mirror of
https://github.com/leozide/leocad
synced 2025-01-07 05:24:12 +01:00
667 lines
15 KiB
C++
667 lines
15 KiB
C++
//
|
|
// 4x4 Matrix class
|
|
//
|
|
|
|
#include "lc_global.h"
|
|
#include <memory.h>
|
|
#include <math.h>
|
|
#include <string.h>
|
|
#include "matrix.h"
|
|
|
|
// =============================================================================
|
|
// static functions
|
|
|
|
static float Identity[16] = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 };
|
|
|
|
// Perform a 4x4 matrix multiplication (product = a x b).
|
|
// WARNING: (product != b) assumed
|
|
static void matmul (float *product, const float *a, const float *b)
|
|
{
|
|
int i;
|
|
|
|
#define A(row,col) a[(col<<2)+row]
|
|
#define B(row,col) b[(col<<2)+row]
|
|
#define P(row,col) product[(col<<2)+row]
|
|
|
|
for (i = 0; i < 4; i++)
|
|
{
|
|
float ai0=A(i,0), ai1=A(i,1), ai2=A(i,2), ai3=A(i,3);
|
|
P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0) + ai3 * B(3,0);
|
|
P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1) + ai3 * B(3,1);
|
|
P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2) + ai3 * B(3,2);
|
|
P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3 * B(3,3);
|
|
}
|
|
|
|
#undef A
|
|
#undef B
|
|
#undef P
|
|
}
|
|
|
|
// Generate a 4x4 transformation matrix from rotation parameters.
|
|
static void rotation_matrix (double angle, float x, float y, float z, float m[] )
|
|
{
|
|
float s, c, mag, xx, yy, zz, xy, yz, zx, xs, ys, zs, one_c;
|
|
|
|
s = (float)sin (angle * DTOR);
|
|
c = (float)cos (angle * DTOR);
|
|
mag = (float)sqrt(x*x + y*y + z*z);
|
|
|
|
if (mag == 0)
|
|
{
|
|
// generate an identity matrix and return
|
|
memcpy (m, Identity, sizeof(float[16]));
|
|
return;
|
|
}
|
|
|
|
x /= mag;
|
|
y /= mag;
|
|
z /= mag;
|
|
|
|
xx = x * x;
|
|
yy = y * y;
|
|
zz = z * z;
|
|
xy = x * y;
|
|
yz = y * z;
|
|
zx = z * x;
|
|
xs = x * s;
|
|
ys = y * s;
|
|
zs = z * s;
|
|
one_c = 1.0f - c;
|
|
|
|
m[0] = (one_c * xx) + c;
|
|
m[4] = (one_c * xy) - zs;
|
|
m[8] = (one_c * zx) + ys;
|
|
m[12]= 0;
|
|
|
|
m[1] = (one_c * xy) + zs;
|
|
m[5] = (one_c * yy) + c;
|
|
m[9] = (one_c * yz) - xs;
|
|
m[13]= 0;
|
|
|
|
m[2] = (one_c * zx) - ys;
|
|
m[6] = (one_c * yz) + xs;
|
|
m[10]= (one_c * zz) + c;
|
|
m[14]= 0;
|
|
|
|
m[3] = 0;
|
|
m[7] = 0;
|
|
m[11]= 0;
|
|
m[15]= 1;
|
|
}
|
|
|
|
// =============================================================================
