leocad/common/lc_meshloader.cpp
2024-05-26 13:01:34 -07:00

1486 lines
47 KiB
C++

#include "lc_global.h"
#include "lc_meshloader.h"
#include "lc_file.h"
#include "lc_colors.h"
#include "lc_library.h"
#include "lc_application.h"
#include "lc_texture.h"
static void lcCheckTexCoordsWrap(const lcVector4& Plane2, const lcVector3 (&Positions)[3], lcVector2 (&TexCoords)[3])
{
lcVector2& TexCoords1 = TexCoords[0];
lcVector2& TexCoords2 = TexCoords[1];
lcVector2& TexCoords3 = TexCoords[2];
const float u12 = fabsf(TexCoords1.x - TexCoords2.x);
const float u13 = fabsf(TexCoords1.x - TexCoords3.x);
const float u23 = fabsf(TexCoords2.x - TexCoords3.x);
if (u12 < 0.5f && u13 < 0.5f && u23 < 0.5f)
return;
const float Dot1 = fabsf(lcDot(Plane2, lcVector4(Positions[0], 1.0f)));
const float Dot2 = fabsf(lcDot(Plane2, lcVector4(Positions[1], 1.0f)));
const float Dot3 = fabsf(lcDot(Plane2, lcVector4(Positions[2], 1.0f)));
if (Dot1 > Dot2)
{
if (Dot1 > Dot3)
{
if (u12 > 0.5f)
TexCoords2.x += TexCoords2.x < 0.5f ? 1.0f : -1.0f;
if (u13 > 0.5f)
TexCoords3.x += TexCoords3.x < 0.5f ? 1.0f : -1.0f;
}
else
{
if (u13 > 0.5f)
TexCoords1.x += TexCoords1.x < 0.5f ? 1.0f : -1.0f;
if (u23 > 0.5f)
TexCoords2.x += TexCoords2.x < 0.5f ? 1.0f : -1.0f;
}
}
else
{
if (Dot2 > Dot3)
{
if (u12 > 0.5f)
TexCoords1.x += TexCoords1.x < 0.5f ? 1.0f : -1.0f;
if (u23 > 0.5f)
TexCoords3.x += TexCoords3.x < 0.5f ? 1.0f : -1.0f;
}
else
{
if (u13 > 0.5f)
TexCoords1.x += TexCoords1.x < 0.5f ? 1.0f : -1.0f;
if (u23 > 0.5f)
TexCoords2.x += TexCoords2.x < 0.5f ? 1.0f : -1.0f;
}
}
}
static void lcCheckTexCoordsPole(const lcVector4& FrontPlane, const lcVector4& Plane2, const lcVector3(&Positions)[3], lcVector2(&TexCoords)[3])
{
int PoleIndex;
int EdgeIndex1, EdgeIndex2;
if (fabsf(lcDot(lcVector4(Positions[0], 1.0f), FrontPlane)) < 0.01f && fabsf(lcDot(lcVector4(Positions[0], 1.0f), Plane2)) < 0.01f)
{
PoleIndex = 0;
EdgeIndex1 = 1;
EdgeIndex2 = 2;
}
else if (fabsf(lcDot(lcVector4(Positions[1], 1.0f), FrontPlane)) < 0.01f && fabsf(lcDot(lcVector4(Positions[1], 1.0f), Plane2)) < 0.01f)
{
PoleIndex = 1;
EdgeIndex1 = 0;
EdgeIndex2 = 2;
}
else if (fabsf(lcDot(lcVector4(Positions[2], 1.0f), FrontPlane)) < 0.01f && fabsf(lcDot(lcVector4(Positions[2], 1.0f), Plane2)) < 0.01f)
{
PoleIndex = 2;
EdgeIndex1 = 0;
EdgeIndex2 = 1;
}
else
return;
const lcVector3 OppositeEdge = Positions[EdgeIndex2] - Positions[EdgeIndex1];
const lcVector3 SideEdge = Positions[PoleIndex] - Positions[EdgeIndex1];
const float OppositeLength = lcLength(OppositeEdge);
const float Projection = lcDot(OppositeEdge, SideEdge) / (OppositeLength * OppositeLength);
TexCoords[PoleIndex].x = TexCoords[EdgeIndex1].x + (TexCoords[EdgeIndex2].x - TexCoords[EdgeIndex1].x) * Projection;
}
static void lcResequenceQuad(int* Indices, int a, int b, int c, int d)
{
Indices[0] = a;
Indices[1] = b;
Indices[2] = c;
Indices[3] = d;
}
static void lcTestQuad(int (&TriangleIndices)[2][3], const lcVector3 (&Vertices)[4])
{
const lcVector3 v01 = Vertices[1] - Vertices[0];
const lcVector3 v02 = Vertices[2] - Vertices[0];
const lcVector3 v03 = Vertices[3] - Vertices[0];
const lcVector3 cp1 = lcCross(v01, v02);
const lcVector3 cp2 = lcCross(v02, v03);
if (lcDot(cp1, cp2) > 0.0f)
return;
const lcVector3 v12 = Vertices[2] - Vertices[1];
const lcVector3 v13 = Vertices[3] - Vertices[1];
const lcVector3 v23 = Vertices[3] - Vertices[2];
int QuadIndices[4] = { 0, 1, 2, 3 };
if (lcDot(lcCross(v12, v01), lcCross(v01, v13)) > 0.0f)
{
if (-lcDot(lcCross(v02, v12), lcCross(v12, v23)) > 0.0f)
lcResequenceQuad(QuadIndices, 1, 2, 3, 0);
else
lcResequenceQuad(QuadIndices, 0, 3, 1, 2);
}
else
{
if (-lcDot(lcCross(v02, v12), lcCross(v12, v23)) > 0.0f)
lcResequenceQuad(QuadIndices, 0, 1, 3, 2);
else
lcResequenceQuad(QuadIndices, 1, 2, 3, 0);
}
TriangleIndices[0][0] = QuadIndices[0];
TriangleIndices[0][1] = QuadIndices[1];
TriangleIndices[0][2] = QuadIndices[2];
TriangleIndices[1][0] = QuadIndices[2];
TriangleIndices[1][1] = QuadIndices[3];
TriangleIndices[1][2] = QuadIndices[0];
}
constexpr float lcDistanceEpsilon = 0.01f; // Maximum value for 50591.dat
static bool lcCompareVertices(const lcVector3& Position1, const lcVector3& Position2)
{
return fabsf(Position1.x - Position2.x) < lcDistanceEpsilon && fabsf(Position1.y - Position2.y) < lcDistanceEpsilon && fabsf(Position1.z - Position2.z) < lcDistanceEpsilon;
}
lcMeshLoaderSection* lcMeshLoaderTypeData::AddSection(lcMeshPrimitiveType PrimitiveType, lcMeshLoaderMaterial* Material)
{
for (const std::unique_ptr<lcMeshLoaderSection>& Section : mSections)
if (Section->mMaterial == Material && Section->mPrimitiveType == PrimitiveType)
return Section.get();
mSections.emplace_back(new lcMeshLoaderSection(PrimitiveType, Material));
return mSections.back().get();
}
quint32 lcMeshLoaderTypeData::AddVertex(const lcVector3& Position, bool Optimize)
{
if (Optimize)
{
for (int VertexIdx = mVertices.size() - 1; VertexIdx >= 0; VertexIdx--)
{
const lcMeshLoaderVertex& Vertex = mVertices[VertexIdx];
if (lcCompareVertices(Position, Vertex.Position))
return VertexIdx;
}
}
lcMeshLoaderVertex& Vertex = mVertices.emplace_back();
Vertex.Position = Position;
Vertex.Normal = lcVector3(0.0f, 0.0f, 0.0f);
Vertex.NormalWeight = 0.0f;
return mVertices.size() - 1;
}
quint32 lcMeshLoaderTypeData::AddVertex(const lcVector3& Position, const lcVector3& Normal, float NormalWeight, bool Optimize)
{
if (Optimize)
{
for (int VertexIdx = mVertices.size() - 1; VertexIdx >= 0; VertexIdx--)
{
lcMeshLoaderVertex& Vertex = mVertices[VertexIdx];
if (lcCompareVertices(Position, Vertex.Position))
{
if (Vertex.NormalWeight == 0.0f)
{
Vertex.Normal = Normal;
Vertex.NormalWeight = NormalWeight;
