leocad/common/light.cpp
2023-10-01 16:24:42 -07:00

1267 lines
34 KiB
C++

#include "lc_global.h"
#include "lc_math.h"
#include "lc_colors.h"
#include <string.h>
#include <stdio.h>
#include <math.h>
#include "light.h"
#include "lc_application.h"
#include "lc_context.h"
#define LC_LIGHT_SPHERE_RADIUS 5.0f
#define LC_LIGHT_TARGET_RADIUS 2.5f
#define LC_LIGHT_SPOT_CONE_HEIGHT 10.0f
#define LC_LIGHT_SPOT_CONE_RADIUS 7.5f
#define LC_LIGHT_DIRECTIONAL_RADIUS 5.0f
#define LC_LIGHT_DIRECTIONAL_HEIGHT 7.5f
#define LC_LIGHT_POSITION_EDGE 7.5f
static const std::array<QLatin1String, static_cast<int>(lcLightType::Count)> gLightTypes = { QLatin1String("POINT"), QLatin1String("SPOT"), QLatin1String("DIRECTIONAL"), QLatin1String("AREA") };
static const std::array<QLatin1String, static_cast<int>(lcLightAreaShape::Count)> gLightAreaShapes = { QLatin1String("RECTANGLE"), QLatin1String("SQUARE"), QLatin1String("DISK"), QLatin1String("ELLIPSE") };
lcLight::lcLight(const lcVector3& Position, lcLightType LightType)
: lcObject(lcObjectType::Light), mLightType(LightType)
{
mWorldMatrix = lcMatrix44Translation(Position);
mPOVRayLight = false;
mEnableCutoff = false;
mAttenuation = lcVector3(1.0f, 0.0f, 0.0f);
mLightDiffuse = 1.0f;
mLightSpecular = 1.0f;
mSpotExponent = 10.0f;
mPOVRayExponent = 1.0f;
mSpotCutoff = LightType != lcLightType::Directional ? 40.0f : 0.0f;
mAreaGrid = lcVector2(10.0f, 10.0f);
UpdateLightType();
mPositionKeys.ChangeKey(mWorldMatrix.GetTranslation(), 1, true);
mRotationKeys.ChangeKey(lcMatrix33(mWorldMatrix), 1, true);
mColorKeys.ChangeKey(mColor, 1, true);
mPowerKeys.ChangeKey(mPower, 1, true);
mSpotConeAngleKeys.ChangeKey(mSpotConeAngle, 1, true);
mSpotPenumbraAngleKeys.ChangeKey(mSpotPenumbraAngle, 1, true);
mSpotTightnessKeys.ChangeKey(mSpotTightness, 1, true);
mAttenuationKeys.ChangeKey(mAttenuation, 1, true);
mLightDiffuseKeys.ChangeKey(mLightDiffuse, 1, true);
mLightSpecularKeys.ChangeKey(mLightSpecular, 1, true);
mSpotCutoffKeys.ChangeKey(mSpotCutoff, 1, true);
mSpotExponentKeys.ChangeKey(mSpotExponent, 1, true);
mAreaGridKeys.ChangeKey(mAreaGrid, 1, true);
UpdatePosition(1);
}
void lcLight::UpdateLightType()
{
mSizeKeys.RemoveAll();
switch (mLightType)
{
case lcLightType::Point:
mSize = lcVector2(0.0f, 0.0f);
break;
case lcLightType::Spot:
mSize = lcVector2(0.0f, 0.0f);
break;
case lcLightType::Directional:
mSize = lcVector2(0.00918f * LC_DTOR, 0.0f);
break;
case lcLightType::Area:
mSize = lcVector2(200.0f, 200.0f);
break;
case lcLightType::Count:
break;
}
mSizeKeys.ChangeKey(mSize, 1, true);
}
QString lcLight::GetLightTypeString(lcLightType LightType)
{
switch (LightType)
{
case lcLightType::Point:
return QT_TRANSLATE_NOOP("Light Names", "Point Light");
case lcLightType::Spot:
return QT_TRANSLATE_NOOP("Light Names", "Spot Light");
case lcLightType::Directional:
return QT_TRANSLATE_NOOP("Light Names", "Directional Light");
case lcLightType::Area:
return QT_TRANSLATE_NOOP("Light Names", "Area Light");
case lcLightType::Count:
break;
}
return QString();
}
QString lcLight::GetAreaShapeString(lcLightAreaShape LightAreaShape)
{
switch (LightAreaShape)
{
case lcLightAreaShape::Rectangle:
return QT_TRANSLATE_NOOP("Light Shapes", "Rectangle");
case lcLightAreaShape::Square:
return QT_TRANSLATE_NOOP("Light Shapes", "Square");
case lcLightAreaShape::Disk:
return QT_TRANSLATE_NOOP("Light Shapes", "Disk");
case lcLightAreaShape::Ellipse:
return QT_TRANSLATE_NOOP("Light Shapes", "Ellipse");
case lcLightAreaShape::Count:
break;
}
return QString();
}
void lcLight::SaveLDraw(QTextStream& Stream) const
{
const QLatin1String LineEnding("\r\n");
if (mPOVRayLight)
Stream << QLatin1String("0 !LEOCAD LIGHT POV_RAY") << LineEnding;
if (!mCastShadow)
Stream << QLatin1String("0 !LEOCAD LIGHT SHADOWLESS") << LineEnding;
const float* Matrix = mWorldMatrix;
const float Numbers[12] = { Matrix[12], -Matrix[14], Matrix[13], Matrix[0], -Matrix[8], Matrix[4], -Matrix[2], Matrix[10], -Matrix[6], Matrix[1], -Matrix[9], Matrix[5] };
if (mPositionKeys.GetSize() > 1)
mPositionKeys.SaveKeysLDraw(Stream, "LIGHT", "POSITION");
else
