL;
}
const struct di_edid_screen_size *
di_edid_get_screen_size(const struct di_edid *edid)
{
return &edid->screen_size;
}
float
di_edid_get_basic_gamma(const struct di_edid *edid)
{
return edid->gamma;
}
const struct di_edid_dpms *
di_edid_get_dpms(const struct di_edid *edid)
{
return &edid->dpms;
}
enum di_edid_display_color_type
di_edid_get_display_color_type(const struct di_edid *edid)
{
return edid->display_color_type;
}
const struct di_edid_color_encoding_formats *
di_edid_get_color_encoding_formats(const struct di_edid *edid)
{
/* If color encoding formats are specified, RGB 4:4:4 is always
* supported. */
return edid->color_encoding_formats.rgb444 ? &edid->color_encoding_formats : NULL;
}
const struct di_edid_misc_features *
di_edid_get_misc_features(const struct di_edid *edid)
{
return &edid->misc_features;
}
const struct di_edid_chromaticity_coords *
di_edid_get_chromaticity_coords(const struct di_edid *edid)
{
return &edid->chromaticity_coords;
}
const struct di_edid_established_timings_i_ii *
di_edid_get_established_timings_i_ii(const struct di_edid *edid)
{
return &edid->established_timings_i_ii;
}
int32_t
di_edid_standard_timing_get_vert_video(const struct di_edid_standard_timing *t)
{
switch (t->aspect_ratio) {
case DI_EDID_STANDARD_TIMING_16_10:
return t->horiz_video * 10 / 16;
case DI_EDID_STANDARD_TIMING_4_3:
return t->horiz_video * 3 / 4;
case DI_EDID_STANDARD_TIMING_5_4:
return t->horiz_video * 4 / 5;
case DI_EDID_STANDARD_TIMING_16_9:
return t->horiz_video * 9 / 16;
}
abort(); /* unreachable */
}
const struct di_dmt_timing *
di_edid_standard_timing_get_dmt(const struct di_edid_standard_timing *t)
{
int32_t vert_video;
size_t i;
const struct di_dmt_timing *dmt;
vert_video = di_edid_standard_timing_get_vert_video(t);
for (i = 0; i < _di_dmt_timings_len; i++) {
dmt = &_di_dmt_timings[i];
if (dmt->horiz_video == t->horiz_video
&& dmt->vert_video == vert_video
&& dmt->refresh_rate_hz == (float)t->refresh_rate_hz
&& dmt->edid_std_id != 0) {
return dmt;
}
}
return 0;
}
const struct di_edid_standard_timing *const *
di_edid_get_standard_timings(const struct di_edid *edid)
{
return (const struct di_edid_standard_timing *const *) &edid->standard_timings;
}
const struct di_edid_detailed_timing_def *const *
di_edid_get_detailed_timing_defs(const struct di_edid *edid)
{
return (const struct di_edid_detailed_timing_def *const *) &edid->detailed_timing_defs;
}
const struct di_edid_display_descriptor *const *
di_edid_get_display_descriptors(const struct di_edid *edid)
{
return (const struct di_edid_display_descriptor *const *) &edid->display_descriptors;
}
enum di_edid_display_descriptor_tag
di_edid_display_descriptor_get_tag(const struct di_edid_display_descriptor *desc)
{
return desc->tag;
}
const char *
di_edid_display_descriptor_get_string(const struct di_edid_display_descriptor *desc)
{
switch (desc->tag) {
case DI_EDID_DISPLAY_DESCRIPTOR_PRODUCT_SERIAL:
case DI_EDID_DISPLAY_DESCRIPTOR_DATA_STRING:
case DI_EDID_DISPLAY_DESCRIPTOR_PRODUCT_NAME:
return desc->str;
default:
return NULL;
}
}
const struct di_edid_display_range_limits *
di_edid_display_descriptor_get_range_limits(const struct di_edid_display_descriptor *desc)
{
if (desc->tag != DI_EDID_DISPLAY_DESCRIPTOR_RANGE_LIMITS) {
return NULL;
}
return &desc->range_limits.base;
}
const struct di_edid_standard_timing *const *
di_edid_display_descriptor_get_standard_timings(const struct di_edid_display_descriptor *desc)
{
if (desc->tag != DI_EDID_DISPLAY_DESCRIPTOR_STD_TIMING_IDS) {
return NULL;
}
return (const struct di_edid_standard_timing *const *) desc->standard_timings;
}
const struct di_edid_color_point *const *
di_edid_display_descriptor_get_color_points(const struct di_edid_display_descriptor *desc)
{
if (desc->tag != DI_EDID_DISPLAY_DESCRIPTOR_COLOR_POINT) {
return NULL;
}
return (const struct di_edid_color_point *const *) desc->color_points;
}
const struct di_dmt_timing *const *
di_edid_display_descriptor_get_established_timings_iii(const struct di_edid_display_descriptor *desc)
{
if (desc->tag != DI_EDID_DISPLAY_DESCRIPTOR_ESTABLISHED_TIMINGS_III) {
return NULL;
}
return desc->established_timings_iii;
}
const struct di_edid_color_management_data *
di_edid_display_descriptor_get_color_management_data(const struct di_edid_display_descriptor *desc)
{
if (desc->tag != DI_EDID_DISPLAY_DESCRIPTOR_DCM_DATA) {
return NULL;
}
return &desc->dcm_data;
}
const struct di_edid_cvt_timing_code *const *
di_edid_display_descriptor_get_cvt_timing_codes(const struct di_edid_display_descriptor *desc)
{
if (desc->tag != DI_EDID_DISPLAY_DESCRIPTOR_CVT_TIMING_CODES) {
return NULL;
}
return (const struct di_edid_cvt_timing_code *const *) desc->cvt_timing_codes;
}
const struct di_edid_ext *const *
di_edid_get_extensions(const struct di_edid *edid)
{
return (const struct di_edid_ext *const *) edid->exts;
}
enum di_edid_ext_tag
di_edid_ext_get_tag(const struct di_edid_ext *ext)
{
return ext->tag;
}
const struct di_edid_cta *
di_edid_ext_get_cta(const struct di_edid_ext *ext)
{
if (ext->tag != DI_EDID_EXT_CEA) {
return NULL;
}
return &ext->cta;
}
const struct di_displayid *
di_edid_ext_get_displayid(const struct di_edid_ext *ext)
{
if (ext->tag != DI_EDID_EXT_DISPLAYID) {
return NULL;
}
return &ext->displayid;
}