return VertexIdx;
}
else if (lcDot(Normal, Vertex.Normal) > 0.71f)
{
Vertex.Normal = lcNormalize(Vertex.Normal * Vertex.NormalWeight + Normal * NormalWeight);
Vertex.NormalWeight += NormalWeight;
return VertexIdx;
}
}
}
}
lcMeshLoaderVertex& Vertex = mVertices.emplace_back();
Vertex.Position = Position;
Vertex.Normal = Normal;
Vertex.NormalWeight = 1.0f;
return mVertices.size() - 1;
}
quint32 lcMeshLoaderTypeData::AddConditionalVertex(const lcVector3(&Position)[4])
{
lcMeshLoaderConditionalVertex& Vertex = mConditionalVertices.emplace_back();
Vertex.Position[0] = Position[0];
Vertex.Position[1] = Position[1];
Vertex.Position[2] = Position[2];
Vertex.Position[3] = Position[3];
return mConditionalVertices.size() - 1;
}
void lcMeshLoaderTypeData::ProcessLine(int LineType, lcMeshLoaderMaterial* Material, bool WindingCCW, lcVector3 (&Vertices)[4], bool Optimize)
{
constexpr lcMeshPrimitiveType PrimitiveTypes[4] = { LC_MESH_LINES, LC_MESH_TRIANGLES, LC_MESH_TRIANGLES, LC_MESH_CONDITIONAL_LINES };
lcMeshPrimitiveType PrimitiveType = PrimitiveTypes[LineType - 2];
if (Material->Type != lcMeshLoaderMaterialType::Solid && PrimitiveType == LC_MESH_TRIANGLES)
PrimitiveType = LC_MESH_TEXTURED_TRIANGLES;
lcMeshLoaderSection* Section = AddSection(PrimitiveType, Material);
if (LineType == 3 || LineType == 4)
{
int TriangleIndices[2][3] = { { 0, 1, 2 }, { 2, 3, 0 } };
if (LineType == 4)
lcTestQuad(TriangleIndices, Vertices);
lcVector3 Normal = lcNormalize(lcCross(Vertices[1] - Vertices[0], Vertices[2] - Vertices[0]));
if (!WindingCCW)
Normal = -Normal;
for (int TriangleIndex = 0; TriangleIndex < LineType - 2; TriangleIndex++)
{
const lcVector3& Vertex1 = Vertices[TriangleIndices[TriangleIndex][0]];
const lcVector3& Vertex2 = Vertices[TriangleIndices[TriangleIndex][1]];
const lcVector3& Vertex3 = Vertices[TriangleIndices[TriangleIndex][2]];
const lcVector3 Edge1 = lcNormalize(Vertex2 - Vertex1);
const lcVector3 Edge2 = lcNormalize(Vertex3 - Vertex1);
const lcVector3 Edge3 = lcNormalize(Vertex3 - Vertex2);
const float Angle1 = acosf(lcDot(Edge1, Edge2));
const float Angle2 = acosf(lcDot(-Edge1, Edge3));
const float Angle3 = LC_PI - Angle1 - Angle2;
int Indices[3];
Indices[0] = AddVertex(Vertex1, Normal, Angle1, Optimize);
Indices[1] = AddVertex(Vertex2, Normal, Angle2, Optimize);
Indices[2] = AddVertex(Vertex3, Normal, Angle3, Optimize);
if (Indices[0] != Indices[1] && Indices[0] != Indices[2] && Indices[1] != Indices[2])
{
if (WindingCCW)
{
Section->mIndices.emplace_back(Indices[0]);
Section->mIndices.emplace_back(Indices[1]);
Section->mIndices.emplace_back(Indices[2]);
}
else
{
Section->mIndices.emplace_back(Indices[2]);
Section->mIndices.emplace_back(Indices[1]);
Section->mIndices.emplace_back(Indices[0]);
}
}
}
}
else if (LineType == 2)
{
int Indices[2];
Indices[0] = AddVertex(Vertices[0], Optimize);
Indices[1] = AddVertex(Vertices[1], Optimize);
if (Indices[0] != Indices[1])
{
Section->mIndices.emplace_back(Indices[0]);
Section->mIndices.emplace_back(Indices[1]);
}
}
else if (LineType == 5)
{
int Indices[2];
Indices[0] = AddConditionalVertex(Vertices);
Section->mIndices.emplace_back(Indices[0]);
std::swap(Vertices[0], Vertices[1]);
Indices[1] = AddConditionalVertex(Vertices);
Section->mIndices.emplace_back(Indices[1]);
}
}
void lcMeshLoaderTypeData::AddMeshData(const lcMeshLoaderTypeData& Data, const lcMatrix44& Transform, quint32 CurrentColorCode, bool InvertWinding, bool InvertNormals, lcMeshLoaderTextureMap* TextureMap)
{
const lcArray<lcMeshLoaderVertex>& DataVertices = Data.mVertices;
lcArray<quint32> IndexRemap(DataVertices.size());
const lcMatrix33 NormalTransform = lcMatrix33Transpose(lcMatrix33(lcMatrix44Inverse(Transform)));
mVertices.AllocGrow(DataVertices.size());
for (const lcMeshLoaderVertex& DataVertex : DataVertices)
{
const lcVector3 Position = lcMul31(DataVertex.Position, Transform);
int Index;
if (DataVertex.NormalWeight == 0.0f)
Index = AddVertex(Position, true);
else
{
lcVector3 Normal = lcNormalize(lcMul(DataVertex.Normal, NormalTransform));
if (InvertNormals)
Normal = -Normal;
Index = AddVertex(Position, Normal, DataVertex.NormalWeight, true);
}
IndexRemap.emplace_back(Index);
}
mConditionalVertices.AllocGrow(Data.mConditionalVertices.size());
lcArray<quint32> ConditionalRemap(Data.mConditionalVertices.size());
for (const lcMeshLoaderConditionalVertex& DataVertex : Data.mConditionalVertices)
{
lcVector3 Position[4];
Position[0] = lcMul31(DataVertex.Position[0], Transform);
Position[1] = lcMul31(DataVertex.Position[1], Transform);
Position[2] = lcMul31(DataVertex.Position[2], Transform);
Position[3] = lcMul31(DataVertex.Position[3], Transform);
const int Index = AddConditionalVertex(Position);
ConditionalRemap.emplace_back(Index);
}
for (const std::unique_ptr<lcMeshLoaderSection>& SrcSection : Data.mSections)
{
const quint32 ColorCode = SrcSection->mMaterial->Color == 16 ? CurrentColorCode : SrcSection->mMaterial->Color;
lcMeshPrimitiveType PrimitiveType = SrcSection->mPrimitiveType;
lcMeshLoaderSection* DstSection;
if (SrcSection->mMaterial->Type != lcMeshLoaderMaterialType::Solid)
{
lcMeshLoaderTextureMap DstTextureMap = *TextureMap;
for (lcVector3& Point : DstTextureMap.Points)
Point = lcMul31(Point, Transform);
DstSection = AddSection(PrimitiveType, mMeshData->GetTexturedMaterial(ColorCode, DstTextureMap));
}
else if (TextureMap && SrcSection->mPrimitiveType == LC_MESH_TRIANGLES)
{
PrimitiveType = LC_MESH_TEXTURED_TRIANGLES;
DstSection = AddSection(PrimitiveType, mMeshData->GetTexturedMaterial(ColorCode, *TextureMap));
}
else
{
DstSection = AddSection(PrimitiveType, mMeshData->GetMaterial(ColorCode));
}