Stream << QLatin1String("0 !LEOCAD LIGHT POSITION ") << Numbers[0] << ' ' << Numbers[1] << ' ' << Numbers[2] << LineEnding;
if (!IsPointLight())
{
if (mRotationKeys.GetSize() > 1)
mRotationKeys.SaveKeysLDraw(Stream, "LIGHT", "ROTATION");
else
Stream << QLatin1String("0 !LEOCAD LIGHT ROTATION ") << Numbers[3] << ' ' << Numbers[4] << ' ' << Numbers[5] << ' ' << Numbers[6] << ' ' << Numbers[7] << ' ' << Numbers[8] << ' ' << Numbers[9] << ' ' << Numbers[10] << ' ' << Numbers[11] << LineEnding;
}
SaveAttribute(Stream, mColor, mColorKeys, "LIGHT", "COLOR");
SaveAttribute(Stream, mSize, mSizeKeys, "LIGHT", "SIZE");
SaveAttribute(Stream, mPower, mPowerKeys, "LIGHT", "POWER");
if (!mPOVRayLight)
{
SaveAttribute(Stream, mLightDiffuse, mLightDiffuseKeys, "LIGHT", "DIFFUSE");
SaveAttribute(Stream, mLightSpecular, mLightSpecularKeys, "LIGHT", "SPECULAR");
}
// SaveAttribute(Stream, (mPOVRayLight ? mPOVRayExponent : mSpotExponent), mSpotExponentKeys, "LIGHT", "POWER");
if (mEnableCutoff && !mPOVRayLight)
{
SaveAttribute(Stream, mSpotCutoff, mSpotCutoffKeys, "LIGHT", "CUTOFF_DISTANCE");
}
switch (mLightType)
{
case lcLightType::Count:
case lcLightType::Point:
break;
case lcLightType::Spot:
SaveAttribute(Stream, mSpotConeAngle, mSpotConeAngleKeys, "LIGHT", "SPOT_CONE_ANGLE");
SaveAttribute(Stream, mSpotPenumbraAngle, mSpotPenumbraAngleKeys, "LIGHT", "SPOT_PENUMBRA_ANGLE");
SaveAttribute(Stream, mSpotTightness, mSpotTightnessKeys, "LIGHT", "SPOT_TIGHTNESS");
break;
case lcLightType::Directional:
SaveAttribute(Stream, mSpotExponent, mSpotExponentKeys, "LIGHT", "STRENGTH");
break;
case lcLightType::Area:
if (mPOVRayLight)
SaveAttribute(Stream, mAreaGrid, mAreaGridKeys, "LIGHT", "AREA_GRID");
Stream << QLatin1String("0 !LEOCAD LIGHT AREA_SHAPE ") << gLightAreaShapes[static_cast<int>(mAreaShape)] << LineEnding;
break;
}
Stream << QLatin1String("0 !LEOCAD LIGHT TYPE ") << gLightTypes[static_cast<int>(mLightType)] << QLatin1String(" NAME ") << mName << LineEnding;
}
void lcLight::CreateName(const lcArray<lcLight*>& Lights)
{
if (!mName.isEmpty())
{
bool Found = false;
for (const lcLight* Light : Lights)
{
if (Light->GetName() == mName)
{
Found = true;
break;
}
}
if (!Found)
return;
}
int MaxLightNumber = 0;
QString Prefix;
switch (mLightType)
{
case lcLightType::Point:
Prefix = QLatin1String("Point Light ");
break;
case lcLightType::Spot:
Prefix = QLatin1String("Spot Light ");
break;
case lcLightType::Directional:
Prefix = QLatin1String("Directional Light ");
break;
case lcLightType::Area:
Prefix = QLatin1String("Area Light ");
break;
case lcLightType::Count:
break;
}
for (const lcLight* Light : Lights)
{
QString LightName = Light->GetName();
if (LightName.startsWith(Prefix))
{
bool Ok = false;
int LightNumber = LightName.mid(Prefix.size()).toInt(&Ok);
if (Ok && LightNumber > MaxLightNumber)
MaxLightNumber = LightNumber;
}
}
mName = Prefix + QString::number(MaxLightNumber + 1);
}
bool lcLight::ParseLDrawLine(QTextStream& Stream)
{
while (!Stream.atEnd())
{
QString Token;
Stream >> Token;
if (Token == QLatin1String("POSITION"))
{
lcVector3 Position;
Stream >> Position[0] >> Position[1] >> Position[2];
Position = lcVector3LDrawToLeoCAD(Position);
mWorldMatrix.SetTranslation(Position);
mPositionKeys.ChangeKey(Position, 1, true);
}
else if (Token == QLatin1String("POSITION_KEY"))
mPositionKeys.LoadKeysLDraw(Stream); // todo: convert from ldraw
else if (Token == QLatin1String("ROTATION"))
{
float Numbers[9];
for (int TokenIdx = 0; TokenIdx < 9; TokenIdx++)
Stream >> Numbers[TokenIdx];
float* Matrix = mWorldMatrix;
Matrix[0] = Numbers[0];
Matrix[8] = -Numbers[1];
Matrix[4] = Numbers[2];
Matrix[2] = -Numbers[3];
Matrix[10] = Numbers[4];
Matrix[6] = -Numbers[5];
Matrix[1] = Numbers[6];
Matrix[9] = -Numbers[7];
Matrix[5] = Numbers[8];
mRotationKeys.ChangeKey(lcMatrix33(mWorldMatrix), 1, true);
}
else if (Token == QLatin1String("ROTATION_KEY"))
mRotationKeys.LoadKeysLDraw(Stream); // todo: convert from ldraw
else if (LoadAttribute(Stream, Token, mColor, mColorKeys, "COLOR"))
continue;
else if (LoadAttribute(Stream, Token, mSize, mSizeKeys, "SIZE"))