|
|
// Matrix class
|
|
|
|
Matrix::Matrix ()
|
|
{
|
|
LoadIdentity();
|
|
}
|
|
|
|
Matrix::Matrix (const float* mat)
|
|
{
|
|
memcpy (&m[0], mat, sizeof(float[16]));
|
|
}
|
|
|
|
// Create a matrix from axis-angle and a point
|
|
Matrix::Matrix (const float *rot, const float *pos)
|
|
{
|
|
float tmp[4] = { rot[0], rot[1], rot[2], rot[3]*DTOR };
|
|
float q[4];
|
|
float length, cosA, sinA;
|
|
length = (float)sqrt(tmp[0]*tmp[0] + tmp[1]*tmp[1] + tmp[2]*tmp[2]);
|
|
|
|
// if zero vector passed in, just return identity quaternion
|
|
if (length < 1E-5)
|
|
{
|
|
q[0] = 0;
|
|
q[1] = 0;
|
|
q[2] = 0;
|
|
q[3] = 1;
|
|
return;
|
|
}
|
|
|
|
tmp[0] /= length;
|
|
tmp[1] /= length;
|
|
tmp[2] /= length;
|
|
|
|
cosA = (float)cos(tmp[3] / 2.0f);
|
|
sinA = (float)sin(tmp[3] / 2.0f);
|
|
|
|
q[3] = cosA;
|
|
q[0] = sinA * tmp[0];
|
|
q[1] = sinA * tmp[1];
|
|
q[2] = sinA * tmp[2];
|
|
|
|
// Now calculate the matrix
|
|
float s,xs,ys,zs,wx,wy,wz,xx,xy,xz,yy,yz,zz;
|
|
|
|
s = 2.0f / (q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]);
|
|
|
|
xs = q[0] * s; ys = q[1] * s; zs = q[2] * s;
|
|
wx = q[3] * xs; wy = q[3] * ys; wz = q[3] * zs;
|
|
xx = q[0] * xs; xy = q[0] * ys; xz = q[0] * zs;
|
|
yy = q[1] * ys; yz = q[1] * zs; zz = q[2] * zs;
|
|
|
|
m[0] = 1.0f - (yy + zz);
|
|
m[4] = xy - wz;
|
|
m[8] = xz + wy;
|
|
m[12]= pos[0];
|
|
|
|
m[1] = xy + wz;
|
|
m[5] = 1.0f - (xx + zz);
|
|
m[9] = yz - wx;
|
|
m[13]= pos[1];
|
|
|
|
m[2] = xz - wy;
|
|
m[6] = yz + wx;
|
|
m[10]= 1.0f - (xx + yy);
|
|
m[14]= pos[2];
|
|
|
|
m[3] = 0.0f;
|
|
m[7] = 0.0f;
|
|
m[11] = 0.0f;
|
|
m[15] = 1.0f;
|
|
}
|
|
|
|
void Matrix::FromFloat (const float* mat)
|
|
{
|
|
memcpy (&m[0], mat, sizeof(float[16]));
|
|
}
|
|
|
|
void Matrix::LoadIdentity ()
|
|
{
|
|
memcpy (&m[0], &Identity, sizeof(float[16]));
|
|
}
|
|
|
|
float Matrix::Determinant() const
|
|
{
|
|
return m[0]*m[5]*m[10] + m[1]*m[6]*m[8] + m[2]*m[4]*m[9] - m[0]*m[6]*m[9] - m[1]*m[4]*m[10] - m[2]*m[5]*m[8];
|
|
}
|
|
|
|
void Matrix::Multiply(const Matrix& m1, const Matrix& m2)
|
|
{
|
|
matmul(m, m1.m, m2.m);
|
|
}
|
|
|
|
void Matrix::Rotate (float angle, float x, float y, float z)
|
|
{
|
|
float rm[16];
|
|
|
|
if (angle == 0.0)
|
|
return;
|
|
|
|
rotation_matrix(angle, x, y, z, rm);
|
|
matmul(rm, rm, m);
|
|
memcpy (&m[0], &rm[0], sizeof(rm));
|
|
}
|
|
|
|