DstSection->mIndices.AllocGrow(SrcSection->mIndices.size());
if (PrimitiveType == LC_MESH_CONDITIONAL_LINES)
{
for (const quint32 Index : SrcSection->mIndices)
DstSection->mIndices.emplace_back(ConditionalRemap[Index]);
}
else if (!InvertWinding || (PrimitiveType == LC_MESH_LINES))
{
for (const quint32 Index : SrcSection->mIndices)
DstSection->mIndices.emplace_back(IndexRemap[Index]);
}
else
{
for (int IndexIdx = 0; IndexIdx < SrcSection->mIndices.size(); IndexIdx += 3)
{
DstSection->mIndices.emplace_back(IndexRemap[SrcSection->mIndices[IndexIdx + 2]]);
DstSection->mIndices.emplace_back(IndexRemap[SrcSection->mIndices[IndexIdx + 1]]);
DstSection->mIndices.emplace_back(IndexRemap[SrcSection->mIndices[IndexIdx + 0]]);
}
}
}
}
void lcMeshLoaderTypeData::AddMeshDataNoDuplicateCheck(const lcMeshLoaderTypeData& Data, const lcMatrix44& Transform, quint32 CurrentColorCode, bool InvertWinding, bool InvertNormals, lcMeshLoaderTextureMap* TextureMap)
{
const lcArray<lcMeshLoaderVertex>& DataVertices = Data.mVertices;
quint32 BaseIndex;
const lcMatrix33 NormalTransform = lcMatrix33Transpose(lcMatrix33(lcMatrix44Inverse(Transform)));
BaseIndex = mVertices.size();
mVertices.SetGrow(lcMin(mVertices.size(), 8 * 1024 * 1024));
mVertices.AllocGrow(DataVertices.size());
for (int SrcVertexIdx = 0; SrcVertexIdx < DataVertices.size(); SrcVertexIdx++)
{
const lcMeshLoaderVertex& SrcVertex = DataVertices[SrcVertexIdx];
lcMeshLoaderVertex& DstVertex = mVertices.emplace_back();
DstVertex.Position = lcMul31(SrcVertex.Position, Transform);
DstVertex.Normal = lcNormalize(lcMul(SrcVertex.Normal, NormalTransform));
if (InvertNormals)
DstVertex.Normal = -DstVertex.Normal;
DstVertex.NormalWeight = SrcVertex.NormalWeight;
}
mConditionalVertices.AllocGrow(Data.mConditionalVertices.size());
const quint32 BaseConditional = mConditionalVertices.size();
for (const lcMeshLoaderConditionalVertex& DataVertex : Data.mConditionalVertices)
{
lcMeshLoaderConditionalVertex& Vertex = mConditionalVertices.emplace_back();
Vertex.Position[0] = lcMul31(DataVertex.Position[0], Transform);
Vertex.Position[1] = lcMul31(DataVertex.Position[1], Transform);
Vertex.Position[2] = lcMul31(DataVertex.Position[2], Transform);
Vertex.Position[3] = lcMul31(DataVertex.Position[3], Transform);
}
for (const std::unique_ptr<lcMeshLoaderSection>& SrcSection : Data.mSections)
{
const quint32 ColorCode = SrcSection->mMaterial->Color == 16 ? CurrentColorCode : SrcSection->mMaterial->Color;
lcMeshPrimitiveType PrimitiveType = SrcSection->mPrimitiveType;
lcMeshLoaderSection* DstSection;
if (SrcSection->mMaterial->Type != lcMeshLoaderMaterialType::Solid)
{
lcMeshLoaderTextureMap DstTextureMap = *TextureMap;
for (lcVector3& Point : DstTextureMap.Points)
Point = lcMul31(Point, Transform);
DstSection = AddSection(PrimitiveType, mMeshData->GetTexturedMaterial(ColorCode, DstTextureMap));
}
else if (TextureMap && SrcSection->mPrimitiveType == LC_MESH_TRIANGLES)
{
PrimitiveType = LC_MESH_TEXTURED_TRIANGLES;
DstSection = AddSection(PrimitiveType, mMeshData->GetTexturedMaterial(ColorCode, *TextureMap));
}
else
{
DstSection = AddSection(PrimitiveType, mMeshData->GetMaterial(ColorCode));
}
DstSection->mIndices.SetGrow(lcMin(DstSection->mIndices.size(), 8 * 1024 * 1024));
DstSection->mIndices.AllocGrow(SrcSection->mIndices.size());
if (PrimitiveType == LC_MESH_CONDITIONAL_LINES)
{
for (const quint32 Index : SrcSection->mIndices)
DstSection->mIndices.emplace_back(BaseConditional + Index);
}
else if (!InvertWinding || (PrimitiveType == LC_MESH_LINES))
{
for (const quint32 Index : SrcSection->mIndices)
DstSection->mIndices.emplace_back(BaseIndex + Index);
}
else
{
for (int IndexIdx = 0; IndexIdx < SrcSection->mIndices.size(); IndexIdx += 3)
{
DstSection->mIndices.emplace_back(BaseIndex + SrcSection->mIndices[IndexIdx + 2]);
DstSection->mIndices.emplace_back(BaseIndex + SrcSection->mIndices[IndexIdx + 1]);
DstSection->mIndices.emplace_back(BaseIndex + SrcSection->mIndices[IndexIdx + 0]);
}
}
}
}
void lcLibraryMeshData::AddVertices(lcMeshDataType MeshDataType, int VertexCount, int* BaseVertex, lcMeshLoaderVertex** VertexBuffer)
{
lcArray<lcMeshLoaderVertex>& Vertices = mData[MeshDataType].mVertices;
int CurrentSize = Vertices.size();
Vertices.resize(CurrentSize + VertexCount);
*BaseVertex = CurrentSize;
*VertexBuffer = &Vertices[CurrentSize];
}
void lcLibraryMeshData::AddIndices(lcMeshDataType MeshDataType, lcMeshPrimitiveType PrimitiveType, quint32 ColorCode, int IndexCount, quint32** IndexBuffer)
{
lcMeshLoaderSection* Section = mData[MeshDataType].AddSection(PrimitiveType, GetMaterial(ColorCode));
lcArray<quint32>& Indices = Section->mIndices;
const int CurrentSize = Indices.size();
Indices.resize(CurrentSize + IndexCount);
*IndexBuffer = &Indices[CurrentSize];
}
void lcLibraryMeshData::AddMeshData(const lcLibraryMeshData& Data, const lcMatrix44& Transform, quint32 CurrentColorCode, bool InvertWinding, bool InvertNormals, lcMeshLoaderTextureMap* TextureMap, lcMeshDataType OverrideDestIndex)
{
for (int MeshDataIdx = 0; MeshDataIdx < LC_NUM_MESHDATA_TYPES; MeshDataIdx++)
{
const int DestIndex = OverrideDestIndex == LC_MESHDATA_SHARED ? MeshDataIdx : OverrideDestIndex;
mData[DestIndex].AddMeshData(Data.mData[MeshDataIdx], Transform, CurrentColorCode, InvertWinding, InvertNormals, TextureMap);
}
mHasTextures |= (Data.mHasTextures || TextureMap);
}
void lcLibraryMeshData::AddMeshDataNoDuplicateCheck(const lcLibraryMeshData& Data, const lcMatrix44& Transform, quint32 CurrentColorCode, bool InvertWinding, bool InvertNormals, lcMeshLoaderTextureMap* TextureMap, lcMeshDataType OverrideDestIndex)
{
for (int MeshDataIdx = 0; MeshDataIdx < LC_NUM_MESHDATA_TYPES; MeshDataIdx++)