continue;
else if (LoadAttribute(Stream, Token, mPower, mPowerKeys, "POWER"))
continue;
else if (LoadAttribute(Stream, Token, mSpotConeAngle, mSpotConeAngleKeys, "SPOT_CONE_ANGLE"))
continue;
else if (LoadAttribute(Stream, Token, mSpotPenumbraAngle, mSpotPenumbraAngleKeys, "SPOT_PENUMBRA_ANGLE"))
continue;
else if (LoadAttribute(Stream, Token, mSpotTightness, mSpotTightnessKeys, "SPOT_TIGHTNESS"))
continue;
else if (Token == QLatin1String("AREA_SHAPE"))
{
QString AreaShape;
Stream >> AreaShape;
for (size_t ShapeIndex = 0; ShapeIndex < gLightAreaShapes.size(); ShapeIndex++)
{
if (AreaShape == gLightAreaShapes[ShapeIndex])
{
mAreaShape = static_cast<lcLightAreaShape>(ShapeIndex);
break;
}
}
}
// else if (Token == QLatin1String("POWER") || Token == QLatin1String("STRENGTH"))
// {
// if (mPOVRayLight)
// {
// Stream >> mPOVRayExponent;
// mSpotExponentKeys.ChangeKey(mPOVRayExponent, 1, true);
// }
// else
// {
// Stream >> mSpotExponent;
// mSpotExponentKeys.ChangeKey(mSpotExponent, 1, true);
// }
// }
else if (Token == QLatin1String("AREA_ROWS"))
{
mPOVRayLight = true;
Stream >> mAreaGrid[0];
mAreaGridKeys.ChangeKey(mAreaGrid, 1, true);
}
else if (Token == QLatin1String("AREA_COLUMNS"))
{
mPOVRayLight = true;
Stream >> mAreaGrid[1];
mAreaGridKeys.ChangeKey(mAreaGrid, 1, true);
}
else if (Token == QLatin1String("DIFFUSE"))
{
Stream >>mLightDiffuse;
mLightDiffuseKeys.ChangeKey(mLightDiffuse, 1, true);
}
else if (Token == QLatin1String("SPECULAR"))
{
Stream >>mLightSpecular;
mLightSpecularKeys.ChangeKey(mLightSpecular, 1, true);
}
else if ((mSpotCutoffSet = Token == QLatin1String("CUTOFF_DISTANCE")))
{
mEnableCutoff = true;
Stream >> mSpotCutoff;
mSpotCutoffKeys.ChangeKey(mSpotCutoff, 1, true);
}
else if (Token == QLatin1String("TYPE"))
{
QString Type;
Stream >> Type;
for (size_t TypeIndex = 0; TypeIndex < gLightTypes.size(); TypeIndex++)
{
if (Type == gLightTypes[TypeIndex])
{
mLightType = static_cast<lcLightType>(TypeIndex);
break;
}
}
}
else if (Token == QLatin1String("POV_RAY"))
{
mPOVRayLight = true;
}
else if (Token == QLatin1String("SHADOWLESS"))
{
mCastShadow = false;
}
else if ((Token == QLatin1String("POWER_KEY")) || (Token == QLatin1String("STRENGTH_KEY")))
mSpotExponentKeys.LoadKeysLDraw(Stream);
else if (Token == QLatin1String("AREA_GRID_KEY"))
mAreaGridKeys.LoadKeysLDraw(Stream);
else if (Token == QLatin1String("DIFFUSE_KEY"))
mLightDiffuseKeys.LoadKeysLDraw(Stream);
else if (Token == QLatin1String("SPECULAR_KEY"))
mLightSpecularKeys.LoadKeysLDraw(Stream);
else if (Token == QLatin1String("CUTOFF_DISTANCE_KEY"))
mSpotCutoffKeys.LoadKeysLDraw(Stream);
else if (Token == QLatin1String("NAME"))
{
mName = Stream.readAll().trimmed();
mName.replace("\"", "");
// Set default settings per light type
switch (mLightType)
{
case lcLightType::Point:
case lcLightType::Spot:
break;
case lcLightType::Directional:
if (!mSpotCutoffSet)
{
mSpotCutoff = 0.0f;
mSpotCutoffKeys.ChangeKey(mSpotCutoff, 1, true);
}
break;
case lcLightType::Area:
case lcLightType::Count:
break;
}
return true;
}
}
return false;
}
void lcLight::CompareBoundingBox(lcVector3& Min, lcVector3& Max)
{
const lcVector3 Point = mWorldMatrix.GetTranslation();
// TODO: this should check the entire mesh
Min = lcMin(Point, Min);
Max = lcMax(Point, Max);
}
void lcLight::UpdateLight(lcStep Step, lcLightProperties Props, int Property)
{
switch(Property)
{
case LC_LIGHT_DIFFUSE:
mLightDiffuse = Props.mLightDiffuse;
mLightDiffuseKeys.ChangeKey(mLightDiffuse, Step, false);
break;
case LC_LIGHT_SPECULAR:
mLightSpecular = Props.mLightSpecular;
mLightSpecularKeys.ChangeKey(mLightSpecular, Step, false);
break;
case LC_LIGHT_EXPONENT:
if (Props.mPOVRayLight)
{
mPOVRayExponent = Props.mSpotExponent;
mSpotExponentKeys.ChangeKey(mPOVRayExponent, Step, false);
}
else
{
mSpotExponent = Props.mSpotExponent;
mSpotExponentKeys.ChangeKey(mSpotExponent, Step, false);
}
break;
case LC_LIGHT_AREA_GRID:
mAreaGrid = Props.mAreaGrid;
mAreaGridKeys.ChangeKey(mAreaGrid, Step, false);
break;
case LC_LIGHT_CUTOFF:
mSpotCutoff = Props.mSpotCutoff;
mSpotCutoffKeys.ChangeKey(mSpotCutoff, Step, false);