void Matrix::RotateCenter (float angle, float x, float y, float z, float px, float py, float pz)
|
|
{
|
|
m[12] -= px;
|
|
m[13] -= py;
|
|
m[14] -= pz;
|
|
|
|
Rotate (angle, x, y, z);
|
|
|
|
m[12] += px;
|
|
m[13] += py;
|
|
m[14] += pz;
|
|
}
|
|
|
|
void Matrix::Translate (float x, float y, float z)
|
|
{
|
|
m[12] = m[0] * x + m[4] * y + m[8] * z + m[12];
|
|
m[13] = m[1] * x + m[5] * y + m[9] * z + m[13];
|
|
m[14] = m[2] * x + m[6] * y + m[10] * z + m[14];
|
|
m[15] = m[3] * x + m[7] * y + m[11] * z + m[15];
|
|
}
|
|
|
|
void Matrix::SetTranslation (float x, float y, float z)
|
|
{
|
|
m[12] = x;
|
|
m[13] = y;
|
|
m[14] = z;
|
|
m[15] = 1;
|
|
}
|
|
|
|
void Matrix::GetTranslation (float* x, float* y, float* z)
|
|
{
|
|
*x = m[12];
|
|
*y = m[13];
|
|
*z = m[14];
|
|
}
|
|
|
|
void Matrix::GetTranslation (float pos[3])
|
|
{
|
|
pos[0] = m[12];
|
|
pos[1] = m[13];
|
|
pos[2] = m[14];
|
|
}
|
|
|
|
void Matrix::SetTranslation (float pos[3])
|
|
{
|
|
m[12] = pos[0];
|
|
m[13] = pos[1];
|
|
m[14] = pos[2];
|
|
m[15] = 1;
|
|
}
|
|
|
|
void Matrix::CreateOld(float mx, float my, float mz, float rx, float ry, float rz)
|
|
{
|
|
LoadIdentity();
|
|
Translate(mx, my, mz);
|
|
|
|
float rm[16];
|
|
rotation_matrix(rx, 1, 0, 0, rm);
|
|
matmul(m, m, rm);
|
|
rotation_matrix(ry, 0, 1, 0, rm);
|
|
matmul(m, m, rm);
|
|
rotation_matrix(rz, 0, 0, 1, rm);
|
|
matmul(m, m, rm);
|
|
}
|
|
|
|
// Transform a point by a 4x4 matrix. out = m * in
|
|
void Matrix::TransformPoint(float out[], const float in[3])
|
|
{
|
|
out[0] = m[0]*in[0] + m[4]*in[1] + m[8]*in[2] + m[12];
|
|
out[1] = m[1]*in[0] + m[5]*in[1] + m[9]*in[2] + m[13];
|
|
out[2] = m[2]*in[0] + m[6]*in[1] + m[10]*in[2] + m[14];
|
|
}
|
|
|
|
void Matrix::TransformPoints (float p[], int n)
|
|
{
|
|
for (int i = 0; i < n*3; i += 3)
|
|
{
|
|
float tmp[3] = { p[i], p[i+1], p[i+2] };
|
|
TransformPoint (&p[i], tmp);
|
|
}
|
|
}
|
|
|
|
void Matrix::FromLDraw (const float *f)
|
|
{
|
|
float trans[16] = { 1,0,0,0, 0,0,-1,0, 0,1,0,0, 0,0,0,1 };
|
|
float t[16] = { 1,0,0,0, 0,0,1,0, 0,-1,0,0, 0,0,0,1 };
|
|
|
|
m[0] = f[3]; m[1] = f[6]; m[2] = f[9]; m[3] = 0.0f;
|
|
m[4] = f[4]; m[5] = f[7]; m[6] = f[10]; m[7] = 0.0f;
|
|
m[8] = f[5]; m[9] = f[8]; m[10]= f[11]; m[11] = 0.0f;
|
|
m[12]= f[0]/25; m[13]= f[1]/25; m[14]= f[2]/25; m[15] = 1.0f;
|
|
|
|
matmul (m, m, t);
|
|
matmul (trans, trans, m);
|
|