{
const int DestIndex = OverrideDestIndex == LC_MESHDATA_SHARED ? MeshDataIdx : OverrideDestIndex;
mData[DestIndex].AddMeshDataNoDuplicateCheck(Data.mData[MeshDataIdx], Transform, CurrentColorCode, InvertWinding, InvertNormals, TextureMap);
}
mHasTextures |= (Data.mHasTextures || TextureMap);
}
lcMeshLoaderMaterial* lcLibraryMeshData::GetMaterial(quint32 ColorCode)
{
for (const std::unique_ptr<lcMeshLoaderMaterial>& Material : mMaterials)
if (Material->Type == lcMeshLoaderMaterialType::Solid && Material->Color == ColorCode)
return Material.get();
lcMeshLoaderMaterial* Material = new lcMeshLoaderMaterial();
mMaterials.emplace_back(Material);
Material->Type = lcMeshLoaderMaterialType::Solid;
Material->Color = ColorCode;
return Material;
}
lcMeshLoaderMaterial* lcLibraryMeshData::GetTexturedMaterial(quint32 ColorCode, const lcMeshLoaderTextureMap& TextureMap)
{
for (const std::unique_ptr<lcMeshLoaderMaterial>& Material : mMaterials)
{
if (Material->Type != TextureMap.Type || Material->Color != ColorCode)
continue;
if (strcmp(Material->Name, TextureMap.Name))
continue;
if (Material->Points[0] != TextureMap.Points[0] || Material->Points[1] != TextureMap.Points[1] || Material->Points[2] != TextureMap.Points[2])
continue;
if (Material->Type == lcMeshLoaderMaterialType::Cylindrical)
{
if (Material->Angles[0] != TextureMap.Angles[0])
continue;
}
else if (Material->Type == lcMeshLoaderMaterialType::Spherical)
{
if (Material->Angles[0] != TextureMap.Angles[0] || Material->Angles[1] != TextureMap.Angles[1])
continue;
}
return Material.get();
}
lcMeshLoaderMaterial* Material = new lcMeshLoaderMaterial();
mMaterials.emplace_back(Material);
Material->Type = TextureMap.Type;
Material->Color = ColorCode;
Material->Points[0] = TextureMap.Points[0];
Material->Points[1] = TextureMap.Points[1];
Material->Points[2] = TextureMap.Points[2];
Material->Angles[0] = TextureMap.Angles[0];
Material->Angles[1] = TextureMap.Angles[1];
strcpy(Material->Name, TextureMap.Name);
return Material;
}
static bool lcMeshLoaderFinalSectionCompare(const lcMeshLoaderFinalSection& a, const lcMeshLoaderFinalSection& b)
{
if (a.PrimitiveType != b.PrimitiveType)
{
const lcMeshPrimitiveType PrimitiveOrder[LC_MESH_NUM_PRIMITIVE_TYPES] =
{
LC_MESH_TRIANGLES,
LC_MESH_TEXTURED_TRIANGLES,
LC_MESH_LINES,
LC_MESH_CONDITIONAL_LINES
};
for (int PrimitiveType = 0; PrimitiveType < LC_MESH_NUM_PRIMITIVE_TYPES; PrimitiveType++)
{
const lcMeshPrimitiveType Primitive = PrimitiveOrder[PrimitiveType];
if (a.PrimitiveType == Primitive)
return true;
if (b.PrimitiveType == Primitive)
return false;
}
}
const bool TranslucentA = lcIsColorTranslucent(a.Color);
const bool TranslucentB = lcIsColorTranslucent(b.Color);
if (TranslucentA != TranslucentB)
return !TranslucentA;
return a.Color > b.Color;
}
quint32 lcLibraryMeshData::AddTexturedVertex(const lcVector3& Position, const lcVector3& Normal, const lcVector2& TexCoords)
{
for (int VertexIndex = mTexturedVertices.size() - 1; VertexIndex >= 0; VertexIndex--)
{
const lcMeshLoaderTexturedVertex& Vertex = mTexturedVertices[VertexIndex];
if (Vertex.Position == Position && Vertex.Normal == Normal && Vertex.TexCoords == TexCoords)
return VertexIndex;
}
lcMeshLoaderTexturedVertex& Vertex = mTexturedVertices.emplace_back();
Vertex.Position = Position;
Vertex.Normal = Normal;
Vertex.TexCoords = TexCoords;
return mTexturedVertices.size() - 1;
}
void lcLibraryMeshData::GeneratePlanarTexcoords(lcMeshLoaderSection* Section, const lcMeshLoaderTypeData& Data)
{
const lcMeshLoaderMaterial* Material = Section->mMaterial;
lcVector4 Planes[2];
for (int EdgeIdx = 0; EdgeIdx < 2; EdgeIdx++)
{
lcVector3 Normal = Material->Points[EdgeIdx + 1] - Material->Points[0];
const float Length = lcLength(Normal);
Normal /= Length;
Planes[EdgeIdx].x = Normal.x / Length;
Planes[EdgeIdx].y = Normal.y / Length;
Planes[EdgeIdx].z = Normal.z / Length;
Planes[EdgeIdx].w = -lcDot(Normal, Material->Points[0]) / Length;
}
for (quint32& Index : Section->mIndices)
{
const lcMeshLoaderVertex& SrcVertex = Data.mVertices[Index];
const lcVector2 TexCoords(lcDot3(SrcVertex.Position, Planes[0]) + Planes[0].w, lcDot3(SrcVertex.Position, Planes[1]) + Planes[1].w);
Index = AddTexturedVertex(SrcVertex.Position, SrcVertex.Normal, TexCoords);
}
}
void lcLibraryMeshData::GenerateCylindricalTexcoords(lcMeshLoaderSection* Section, const lcMeshLoaderTypeData& Data)
{
const lcMeshLoaderMaterial* Material = Section->mMaterial;
const lcVector3 Up = Material->Points[0] - Material->Points[1];
const float UpLength = lcLength(Up);
const lcVector3 Front = lcNormalize(Material->Points[2] - Material->Points[1]);
const lcVector3 Plane1Normal = Up / UpLength;
const lcVector3 Plane2Normal = lcNormalize(lcCross(Front, Up));
const lcVector4 FrontPlane = lcVector4(Front, -lcDot(Front, Material->Points[1]));
const lcVector4 Plane1 = lcVector4(Plane1Normal, -lcDot(Plane1Normal, Material->Points[1]));
const lcVector4 Plane2 = lcVector4(Plane2Normal, -lcDot(Plane2Normal, Material->Points[1]));
const float Angle = 360.0f / Material->Angles[0];
for (int TriangleIndex = 0; TriangleIndex < Section->mIndices.size(); TriangleIndex += 3)
{
const lcVector3 Positions[3] =
{
Data.mVertices[Section->mIndices[TriangleIndex + 0]].Position,
Data.mVertices[Section->mIndices[TriangleIndex + 1]].Position,
Data.mVertices[Section->mIndices[TriangleIndex + 2]].Position
};
lcVector2 TexCoords[3];
for (int CornerIndex = 0; CornerIndex < 3; CornerIndex++)
{
const float DotPlane1 = lcDot(lcVector4(Positions[CornerIndex], 1.0f), Plane1);
const lcVector3 PointInPlane1 = Positions[CornerIndex] - lcVector3(Plane1) * DotPlane1;