break;
case LC_LIGHT_USE_CUTOFF:
mEnableCutoff = Props.mEnableCutoff;
break;
case LC_LIGHT_POVRAY:
mPOVRayLight = Props.mPOVRayLight;
break;
}
UpdatePosition(Step);
}
void lcLight::RayTest(lcObjectRayTest& ObjectRayTest) const
{
if (IsPointLight())
{
float Distance;
if (lcSphereRayMinIntersectDistance(mWorldMatrix.GetTranslation(), LC_LIGHT_SPHERE_RADIUS, ObjectRayTest.Start, ObjectRayTest.End, &Distance) && (Distance < ObjectRayTest.Distance))
{
ObjectRayTest.ObjectSection.Object = const_cast<lcLight*>(this);
ObjectRayTest.ObjectSection.Section = LC_LIGHT_SECTION_POSITION;
ObjectRayTest.Distance = Distance;
}
return;
}
if (mLightType == lcLightType::Spot)
{
const lcVector3 Direction = -lcVector3(mWorldMatrix[2]);
const lcVector3 Position = mWorldMatrix.GetTranslation() - Direction * LC_LIGHT_SPOT_CONE_HEIGHT;
float Distance;
if (lcConeRayMinIntersectDistance(Position, Direction, LC_LIGHT_SPOT_CONE_RADIUS, LC_LIGHT_SPOT_CONE_HEIGHT, ObjectRayTest.Start, ObjectRayTest.End, &Distance) && (Distance < ObjectRayTest.Distance))
{
ObjectRayTest.ObjectSection.Object = const_cast<lcLight*>(this);
ObjectRayTest.ObjectSection.Section = LC_LIGHT_SECTION_POSITION;
ObjectRayTest.Distance = Distance;
}
}
else if (mLightType == lcLightType::Area)
{
const lcVector3 Direction = -lcVector3(mWorldMatrix[2]);
const lcVector3 Position = mWorldMatrix.GetTranslation();
const lcVector4 Plane(Direction, -lcDot(Direction, Position));
lcVector3 Intersection;
if (lcLineSegmentPlaneIntersection(&Intersection, ObjectRayTest.Start, ObjectRayTest.End, Plane))
{
const lcVector3 XAxis = lcVector3(mWorldMatrix[0]);
const lcVector3 YAxis = lcVector3(mWorldMatrix[1]);
lcVector3 IntersectionDirection = Intersection - Position;
float x = lcDot(IntersectionDirection, XAxis);
float y = lcDot(IntersectionDirection, YAxis);
if (fabsf(x) < mSize.x / 2.0f && fabsf(y) < mSize.y / 2.0f)
{
float Distance = lcLength(Intersection - ObjectRayTest.Start);
if (Distance < ObjectRayTest.Distance)
{
ObjectRayTest.ObjectSection.Object = const_cast<lcLight*>(this);
ObjectRayTest.ObjectSection.Section = LC_LIGHT_SECTION_POSITION;
ObjectRayTest.Distance = Distance;
}
}
}
}
const lcMatrix44 InverseWorldMatrix = lcMatrix44AffineInverse(mWorldMatrix);
lcVector3 Start = lcMul31(ObjectRayTest.Start, InverseWorldMatrix);
lcVector3 End = lcMul31(ObjectRayTest.End, InverseWorldMatrix);
float Distance;
lcVector3 Plane;
if (mLightType == lcLightType::Directional)
{
if (lcCylinderRayMinIntersectDistance(LC_LIGHT_DIRECTIONAL_RADIUS, LC_LIGHT_DIRECTIONAL_HEIGHT, Start, End, &Distance) && (Distance < ObjectRayTest.Distance))
{
ObjectRayTest.ObjectSection.Object = const_cast<lcLight*>(this);
ObjectRayTest.ObjectSection.Section = LC_LIGHT_SECTION_POSITION;
ObjectRayTest.Distance = Distance;
ObjectRayTest.PieceInfoRayTest.Plane = Plane;
}
}
if (IsSelected())
{
if (lcSphereRayMinIntersectDistance(lcMul31(lcVector3(0,0,-mTargetDistance), mWorldMatrix), LC_LIGHT_TARGET_RADIUS, ObjectRayTest.Start, ObjectRayTest.End, &Distance) && (Distance < ObjectRayTest.Distance))
{
ObjectRayTest.ObjectSection.Object = const_cast<lcLight*>(this);
ObjectRayTest.ObjectSection.Section = LC_LIGHT_SECTION_TARGET;
ObjectRayTest.Distance = Distance;
}
}
}
void lcLight::BoxTest(lcObjectBoxTest& ObjectBoxTest) const
{
if (IsPointLight())
{
for (int PlaneIdx = 0; PlaneIdx < 6; PlaneIdx++)
if (lcDot3(mWorldMatrix.GetTranslation(), ObjectBoxTest.Planes[PlaneIdx]) + ObjectBoxTest.Planes[PlaneIdx][3] > LC_LIGHT_SPHERE_RADIUS)
return;
ObjectBoxTest.Objects.Add(const_cast<lcLight*>(this));
return;
}
lcVector3 Min(-LC_LIGHT_POSITION_EDGE, -LC_LIGHT_POSITION_EDGE, -LC_LIGHT_POSITION_EDGE); // todo: fix light box test
lcVector3 Max( LC_LIGHT_POSITION_EDGE, LC_LIGHT_POSITION_EDGE, LC_LIGHT_POSITION_EDGE);
lcVector4 LocalPlanes[6];
for (int PlaneIdx = 0; PlaneIdx < 6; PlaneIdx++)
{
const lcVector3 Normal = lcMul30(ObjectBoxTest.Planes[PlaneIdx], mWorldMatrix);
LocalPlanes[PlaneIdx] = lcVector4(Normal, ObjectBoxTest.Planes[PlaneIdx][3] - lcDot3(mWorldMatrix[3], Normal));
}
if (lcBoundingBoxIntersectsVolume(Min, Max, LocalPlanes))