memcpy (&m[0], &trans[0], sizeof(m));
|
|
}
|
|
|
|
void Matrix::ToLDraw (float *f) const
|
|
{
|
|
float trans[16] = { 1,0,0,0, 0,0,-1,0, 0,1,0,0, 0,0,0,1 };
|
|
float tmp[16] = { 1,0,0,0, 0,0,1,0, 0,-1,0,0, 0,0,0,1 };
|
|
|
|
matmul(tmp, tmp, m);
|
|
matmul (tmp, tmp, trans);
|
|
|
|
f[0] = m[12]*25; f[1] = -m[14]*25; f[2] = m[13]*25;
|
|
f[3] = tmp[0]; f[4] = tmp[4]; f[5] = tmp[8];
|
|
f[6] = tmp[1]; f[7] = tmp[5]; f[8] = tmp[9];
|
|
f[9] = tmp[2]; f[10]= tmp[6]; f[11]= tmp[10];
|
|
}
|
|
|
|
void Matrix::ToEulerAngles (float *rot) const
|
|
{
|
|
double sinPitch, cosPitch, sinRoll, cosRoll, sinYaw, cosYaw;
|
|
float colMatrix[4][4];
|
|
|
|
colMatrix[0][0] = m[0];
|
|
colMatrix[0][1] = m[4];
|
|
colMatrix[0][2] = m[8];
|
|
colMatrix[0][3] = m[12];
|
|
|
|
colMatrix[1][0] = m[1];
|
|
colMatrix[1][1] = m[5];
|
|
colMatrix[1][2] = m[9];
|
|
colMatrix[1][3] = m[13];
|
|
|
|
colMatrix[2][0] = m[2];
|
|
colMatrix[2][1] = m[6];
|
|
colMatrix[2][2] = m[10];
|
|
colMatrix[2][3] = m[14];
|
|
|
|
colMatrix[3][0] = 0.0f;
|
|
colMatrix[3][1] = 0.0f;
|
|
colMatrix[3][2] = 0.0f;
|
|
colMatrix[3][3] = 1.0f;
|
|
|
|
sinPitch = -colMatrix[2][0];
|
|
cosPitch = sqrt(1 - sinPitch*sinPitch);
|
|
|
|
if (fabs(cosPitch) > 0.0005)
|
|
{
|
|
sinRoll = colMatrix[2][1] / cosPitch;
|
|
cosRoll = colMatrix[2][2] / cosPitch;
|
|
sinYaw = colMatrix[1][0] / cosPitch;
|
|
cosYaw = colMatrix[0][0] / cosPitch;
|
|
}
|
|
else
|
|
{
|
|
sinRoll = -colMatrix[1][2];
|
|
cosRoll = colMatrix[1][1];
|
|
sinYaw = 0;
|
|
cosYaw = 1;
|
|
}
|
|
|
|
rot[2] = (float)(RTOD*atan2 (sinYaw, cosYaw));
|
|
rot[1] = (float)(RTOD*atan2 (sinPitch, cosPitch));
|
|
rot[0] = (float)(RTOD*atan2 (sinRoll, cosRoll));
|
|
|
|
if (rot[2] < 0) rot[2] += 360;
|
|
if (rot[1] < 0) rot[1] += 360;
|
|
if (rot[0] < 0) rot[0] += 360;
|
|
}
|
|
|
|
void Matrix::ToAxisAngle(float *rot) const
|
|
{
|
|
Matrix tmp(*this);
|
|
|
|
// Normalize.
|
|
float inv;
|
|
inv = 1.0f / sqrtf(tmp.m[0]*tmp.m[0] + tmp.m[1]*tmp.m[1] + tmp.m[2]*tmp.m[2]);
|
|
tmp.m[0] *= inv; tmp.m[1] *= inv; tmp.m[2] *= inv;
|
|
inv = 1.0f / sqrtf(tmp.m[4]*tmp.m[4] + tmp.m[5]*tmp.m[5] + tmp.m[6]*tmp.m[6]);
|
|
tmp.m[4] *= inv; tmp.m[5] *= inv; tmp.m[6] *= inv;
|
|
inv = 1.0f / sqrtf(tmp.m[8]*tmp.m[8] + tmp.m[9]*tmp.m[9] + tmp.m[10]*tmp.m[10]);
|
|
tmp.m[8] *= inv; tmp.m[9] *= inv; tmp.m[10] *= inv;
|
|
|
|
// Determinant should be 1 for rotation matrices.