const float DotFrontPlane = lcDot(lcVector4(PointInPlane1, 1.0f), FrontPlane);
const float DotPlane2 = lcDot(lcVector4(PointInPlane1, 1.0f), Plane2);
const float Angle1 = atan2f(DotPlane2, DotFrontPlane) / LC_PI * Angle;
TexCoords[CornerIndex].x = lcClamp(0.5f + 0.5f * Angle1, 0.0f, 1.0f);
TexCoords[CornerIndex].y = DotPlane1 / UpLength;
}
lcCheckTexCoordsWrap(Plane2, Positions, TexCoords);
for (int CornerIndex = 0; CornerIndex < 3; CornerIndex++)
Section->mIndices[TriangleIndex + CornerIndex] = AddTexturedVertex(Positions[CornerIndex], Data.mVertices[Section->mIndices[TriangleIndex + CornerIndex]].Normal, TexCoords[CornerIndex]);
}
}
void lcLibraryMeshData::GenerateSphericalTexcoords(lcMeshLoaderSection* Section, const lcMeshLoaderTypeData& Data)
{
const lcMeshLoaderMaterial* Material = Section->mMaterial;
const lcVector3 Front = lcNormalize(Material->Points[1] - Material->Points[0]);
const lcVector3 Plane1Normal = lcNormalize(lcCross(Front, Material->Points[2] - Material->Points[0]));
const lcVector3 Plane2Normal = lcNormalize(lcCross(Plane1Normal, Front));
const lcVector4 FrontPlane = lcVector4(Front, -lcDot(Front, Material->Points[0]));
const lcVector3 Center = Material->Points[0];
const lcVector4 Plane1 = lcVector4(Plane1Normal, -lcDot(Plane1Normal, Material->Points[0]));
const lcVector4 Plane2 = lcVector4(Plane2Normal, -lcDot(Plane2Normal, Material->Points[0]));
const float Angle1 = 360.0f / Material->Angles[0];
const float Angle2 = 180.0f / Material->Angles[1];
for (int TriangleIndex = 0; TriangleIndex < Section->mIndices.size(); TriangleIndex += 3)
{
const lcVector3 Positions[3] =
{
Data.mVertices[Section->mIndices[TriangleIndex + 0]].Position,
Data.mVertices[Section->mIndices[TriangleIndex + 1]].Position,
Data.mVertices[Section->mIndices[TriangleIndex + 2]].Position
};
lcVector2 TexCoords[3];
for (int CornerIndex = 0; CornerIndex < 3; CornerIndex++)
{
const lcVector3 VertexDir = Positions[CornerIndex] - Center;
const float DotPlane1 = lcDot(lcVector4(Positions[CornerIndex], 1.0f), Plane1);
const lcVector3 PointInPlane1 = Positions[CornerIndex] - lcVector3(Plane1) * DotPlane1;
const float DotFrontPlane = lcDot(lcVector4(PointInPlane1, 1.0f), FrontPlane);
const float DotPlane2 = lcDot(lcVector4(PointInPlane1, 1.0f), Plane2);
const float AngleX = atan2f(DotPlane2, DotFrontPlane) / LC_PI * Angle1;
TexCoords[CornerIndex].x = 0.5f + 0.5f * AngleX;
const float AngleY = asinf(DotPlane1 / lcLength(VertexDir)) / LC_PI * Angle2;
TexCoords[CornerIndex].y = 0.5f - AngleY;
}
lcCheckTexCoordsWrap(Plane2, Positions, TexCoords);
lcCheckTexCoordsPole(FrontPlane, Plane2, Positions, TexCoords);
for (int CornerIndex = 0; CornerIndex < 3; CornerIndex++)
Section->mIndices[TriangleIndex + CornerIndex] = AddTexturedVertex(Positions[CornerIndex], Data.mVertices[Section->mIndices[TriangleIndex + CornerIndex]].Normal, TexCoords[CornerIndex]);
}
}
void lcLibraryMeshData::GenerateTexturedVertices()
{
for (lcMeshLoaderTypeData& Data : mData)
{
for (const std::unique_ptr<lcMeshLoaderSection>& Section : Data.mSections)
{
switch (Section->mMaterial->Type)
{
case lcMeshLoaderMaterialType::Solid:
break;
case lcMeshLoaderMaterialType::Planar:
GeneratePlanarTexcoords(Section.get(), Data);
break;
case lcMeshLoaderMaterialType::Cylindrical:
GenerateCylindricalTexcoords(Section.get(), Data);
break;
case lcMeshLoaderMaterialType::Spherical:
GenerateSphericalTexcoords(Section.get(), Data);
break;
}
}
}
}
lcMesh* lcLibraryMeshData::CreateMesh()
{
lcMesh* Mesh = new lcMesh();
int BaseVertices[LC_NUM_MESHDATA_TYPES];
int BaseConditionalVertices[LC_NUM_MESHDATA_TYPES];
int NumVertices = 0;
int ConditionalVertexCount = 0;
for (const std::unique_ptr<lcMeshLoaderMaterial>& Material : mMaterials)
Material->Color = lcGetColorIndex(Material->Color);
for (int MeshDataIdx = 0; MeshDataIdx < LC_NUM_MESHDATA_TYPES; MeshDataIdx++)
{
BaseVertices[MeshDataIdx] = NumVertices;
NumVertices += mData[MeshDataIdx].mVertices.size();
BaseConditionalVertices[MeshDataIdx] = ConditionalVertexCount;
ConditionalVertexCount += mData[MeshDataIdx].mConditionalVertices.size();
}
if (mHasTextures)
GenerateTexturedVertices();
quint16 NumSections[LC_NUM_MESH_LODS];
int NumIndices = 0;
lcArray<lcMeshLoaderFinalSection> FinalSections[LC_NUM_MESH_LODS];
for (int LodIdx = 0; LodIdx < LC_NUM_MESH_LODS; LodIdx++)
{
auto AddFinalSection = [](lcMeshLoaderSection* Section, lcArray<lcMeshLoaderFinalSection>& FinalSections)
{
for (const lcMeshLoaderFinalSection& FinalSection : FinalSections)
if (FinalSection.PrimitiveType == Section->mPrimitiveType && FinalSection.Color == Section->mMaterial->Color && !strcmp(FinalSection.Name, Section->mMaterial->Name))
return;
lcMeshLoaderFinalSection& FinalSection = FinalSections.emplace_back();
FinalSection.PrimitiveType = Section->mPrimitiveType;
FinalSection.Color = Section->mMaterial->Color;
strcpy(FinalSection.Name, Section->mMaterial->Name);
};
for (const std::unique_ptr<lcMeshLoaderSection>& Section : mData[LC_MESHDATA_SHARED].mSections)
{
NumIndices += Section->mIndices.size();
AddFinalSection(Section.get(), FinalSections[LodIdx]);
}
for (const std::unique_ptr<lcMeshLoaderSection>& Section : mData[LodIdx].mSections)
{
NumIndices += Section->mIndices.size();
AddFinalSection(Section.get(), FinalSections[LodIdx]);
}
NumSections[LodIdx] = FinalSections[LodIdx].size();
std::sort(FinalSections[LodIdx].begin(), FinalSections[LodIdx].end(), lcMeshLoaderFinalSectionCompare);
}
Mesh->Create(NumSections, NumVertices, mTexturedVertices.size(), ConditionalVertexCount, NumIndices);
lcVertex* DstVerts = (lcVertex*)Mesh->mVertexData;
for (const lcMeshLoaderTypeData& Data : mData)
{
for (const lcMeshLoaderVertex& SrcVertex : Data.mVertices)