{
ObjectBoxTest.Objects.Add(const_cast<lcLight*>(this));
return;
}
}
void lcLight::MoveSelected(lcStep Step, bool AddKey, const lcVector3& Distance, bool FirstMove)
{
const quint32 Section = GetFocusSection();
if (Section == LC_LIGHT_SECTION_POSITION || Section == LC_LIGHT_SECTION_INVALID)
{
const lcVector3 Position = mWorldMatrix.GetTranslation() + Distance;
SetPosition(Position, Step, AddKey);
mWorldMatrix.SetTranslation(Position);
}
else
{
if (FirstMove)
mTargetMovePosition = lcMul31(lcVector3(0.0f, 0.0f, -mTargetDistance), mWorldMatrix);
mTargetMovePosition += Distance;
lcVector3 CurrentDirection = -lcNormalize(mTargetMovePosition - mWorldMatrix.GetTranslation());
lcMatrix33 WorldMatrix;
WorldMatrix.r[0] = lcCross(lcVector3(mWorldMatrix.r[1]), CurrentDirection);
WorldMatrix.r[1] = lcCross(CurrentDirection, WorldMatrix.r[0]);
WorldMatrix.r[2] = CurrentDirection;
WorldMatrix.Orthonormalize();
SetRotation(WorldMatrix, Step, AddKey);
mWorldMatrix = lcMatrix44(WorldMatrix, mWorldMatrix.GetTranslation());
}
}
void lcLight::Rotate(lcStep Step, bool AddKey, const lcMatrix33& RotationMatrix, const lcVector3& Center, const lcMatrix33& RotationFrame)
{
if (IsPointLight())
return;
if (GetFocusSection() != LC_LIGHT_SECTION_POSITION)
return;
lcVector3 Distance = mWorldMatrix.GetTranslation() - Center;
const lcMatrix33 LocalToWorldMatrix = lcMatrix33(mWorldMatrix);
const lcMatrix33 LocalToFocusMatrix = lcMul(LocalToWorldMatrix, RotationFrame);
lcMatrix33 NewLocalToWorldMatrix = lcMul(LocalToFocusMatrix, RotationMatrix);
const lcMatrix33 WorldToLocalMatrix = lcMatrix33AffineInverse(LocalToWorldMatrix);
Distance = lcMul(Distance, WorldToLocalMatrix);
Distance = lcMul(Distance, NewLocalToWorldMatrix);
NewLocalToWorldMatrix.Orthonormalize();
SetPosition(Center + Distance, Step, AddKey);
SetRotation(NewLocalToWorldMatrix, Step, AddKey);
}
bool lcLight::SetLightType(lcLightType LightType)
{
if (static_cast<int>(LightType) < 0 || LightType >= lcLightType::Count)
return false;
if (mLightType == LightType)
return false;
mLightType = LightType;
UpdateLightType();
return true;
}
void lcLight::SetColor(const lcVector3& Color, lcStep Step, bool AddKey)
{
mColorKeys.ChangeKey(Color, Step, AddKey);
}
void lcLight::SetSpotConeAngle(float Angle, lcStep Step, bool AddKey)
{
mSpotConeAngleKeys.ChangeKey(Angle, Step, AddKey);
}
void lcLight::SetSpotPenumbraAngle(float Angle, lcStep Step, bool AddKey)
{
mSpotPenumbraAngleKeys.ChangeKey(Angle, Step, AddKey);
}
void lcLight::SetSpotTightness(float Tightness, lcStep Step, bool AddKey)
{
mSpotTightnessKeys.ChangeKey(Tightness, Step, AddKey);
}
bool lcLight::SetAreaShape(lcLightAreaShape AreaShape)
{
if (static_cast<int>(AreaShape) < 0 || AreaShape >= lcLightAreaShape::Count)
return false;
if (mAreaShape != AreaShape)
{
mAreaShape = AreaShape;
return true;
}
return false;
}
void lcLight::SetSize(lcVector2 Size, lcStep Step, bool AddKey)
{
if (mLightType == lcLightType::Area && (mAreaShape == lcLightAreaShape::Square || mAreaShape == lcLightAreaShape::Disk))
Size[1] = Size[0];
mSizeKeys.ChangeKey(Size, Step, AddKey);
}
void lcLight::SetPower(float Power, lcStep Step, bool AddKey)
{
mPowerKeys.ChangeKey(Power, Step, AddKey);
}
bool lcLight::SetCastShadow(bool CastShadow)
{
if (mCastShadow != CastShadow)
{
mCastShadow = CastShadow;
return true;
}
return false;
}
void lcLight::InsertTime(lcStep Start, lcStep Time)
{
mPositionKeys.InsertTime(Start, Time);
mRotationKeys.InsertTime(Start, Time);
mColorKeys.InsertTime(Start, Time);
mSpotConeAngleKeys.InsertTime(Start, Time);
mSpotPenumbraAngleKeys.InsertTime(Start, Time);
mSpotTightnessKeys.InsertTime(Start, Time);
mSizeKeys.InsertTime(Start, Time);
mPowerKeys.InsertTime(Start, Time);
mAttenuationKeys.InsertTime(Start, Time);
mLightDiffuseKeys.InsertTime(Start, Time);
mLightSpecularKeys.InsertTime(Start, Time);
mSpotCutoffKeys.InsertTime(Start, Time);
mSpotExponentKeys.InsertTime(Start, Time);
mAreaGridKeys.InsertTime(Start, Time);
}
void lcLight::RemoveTime(lcStep Start, lcStep Time)
{
mPositionKeys.RemoveTime(Start, Time);