{
lcVertex& DstVertex = *DstVerts++;
DstVertex.Position = lcVector3LDrawToLeoCAD(SrcVertex.Position);
DstVertex.Normal = lcPackNormal(lcVector3LDrawToLeoCAD(SrcVertex.Normal));
}
}
lcVertexTextured* DstTexturedVerts = (lcVertexTextured*)DstVerts;
if (mHasTextures)
{
for (const lcMeshLoaderTexturedVertex& SrcVertex : mTexturedVertices)
{
lcVertexTextured& DstVertex = *DstTexturedVerts++;
DstVertex.Position = lcVector3LDrawToLeoCAD(SrcVertex.Position);
DstVertex.Normal = lcPackNormal(lcVector3LDrawToLeoCAD(SrcVertex.Normal));
DstVertex.TexCoord = SrcVertex.TexCoords;
}
}
lcVertexConditional* DstConditionalVerts = (lcVertexConditional*)DstTexturedVerts;
for (const lcMeshLoaderTypeData& Data : mData)
{
for (const lcMeshLoaderConditionalVertex& SrcVertex : Data.mConditionalVertices)
{
lcVertexConditional& DstVertex = *DstConditionalVerts++;
DstVertex.Position1 = lcVector3LDrawToLeoCAD(SrcVertex.Position[0]);
DstVertex.Position2 = lcVector3LDrawToLeoCAD(SrcVertex.Position[1]);
DstVertex.Position3 = lcVector3LDrawToLeoCAD(SrcVertex.Position[2]);
DstVertex.Position4 = lcVector3LDrawToLeoCAD(SrcVertex.Position[3]);
}
}
if (Mesh->mIndexType == GL_UNSIGNED_SHORT)
WriteSections<quint16>(Mesh, FinalSections, BaseVertices, BaseConditionalVertices);
else
WriteSections<quint32>(Mesh, FinalSections, BaseVertices, BaseConditionalVertices);
if (mHasStyleStud)
Mesh->mFlags |= lcMeshFlag::HasStyleStud;
UpdateMeshBoundingBox(Mesh);
return Mesh;
}
template<typename IndexType>
void lcLibraryMeshData::WriteSections(lcMesh* Mesh, const lcArray<lcMeshLoaderFinalSection> (&FinalSections)[LC_NUM_MESH_LODS], int(&BaseVertices)[LC_NUM_MESHDATA_TYPES], int(&BaseConditionalVertices)[LC_NUM_MESHDATA_TYPES])
{
int NumIndices = 0;
for (int LodIdx = 0; LodIdx < LC_NUM_MESH_LODS; LodIdx++)
{
for (int SectionIdx = 0; SectionIdx < FinalSections[LodIdx].size(); SectionIdx++)
{
const lcMeshLoaderFinalSection& FinalSection = FinalSections[LodIdx][SectionIdx];
lcMeshSection& DstSection = Mesh->mLods[LodIdx].Sections[SectionIdx];
DstSection.ColorIndex = FinalSection.Color;
DstSection.PrimitiveType = FinalSection.PrimitiveType;
DstSection.NumIndices = 0;
if (!FinalSection.Name[0])
DstSection.Texture = nullptr;
else
{
if (mMeshLoader)
DstSection.Texture = lcGetPiecesLibrary()->FindTexture(FinalSection.Name, mMeshLoader->mCurrentProject, mMeshLoader->mSearchProjectFolder);
else
DstSection.Texture = lcGetPiecesLibrary()->FindTexture(FinalSection.Name, nullptr, false);
if (DstSection.Texture)
DstSection.Texture->AddRef();
}
DstSection.IndexOffset = NumIndices * sizeof(IndexType);
IndexType* Index = (IndexType*)Mesh->mIndexData + NumIndices;
const auto AddSection = [&DstSection, &Index, &BaseVertices, &BaseConditionalVertices](lcMeshLoaderSection* SrcSection, lcMeshDataType SrcDataType)
{
switch (DstSection.PrimitiveType)
{
case LC_MESH_LINES:
case LC_MESH_TRIANGLES:
{
const IndexType BaseVertex = BaseVertices[SrcDataType];
for (int IndexIdx = 0; IndexIdx < SrcSection->mIndices.size(); IndexIdx++)
*Index++ = BaseVertex + SrcSection->mIndices[IndexIdx];
}
break;
case LC_MESH_CONDITIONAL_LINES:
{
const IndexType BaseVertex = BaseConditionalVertices[SrcDataType];
for (int IndexIdx = 0; IndexIdx < SrcSection->mIndices.size(); IndexIdx++)
*Index++ = BaseVertex + SrcSection->mIndices[IndexIdx];
}
break;
case LC_MESH_TEXTURED_TRIANGLES:
{
for (int IndexIdx = 0; IndexIdx < SrcSection->mIndices.size(); IndexIdx++)
*Index++ = SrcSection->mIndices[IndexIdx];
}
break;
case LC_MESH_NUM_PRIMITIVE_TYPES:
break;
}
DstSection.NumIndices += SrcSection->mIndices.size();
};
for (const std::unique_ptr<lcMeshLoaderSection>& Section : mData[LC_MESHDATA_SHARED].mSections)
if (FinalSection.PrimitiveType == Section->mPrimitiveType && FinalSection.Color == Section->mMaterial->Color && !strcmp(FinalSection.Name, Section->mMaterial->Name))
AddSection(Section.get(), LC_MESHDATA_SHARED);
const lcMeshDataType MeshDataType = (LodIdx == LC_MESH_LOD_LOW) ? LC_MESHDATA_LOW : LC_MESHDATA_HIGH;
for (const std::unique_ptr<lcMeshLoaderSection>& Section : mData[MeshDataType].mSections)
if (FinalSection.PrimitiveType == Section->mPrimitiveType && FinalSection.Color == Section->mMaterial->Color && !strcmp(FinalSection.Name, Section->mMaterial->Name))
AddSection(Section.get(), MeshDataType);
if (DstSection.PrimitiveType == LC_MESH_TRIANGLES || DstSection.PrimitiveType == LC_MESH_TEXTURED_TRIANGLES)
{
if (DstSection.ColorIndex == gDefaultColor)
Mesh->mFlags |= lcMeshFlag::HasDefault;
else
{
if (lcIsColorTranslucent(DstSection.ColorIndex))
Mesh->mFlags |= lcMeshFlag::HasTranslucent;
else
Mesh->mFlags |= lcMeshFlag::HasSolid;
}
}
else
Mesh->mFlags |= lcMeshFlag::HasLines;
if (DstSection.PrimitiveType == LC_MESH_TEXTURED_TRIANGLES)
Mesh->mFlags |= lcMeshFlag::HasTexture;
NumIndices += DstSection.NumIndices;
}
}
}
void lcLibraryMeshData::UpdateMeshBoundingBox(lcMesh* Mesh)
{
lcVector3 MeshMin(FLT_MAX, FLT_MAX, FLT_MAX), MeshMax(-FLT_MAX, -FLT_MAX, -FLT_MAX);
bool UpdatedBoundingBox = false;
for (int LodIdx = 0; LodIdx < LC_NUM_MESH_LODS; LodIdx++)
{
lcMeshLod& Lod = Mesh->mLods[LodIdx];
for (int SectionIdx = 0; SectionIdx < Lod.NumSections; SectionIdx++)
{
lcMeshSection& Section = Lod.Sections[SectionIdx];
lcVector3 SectionMin(FLT_MAX, FLT_MAX, FLT_MAX), SectionMax(-FLT_MAX, -FLT_MAX, -FLT_MAX);
if (Mesh->mIndexType == GL_UNSIGNED_SHORT)
UpdateMeshSectionBoundingBox<quint16>(Mesh, Section, SectionMin, SectionMax);
else
UpdateMeshSectionBoundingBox<quint32>(Mesh, Section, SectionMin, SectionMax);
Section.BoundingBox.Max = SectionMax;
Section.BoundingBox.Min = SectionMin;
Section.Radius = lcLength((SectionMax - SectionMin) / 2.0f);
if (Section.PrimitiveType == LC_MESH_TRIANGLES || Section.PrimitiveType == LC_MESH_TEXTURED_TRIANGLES)
{
UpdatedBoundingBox = true;
MeshMin = lcMin(SectionMin, MeshMin);
MeshMax = lcMax(SectionMax, MeshMax);
}
}
}
if (!UpdatedBoundingBox)
MeshMin = MeshMax = lcVector3(0.0f, 0.0f, 0.0f);
Mesh->mBoundingBox.Max = MeshMax;
Mesh->mBoundingBox.Min = MeshMin;
Mesh->mRadius = lcLength((MeshMax - MeshMin) / 2.0f);
}
template<typename IndexType>
void lcLibraryMeshData::UpdateMeshSectionBoundingBox(const lcMesh* Mesh, const lcMeshSection& Section, lcVector3& SectionMin, lcVector3& SectionMax)
{
const IndexType* IndexBuffer = reinterpret_cast<IndexType*>(static_cast<char*>(Mesh->mIndexData) + Section.IndexOffset);
switch (Section.PrimitiveType)
{
case LC_MESH_LINES:
case LC_MESH_TRIANGLES:
{
const lcVertex* VertexBuffer = Mesh->GetVertexData();
for (int Index = 0; Index < Section.NumIndices; Index++)
{
const lcVector3& Position = VertexBuffer[IndexBuffer[Index]].Position;
SectionMin = lcMin(SectionMin, Position);
SectionMax = lcMax(SectionMax, Position);
}
}
break;
case LC_MESH_CONDITIONAL_LINES:
{
const lcVertexConditional* VertexBuffer = Mesh->GetConditionalVertexData();
for (int Index = 0; Index < Section.NumIndices; Index++)
{
const lcVector3& Position = VertexBuffer[IndexBuffer[Index]].Position1;
SectionMin = lcMin(SectionMin, Position);
SectionMax = lcMax(SectionMax, Position);
}
}
break;
case LC_MESH_TEXTURED_TRIANGLES:
{
const lcVertexTextured* VertexBuffer = Mesh->GetTexturedVertexData();
for (int Index = 0; Index < Section.NumIndices; Index++)
{
const lcVector3& Position = VertexBuffer[IndexBuffer[Index]].Position;
SectionMin = lcMin(SectionMin, Position);
SectionMax = lcMax(SectionMax, Position);
}
}
break;
case LC_MESH_NUM_PRIMITIVE_TYPES:
break;
}
}
lcMeshLoader::lcMeshLoader(lcLibraryMeshData& MeshData, bool Optimize, Project* CurrentProject, bool SearchProjectFolder)
: mCurrentProject(CurrentProject), mSearchProjectFolder(SearchProjectFolder), mMeshData(MeshData), mOptimize(Optimize)
{
MeshData.SetMeshLoader(this);
}
bool lcMeshLoader::LoadMesh(lcFile& File, lcMeshDataType MeshDataType)
{
return ReadMeshData(File, lcMatrix44Identity(), 16, false, MeshDataType);
}
bool lcMeshLoader::ReadMeshData(lcFile& File, const lcMatrix44& CurrentTransform, quint32 CurrentColorCode, bool InvertWinding, lcMeshDataType MeshDataType)
{
char Buffer[1024];
char* Line;
bool InvertNext = false;
bool WindingCCW = !InvertWinding;
lcPiecesLibrary* Library = lcGetPiecesLibrary();
while (File.ReadLine(Buffer, sizeof(Buffer)))
{
if (Library->ShouldCancelLoading())
return false;
quint32 ColorCode, ColorCodeHex;
bool LastToken = false;
int LineType;
Line = Buffer;
if (sscanf(Line, "%d", &LineType) != 1)
continue;
if (LineType == 0)
{
char* Token = Line;
while (*Token && *Token <= 32)
Token++;
Token++;
while (*Token && *Token <= 32)
Token++;
char* End = Token;
while (*End && *End > 32)
End++;
LastToken = (*End == 0);
*End = 0;
if (!strcmp(Token, "!TEXMAP"))
{
Token += 8;
while (*Token && *Token <= 32)
Token++;
End = Token;
while (*End && *End > 32)
End++;
*End = 0;
bool Start = false;
bool Next = false;
if (!strcmp(Token, "START"))
{
Token += 6;
Start = true;
}
else if (!strcmp(Token, "NEXT"))
{
Token += 5;
Next = true;
}
if (Start || Next)
{
while (*Token && *Token <= 32)
Token++;
End = Token;
while (*End && *End > 32)
End++;
*End = 0;
auto CleanTextureName = [](char* FileName)
{
char* Ch;
for (Ch = FileName; *Ch; Ch++)
{
if (*Ch >= 'a' && *Ch <= 'z')
*Ch = *Ch + 'A' - 'a';
else if (*Ch == '\\')
*Ch = '/';
}
if (Ch - FileName > 4)
{
Ch -= 4;
if (!memcmp(Ch, ".PNG", 4))
*Ch = 0;
}
};
if (!strcmp(Token, "PLANAR"))
{
Token += 7;
mTextureStack.emplace_back();
lcMeshLoaderTextureMap& Map = mTextureStack.back();
Map.Type = lcMeshLoaderMaterialType::Planar;
lcVector3 (&Points)[3] = Map.Points;
sscanf(Token, "%f %f %f %f %f %f %f %f %f %s", &Points[0].x, &Points[0].y, &Points[0].z, &Points[1].x, &Points[1].y, &Points[1].z, &Points[2].x, &Points[2].y, &Points[2].z, Map.Name);
Points[0] = lcMul31(Points[0], CurrentTransform);
Points[1] = lcMul31(Points[1], CurrentTransform);
Points[2] = lcMul31(Points[2], CurrentTransform);
CleanTextureName(Map.Name);
}
else if (!strcmp(Token, "CYLINDRICAL"))
{
Token += 12;
mTextureStack.emplace_back();
lcMeshLoaderTextureMap& Map = mTextureStack.back();
Map.Type = lcMeshLoaderMaterialType::Cylindrical;
lcVector3 (&Points)[3] = Map.Points;
float& Angle = Map.Angles[0];
sscanf(Token, "%f %f %f %f %f %f %f %f %f %f %s", &Points[0].x, &Points[0].y, &Points[0].z, &Points[1].x, &Points[1].y, &Points[1].z, &Points[2].x, &Points[2].y, &Points[2].z, &Angle, Map.Name);
Points[0] = lcMul31(Points[0], CurrentTransform);
Points[1] = lcMul31(Points[1], CurrentTransform);
Points[2] = lcMul31(Points[2], CurrentTransform);
CleanTextureName(Map.Name);
}
else if (!strcmp(Token, "SPHERICAL"))
{
Token += 10;
mTextureStack.emplace_back();
lcMeshLoaderTextureMap& Map = mTextureStack.back();
Map.Type = lcMeshLoaderMaterialType::Spherical;
lcVector3(&Points)[3] = Map.Points;
float& Angle1 = Map.Angles[0];
float& Angle2 = Map.Angles[1];
sscanf(Token, "%f %f %f %f %f %f %f %f %f %f %f %s", &Points[0].x, &Points[0].y, &Points[0].z, &Points[1].x, &Points[1].y, &Points[1].z, &Points[2].x, &Points[2].y, &Points[2].z, &Angle1, &Angle2, Map.Name);
Points[0] = lcMul31(Points[0], CurrentTransform);
Points[1] = lcMul31(Points[1], CurrentTransform);
Points[2] = lcMul31(Points[2], CurrentTransform);
CleanTextureName(Map.Name);
}
}
else if (!strcmp(Token, "FALLBACK"))
{
if (!mTextureStack.empty())
mTextureStack.back().Fallback = true;
}
else if (!strcmp(Token, "END"))
{