mRotationKeys.RemoveTime(Start, Time);
mColorKeys.RemoveTime(Start, Time);
mSpotConeAngleKeys.RemoveTime(Start, Time);
mSpotPenumbraAngleKeys.RemoveTime(Start, Time);
mSpotTightnessKeys.RemoveTime(Start, Time);
mSizeKeys.RemoveTime(Start, Time);
mPowerKeys.RemoveTime(Start, Time);
mAttenuationKeys.RemoveTime(Start, Time);
mLightDiffuseKeys.RemoveTime(Start, Time);
mLightSpecularKeys.RemoveTime(Start, Time);
mSpotCutoffKeys.RemoveTime(Start, Time);
mSpotExponentKeys.RemoveTime(Start, Time);
mAreaGridKeys.RemoveTime(Start, Time);
}
void lcLight::UpdatePosition(lcStep Step)
{
const lcVector3 Position = mPositionKeys.CalculateKey(Step);
if (IsPointLight())
{
mWorldMatrix = lcMatrix44Translation(Position);
}
else
{
const lcMatrix33 Rotation = mRotationKeys.CalculateKey(Step);
mWorldMatrix = lcMatrix44(Rotation, Position);
}
mColor = mColorKeys.CalculateKey(Step);
mSpotConeAngle = mSpotConeAngleKeys.CalculateKey(Step);
mSpotPenumbraAngle = mSpotPenumbraAngleKeys.CalculateKey(Step);
mSpotTightness = mSpotTightnessKeys.CalculateKey(Step);
mSize = mSizeKeys.CalculateKey(Step);
mPower = mPowerKeys.CalculateKey(Step);
mAttenuation = mAttenuationKeys.CalculateKey(Step);
mLightDiffuse = mLightDiffuseKeys.CalculateKey(Step);
mLightSpecular = mLightSpecularKeys.CalculateKey(Step);
mSpotCutoff = mSpotCutoffKeys.CalculateKey(Step);
mSpotExponent = mSpotExponentKeys.CalculateKey(Step);
mAreaGrid = mAreaGridKeys.CalculateKey(Step);
}
void lcLight::DrawInterface(lcContext* Context, const lcScene& Scene) const
{
Q_UNUSED(Scene);
Context->SetMaterial(lcMaterialType::UnlitColor);
switch (mLightType)
{
case lcLightType::Point:
DrawPointLight(Context);
break;
case lcLightType::Spot:
DrawSpotLight(Context);
break;
case lcLightType::Directional:
DrawDirectionalLight(Context);
break;
case lcLightType::Area:
DrawAreaLight(Context);
break;
case lcLightType::Count:
break;
}
}
void lcLight::DrawPointLight(lcContext* Context) const
{
SetupLightMatrix(Context);
DrawSphere(Context, lcVector3(0.0f, 0.0f, 0.0f), LC_LIGHT_SPHERE_RADIUS);
}
void lcLight::DrawSpotLight(lcContext* Context) const
{
SetupLightMatrix(Context);
constexpr int ConeEdges = 8;
float Verts[(ConeEdges + 1) * 3];
float* CurVert = Verts;
for (int EdgeIndex = 0; EdgeIndex < ConeEdges; EdgeIndex++)
{
float c = cosf((float)EdgeIndex / ConeEdges * LC_2PI) * LC_LIGHT_SPOT_CONE_RADIUS;
float s = sinf((float)EdgeIndex / ConeEdges * LC_2PI) * LC_LIGHT_SPOT_CONE_RADIUS;
*CurVert++ = c;
*CurVert++ = s;
*CurVert++ = 0.0f;
}
*CurVert++ = 0.0f;
*CurVert++ = 0.0f;
*CurVert++ = LC_LIGHT_SPOT_CONE_HEIGHT;
Context->SetVertexBufferPointer(Verts);
Context->SetVertexFormatPosition(3);
const GLushort Indices[(ConeEdges + 4) * 2] =
{
0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 0,
0, 8, 2, 8, 4, 8, 6, 8,
};
Context->SetIndexBufferPointer(Indices);
Context->DrawIndexedPrimitives(GL_LINES, (ConeEdges + 4) * 2, GL_UNSIGNED_SHORT, 0);
if (IsSelected())
{
DrawCone(Context, mTargetDistance);
DrawTarget(Context);
}
}
void lcLight::DrawDirectionalLight(lcContext* Context) const
{
SetupLightMatrix(Context);
DrawCylinder(Context, LC_LIGHT_DIRECTIONAL_RADIUS, LC_LIGHT_DIRECTIONAL_HEIGHT);
if (IsSelected())
DrawTarget(Context);
}
void lcLight::DrawAreaLight(lcContext* Context) const
{
SetupLightMatrix(Context);
if (mAreaShape == lcLightAreaShape::Square || mAreaShape == lcLightAreaShape::Rectangle)
{
float Verts[4 * 3];
float* CurVert = Verts;
*CurVert++ = -mSize.x / 2.0f;
*CurVert++ = -mSize.y / 2.0f;
*CurVert++ = 0.0f;
*CurVert++ = mSize.x / 2.0f;
*CurVert++ = -mSize.y / 2.0f;
*CurVert++ = 0.0f;
*CurVert++ = mSize.x / 2.0f;
*CurVert++ = mSize.y / 2.0f;
*CurVert++ = 0.0f;
*CurVert++ = -mSize.x / 2.0f;
*CurVert++ = mSize.y / 2.0f;
*CurVert++ = 0.0f;
Context->SetVertexBufferPointer(Verts);
Context->SetVertexFormatPosition(3);
const GLushort Indices[(4 + 2) * 2] =
{
0, 1, 1, 2, 2, 3, 3, 0,
0, 2, 1, 3,
};
Context->SetIndexBufferPointer(Indices);
Context->DrawIndexedPrimitives(GL_LINES, (4 + 2) * 2, GL_UNSIGNED_SHORT, 0);
}
else
{
constexpr int CircleEdges = 16;
float Verts[CircleEdges * 3];
float* CurVert = Verts;