if (!mTextureStack.empty())
mTextureStack.pop_back();
}
continue;
}
else if (!strcmp(Token, "BFC"))
{
while (!LastToken)
{
Token = End + 1;
while (*Token && *Token <= 32)
Token++;
End = Token;
while (*End && *End > 32)
End++;
LastToken = (*End == 0);
*End = 0;
if (!strcmp(Token, "INVERTNEXT"))
InvertNext = true;
else if (!strcmp(Token, "CCW"))
WindingCCW = !InvertWinding;
else if (!strcmp(Token, "CW"))
WindingCCW = InvertWinding;
}
}
else if (!strcmp(Token, "!:"))
{
Token += 3;
Line = Token;
if (mTextureStack.empty())
continue;
}
else
continue;
}
if (sscanf(Line, "%d %d", &LineType, &ColorCode) != 2)
continue;
if (LineType < 1 || LineType > 5)
continue;
if (ColorCode == 0)
{
sscanf(Line, "%d %i", &LineType, &ColorCodeHex);
if (ColorCode != ColorCodeHex)
ColorCode = ColorCodeHex | LC_COLOR_DIRECT;
}
if (ColorCode == 16)
ColorCode = CurrentColorCode;
lcMeshLoaderTextureMap* TextureMap = nullptr;
if (!mTextureStack.empty())
{
TextureMap = &mTextureStack.back();
// TODO: think about a way to handle the texture fallback
// if (TextureMap->Texture)
{
if (TextureMap->Fallback)
continue;
}
// else
// {
// if (!TextureMap->Fallback)
// continue;
//
// TextureMap = nullptr;
// }
}
int Dummy;
lcVector3 Points[4];
switch (LineType)
{
case 1:
{
char OriginalFileName[LC_MAXPATH];
float fm[12];
sscanf(Line, "%d %i %f %f %f %f %f %f %f %f %f %f %f %f %s", &LineType, &Dummy, &fm[0], &fm[1], &fm[2], &fm[3], &fm[4], &fm[5], &fm[6], &fm[7], &fm[8], &fm[9], &fm[10], &fm[11], OriginalFileName);
char FileName[LC_MAXPATH];
strcpy(FileName, OriginalFileName);
char* Ch;
for (Ch = FileName; *Ch; Ch++)
{
if (*Ch >= 'a' && *Ch <= 'z')
*Ch = *Ch + 'A' - 'a';
else if (*Ch == '\\')
*Ch = '/';
}
lcLibraryPrimitive* Primitive = !TextureMap ? Library->FindPrimitive(FileName) : nullptr;
lcMatrix44 IncludeTransform(lcVector4(fm[3], fm[6], fm[9], 0.0f), lcVector4(fm[4], fm[7], fm[10], 0.0f), lcVector4(fm[5], fm[8], fm[11], 0.0f), lcVector4(fm[0], fm[1], fm[2], 1.0f));
IncludeTransform = lcMul(IncludeTransform, CurrentTransform);
bool Mirror = IncludeTransform.Determinant() < 0.0f;
const auto FileCallback = [this, &IncludeTransform, &ColorCode, &Mirror, &InvertNext, &MeshDataType](lcFile& File)
{
ReadMeshData(File, IncludeTransform, ColorCode, Mirror ^ InvertNext, MeshDataType);
};
if (Primitive)
{
if (Primitive->mState != lcPrimitiveState::Loaded && !Library->LoadPrimitive(Primitive))
break;
if (Primitive->mStud)
mMeshData.AddMeshDataNoDuplicateCheck(Primitive->mMeshData, IncludeTransform, ColorCode, Mirror ^ InvertNext, InvertNext, TextureMap, MeshDataType);
else if (!Primitive->mSubFile)
{
if (mOptimize)
mMeshData.AddMeshData(Primitive->mMeshData, IncludeTransform, ColorCode, Mirror ^ InvertNext, InvertNext, TextureMap, MeshDataType);
else
mMeshData.AddMeshDataNoDuplicateCheck(Primitive->mMeshData, IncludeTransform, ColorCode, Mirror ^ InvertNext, InvertNext, TextureMap, MeshDataType);
}
else
Library->GetPrimitiveFile(Primitive, FileCallback);
mMeshData.mHasStyleStud |= Primitive->mStudStyle | Primitive->mMeshData.mHasStyleStud;
}
else
Library->GetPieceFile(FileName, FileCallback);
} break;
case 2:
sscanf(Line, "%d %i %f %f %f %f %f %f", &LineType, &Dummy, &Points[0].x, &Points[0].y, &Points[0].z, &Points[1].x, &Points[1].y, &Points[1].z);
Points[0] = lcMul31(Points[0], CurrentTransform);
Points[1] = lcMul31(Points[1], CurrentTransform);
mMeshData.mData[MeshDataType].ProcessLine(LineType, mMeshData.GetMaterial(ColorCode), WindingCCW, Points, mOptimize);
break;
case 3:
sscanf(Line, "%d %i %f %f %f %f %f %f %f %f %f", &LineType, &Dummy, &Points[0].x, &Points[0].y, &Points[0].z,
&Points[1].x, &Points[1].y, &Points[1].z, &Points[2].x, &Points[2].y, &Points[2].z);
Points[0] = lcMul31(Points[0], CurrentTransform);
Points[1] = lcMul31(Points[1], CurrentTransform);
Points[2] = lcMul31(Points[2], CurrentTransform);
if (!TextureMap)
mMeshData.mData[MeshDataType].ProcessLine(LineType, mMeshData.GetMaterial(ColorCode), WindingCCW, Points, mOptimize);
else
{
mMeshData.mHasTextures = true;
mMeshData.mData[MeshDataType].ProcessLine(LineType, mMeshData.GetTexturedMaterial(ColorCode, *TextureMap), WindingCCW, Points, mOptimize);
if (TextureMap->Next)
mTextureStack.pop_back();
}
break;
case 4:
sscanf(Line, "%d %i %f %f %f %f %f %f %f %f %f %f %f %f", &LineType, &Dummy, &Points[0].x, &Points[0].y, &Points[0].z,
&Points[1].x, &Points[1].y, &Points[1].z, &Points[2].x, &Points[2].y, &Points[2].z, &Points[3].x, &Points[3].y, &Points[3].z);
Points[0] = lcMul31(Points[0], CurrentTransform);
Points[1] = lcMul31(Points[1], CurrentTransform);
Points[2] = lcMul31(Points[2], CurrentTransform);
Points[3] = lcMul31(Points[3], CurrentTransform);
if (!TextureMap)
mMeshData.mData[MeshDataType].ProcessLine(LineType, mMeshData.GetMaterial(ColorCode), WindingCCW, Points, mOptimize);
else
{
mMeshData.mHasTextures = true;
mMeshData.mData[MeshDataType].ProcessLine(LineType, mMeshData.GetTexturedMaterial(ColorCode, *TextureMap), WindingCCW, Points, mOptimize);
if (TextureMap->Next)
mTextureStack.pop_back();
}
break;
case 5:
sscanf(Line, "%d %i %f %f %f %f %f %f %f %f %f %f %f %f", &LineType, &Dummy, &Points[0].x, &Points[0].y, &Points[0].z,
&Points[1].x, &Points[1].y, &Points[1].z, &Points[2].x, &Points[2].y, &Points[2].z, &Points[3].x, &Points[3].y, &Points[3].z);
Points[0] = lcMul31(Points[0], CurrentTransform);
Points[1] = lcMul31(Points[1], CurrentTransform);
Points[2] = lcMul31(Points[2], CurrentTransform);
Points[3] = lcMul31(Points[3], CurrentTransform);
mMeshData.mData[MeshDataType].ProcessLine(LineType, mMeshData.GetMaterial(ColorCode), WindingCCW, Points, mOptimize);
break;
}
InvertNext = false;
}
return true;
}