for (int EdgeIndex = 0; EdgeIndex < CircleEdges; EdgeIndex++)
{
float c = cosf((float)EdgeIndex / CircleEdges * LC_2PI) * mSize.x / 2.0f;
float s = sinf((float)EdgeIndex / CircleEdges * LC_2PI) * mSize.y / 2.0f;
*CurVert++ = c;
*CurVert++ = s;
*CurVert++ = 0.0f;
}
Context->SetVertexBufferPointer(Verts);
Context->SetVertexFormatPosition(3);
const GLushort Indices[(CircleEdges + 2) * 2] =
{
0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8,
8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 0,
0, 8, 4, 12
};
Context->SetIndexBufferPointer(Indices);
Context->DrawIndexedPrimitives(GL_LINES, (CircleEdges + 2) * 2, GL_UNSIGNED_SHORT, 0);
}
if (IsSelected())
DrawTarget(Context);
}
void lcLight::SetupLightMatrix(lcContext* Context) const
{
Context->SetWorldMatrix(mWorldMatrix);
const lcPreferences& Preferences = lcGetPreferences();
const float LineWidth = Preferences.mLineWidth;
if (IsSelected(LC_LIGHT_SECTION_POSITION))
{
const lcVector4 SelectedColor = lcVector4FromColor(Preferences.mObjectSelectedColor);
const lcVector4 FocusedColor = lcVector4FromColor(Preferences.mObjectFocusedColor);
Context->SetLineWidth(2.0f * LineWidth);
if (IsFocused(LC_LIGHT_SECTION_POSITION))
Context->SetColor(FocusedColor);
else
Context->SetColor(SelectedColor);
}
else
{
const lcVector4 LightColor = lcVector4FromColor(Preferences.mLightColor);
Context->SetLineWidth(LineWidth);
Context->SetColor(LightColor);
}
}
void lcLight::DrawSphere(lcContext* Context, const lcVector3& Center, float Radius) const
{
constexpr int Slices = 6;
constexpr int NumIndices = 3 * Slices + 6 * Slices * (Slices - 2) + 3 * Slices;
constexpr int NumVertices = (Slices - 1) * Slices + 2;
lcVector3 Vertices[NumVertices];
quint16 Indices[NumIndices];
lcVector3* Vertex = Vertices;
quint16* Index = Indices;
*Vertex++ = Center + lcVector3(0, 0, Radius);
for (int i = 1; i < Slices; i++)
{
const float r0 = Radius * sinf(i * (LC_PI / Slices));
const float z0 = Radius * cosf(i * (LC_PI / Slices));
for (int j = 0; j < Slices; j++)
{
const float x0 = r0 * sinf(j * (LC_2PI / Slices));
const float y0 = r0 * cosf(j * (LC_2PI / Slices));
*Vertex++ = Center + lcVector3(x0, y0, z0);
}
}
*Vertex++ = Center + lcVector3(0, 0, -Radius);
for (quint16 i = 0; i < Slices - 1; i++)
{
*Index++ = 0;
*Index++ = 1 + i;
*Index++ = 1 + i + 1;
}
*Index++ = 0;
*Index++ = 1;
*Index++ = 1 + Slices - 1;
for (quint16 i = 0; i < Slices - 2; i++)
{
quint16 Row1 = 1 + i * Slices;
quint16 Row2 = 1 + (i + 1) * Slices;
for (quint16 j = 0; j < Slices - 1; j++)
{
*Index++ = Row1 + j;
*Index++ = Row2 + j + 1;
*Index++ = Row2 + j;
*Index++ = Row1 + j;
*Index++ = Row1 + j + 1;
*Index++ = Row2 + j + 1;
}
*Index++ = Row1 + Slices - 1;
*Index++ = Row2 + 0;
*Index++ = Row2 + Slices - 1;
*Index++ = Row1 + Slices - 1;
*Index++ = Row2 + 0;
*Index++ = Row1 + 0;
}
for (quint16 i = 0; i < Slices - 1; i++)
{
*Index++ = (Slices - 1) * Slices + 1;
*Index++ = (Slices - 1) * (Slices - 1) + i;
*Index++ = (Slices - 1) * (Slices - 1) + i + 1;
}
*Index++ = (Slices - 1) * Slices + 1;
*Index++ = (Slices - 1) * (Slices - 1) + (Slices - 2) + 1;
*Index++ = (Slices - 1) * (Slices - 1);
Context->SetVertexBufferPointer(Vertices);
Context->SetVertexFormatPosition(3);
Context->SetIndexBufferPointer(Indices);
Context->DrawIndexedPrimitives(GL_TRIANGLES, NumIndices, GL_UNSIGNED_SHORT, 0);
}
void lcLight::DrawCylinder(lcContext* Context, float Radius, float Height) const
{
constexpr int Slices = 8;
float Verts[(Slices * 2) * 3];
float* CurVert = Verts;
for (int EdgeIndex = 0; EdgeIndex < Slices; EdgeIndex++)
{
float c = cosf((float)EdgeIndex / Slices * LC_2PI) * Radius;
float s = sinf((float)EdgeIndex / Slices * LC_2PI) * Radius;
*CurVert++ = c;
*CurVert++ = s;
*CurVert++ = Height;
*CurVert++ = c;
*CurVert++ = s;
*CurVert++ = 0.0f;
}
const GLushort Indices[48] =
{
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
0, 2, 2, 4, 4, 6, 6, 8, 8, 10, 10, 12, 12, 14, 14, 0,
1, 3, 3, 5, 5, 7, 7, 9, 9, 11, 11, 13, 13, 15, 15, 1,
};
Context->SetVertexBufferPointer(Verts);
Context->SetVertexFormatPosition(3);
Context->SetIndexBufferPointer(Indices);
Context->DrawIndexedPrimitives(GL_LINES, 48, GL_UNSIGNED_SHORT, 0);
}
void lcLight::DrawTarget(lcContext* Context) const
{
float Verts[2 * 3];
float* CurVert = Verts;
*CurVert++ = 0.0f; *CurVert++ = 0.0f; *CurVert++ = 0.0f;
*CurVert++ = 0.0f; *CurVert++ = 0.0f; *CurVert++ = -mTargetDistance;
Context->SetVertexBufferPointer(Verts);
Context->SetVertexFormatPosition(3);
const GLushort Indices[2] =
{
0, 1
};
Context->SetIndexBufferPointer(Indices);
Context->DrawIndexedPrimitives(GL_LINES, 2, GL_UNSIGNED_SHORT, 0);
const lcPreferences& Preferences = lcGetPreferences();
const float LineWidth = Preferences.mLineWidth;
if (IsSelected(LC_LIGHT_SECTION_TARGET))
{
const lcVector4 SelectedColor = lcVector4FromColor(Preferences.mObjectSelectedColor);
const lcVector4 FocusedColor = lcVector4FromColor(Preferences.mObjectFocusedColor);
Context->SetLineWidth(2.0f * LineWidth);
if (IsFocused(LC_LIGHT_SECTION_TARGET))
Context->SetColor(FocusedColor);
else
Context->SetColor(SelectedColor);
}
else
{
const lcVector4 LightColor = lcVector4FromColor(Preferences.mLightColor);
Context->SetLineWidth(LineWidth);
Context->SetColor(LightColor);
}
DrawSphere(Context, lcVector3(0.0f, 0.0f, -mTargetDistance), LC_LIGHT_TARGET_RADIUS);
}
void lcLight::DrawCone(lcContext* Context, float TargetDistance) const
{
constexpr int ConeEdges = 16;
const float OuterRadius = tanf(LC_DTOR * mSpotConeAngle / 2.0f) * TargetDistance;
float Verts[(ConeEdges * 2 + 1) * 3];
float* CurVert = Verts;
for (int EdgeIndex = 0; EdgeIndex < ConeEdges; EdgeIndex++)
{
const float c = cosf((float)EdgeIndex / ConeEdges * LC_2PI);
const float s = sinf((float)EdgeIndex / ConeEdges * LC_2PI);
*CurVert++ = c * OuterRadius;
*CurVert++ = s * OuterRadius;
*CurVert++ = -TargetDistance;
}
*CurVert++ = 0.0f;
*CurVert++ = 0.0f;
*CurVert++ = 0.0f;
const bool DrawPenumbra = mSpotPenumbraAngle > 1.0f;
if (DrawPenumbra)
{
const float InnerRadius = tanf(LC_DTOR * (mSpotConeAngle / 2.0f - mSpotPenumbraAngle)) * TargetDistance;
for (int EdgeIndex = 0; EdgeIndex < ConeEdges; EdgeIndex++)
{
const float c = cosf((float)EdgeIndex / ConeEdges * LC_2PI);
const float s = sinf((float)EdgeIndex / ConeEdges * LC_2PI);
*CurVert++ = c * InnerRadius;
*CurVert++ = s * InnerRadius;
*CurVert++ = -TargetDistance;
}
}
Context->SetVertexBufferPointer(Verts);
Context->SetVertexFormatPosition(3);
constexpr GLushort Indices[(ConeEdges * 2 + 4) * 2] =
{
0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8,
8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 0,
16, 0, 16, 4, 16, 8, 16, 12,
17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 25,
25, 26, 26, 27, 27, 28, 28, 29, 29, 30, 30, 31, 31, 32, 32, 17
};
Context->SetIndexBufferPointer(Indices);
Context->DrawIndexedPrimitives(GL_LINES, DrawPenumbra ? (ConeEdges * 2 + 4) * 2 : (ConeEdges + 4) * 2, GL_UNSIGNED_SHORT, 0);
}
void lcLight::RemoveKeyFrames()
{
mPositionKeys.RemoveAll();
mPositionKeys.ChangeKey(mWorldMatrix.GetTranslation(), 1, true);
mRotationKeys.RemoveAll();
mRotationKeys.ChangeKey(lcMatrix33(mWorldMatrix), 1, true);
mColorKeys.RemoveAll();
mColorKeys.ChangeKey(mColor, 1, true);
mSpotConeAngleKeys.RemoveAll();
mSpotConeAngleKeys.ChangeKey(mSpotConeAngle, 1, false);
mSpotPenumbraAngleKeys.RemoveAll();
mSpotPenumbraAngleKeys.ChangeKey(mSpotPenumbraAngle, 1, true);
mSpotTightnessKeys.RemoveAll();
mSpotTightnessKeys.ChangeKey(mSpotTightness, 1, true);
mSizeKeys.RemoveAll();
mSizeKeys.ChangeKey(mSize, 1, true);
mPowerKeys.RemoveAll();
mPowerKeys.ChangeKey(mPower, 1, true);
mAttenuationKeys.RemoveAll();
mAttenuationKeys.ChangeKey(mAttenuation, 1, true);
mLightDiffuseKeys.RemoveAll();
mLightDiffuseKeys.ChangeKey(mLightDiffuse, 1, true);
mLightSpecularKeys.RemoveAll();
mLightSpecularKeys.ChangeKey(mLightSpecular, 1, true);
mSpotCutoffKeys.RemoveAll();
mSpotCutoffKeys.ChangeKey(mSpotCutoff, 1, true);
mSpotExponentKeys.RemoveAll();
mSpotExponentKeys.ChangeKey(mSpotExponent, 1, true);
mAreaGridKeys.RemoveAll();
mAreaGridKeys.ChangeKey(mAreaGrid, 1, true);
}
bool lcLight::Setup(int LightIndex)
{
Q_UNUSED(LightIndex);
return true;
}