|
|
if (tmp.Determinant() < 0.0f)
|
|
{
|
|
tmp.m[0] *= -1.0f;
|
|
tmp.m[1] *= -1.0f;
|
|
tmp.m[2] *= -1.0f;
|
|
}
|
|
|
|
float fTrace = tmp.m[0] + tmp.m[5] + tmp.m[10];
|
|
float fCos = 0.5f * (fTrace - 1.0f);
|
|
|
|
rot[3] = acosf(fCos); // in [0,PI]
|
|
|
|
if (rot[3] > 0.01f)
|
|
{
|
|
if (fabs (M_PI - rot[3]) > 0.01f)
|
|
{
|
|
rot[0] = tmp.m[6] - tmp.m[9];
|
|
rot[1] = tmp.m[8] - tmp.m[2];
|
|
rot[2] = tmp.m[1] - tmp.m[4];
|
|
|
|
inv = 1.0f / sqrtf(rot[0]*rot[0] + rot[1]*rot[1] + rot[2]*rot[2]);
|
|
|
|
rot[0] *= inv;
|
|
rot[1] *= inv;
|
|
rot[2] *= inv;
|
|
}
|
|
else
|
|
{
|
|
// angle is PI
|
|
float fHalfInverse;
|
|
if (tmp.m[0] >= tmp.m[5])
|
|
{
|
|
// r00 >= r11
|
|
if (tmp.m[0] >= tmp.m[10])
|
|
{
|
|
// r00 is maximum diagonal term
|
|
rot[0] = 0.5f * sqrtf(tmp.m[0] - tmp.m[5] - tmp.m[10] + 1.0f);
|
|
fHalfInverse = 0.5f / rot[0];
|
|
rot[1] = fHalfInverse * tmp.m[4];
|
|
rot[2] = fHalfInverse * tmp.m[8];
|
|
}
|
|
else
|
|
{
|
|
// r22 is maximum diagonal term
|
|
rot[2] = 0.5f * sqrtf(tmp.m[10] - tmp.m[0] - tmp.m[5] + 1.0f);
|
|
fHalfInverse = 0.5f / rot[2];
|
|
rot[0] = fHalfInverse * tmp.m[8];
|
|
rot[1] = fHalfInverse * tmp.m[9];
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// r11 > r00
|
|
if (tmp.m[5] >= tmp.m[10])
|
|
{
|
|
// r11 is maximum diagonal term
|
|
rot[1] = 0.5f * sqrtf(tmp.m[5] - tmp.m[0] - tmp.m[10] + 1.0f);
|
|
fHalfInverse = 0.5f / rot[1];
|
|
rot[0] = fHalfInverse * tmp.m[4];
|
|
rot[2] = fHalfInverse * tmp.m[9];
|
|
}
|
|
else
|
|
{
|
|
// r22 is maximum diagonal term
|
|
rot[2] = 0.5f * sqrtf(tmp.m[10] - tmp.m[0] - tmp.m[5] + 1.0f);
|
|
fHalfInverse = 0.5f / rot[2];
|
|
rot[0] = fHalfInverse * tmp.m[8];
|
|
rot[1] = fHalfInverse * tmp.m[9];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// The angle is 0 and the matrix is the identity. Any axis will
|
|
// work, so just use the z-axis.
|
|
rot[0] = 0.0f;
|
|
rot[1] = 0.0f;
|
|
rot[2] = 1.0f;
|
|
}
|
|
|
|
rot[3] *= RTOD;
|
|
}
|
|
|
|
void Matrix::FromEulerAngles (float roll, float pitch, float yaw)
|
|
{
|
|
float cosYaw, sinYaw, cosPitch, sinPitch, cosRoll, sinRoll;
|
|
|
|
cosYaw = (float)cos(yaw*DTOR);
|
|
sinYaw = (float)sin(yaw*DTOR);
|
|
cosPitch = (float)cos(pitch*DTOR);
|
|
sinPitch = (float)sin(pitch*DTOR);
|
|
cosRoll = (float)cos(roll*DTOR);
|
|
sinRoll = (float)sin(roll*DTOR);
|
|
|
|
m[0] = cosYaw * cosPitch;
|
|
m[4] = cosYaw * sinPitch * sinRoll - sinYaw * cosRoll;
|
|
m[8] = cosYaw * sinPitch * cosRoll + sinYaw * sinRoll;
|
|
m[12] = 0.0f;
|
|
|
|
m[1] = sinYaw * cosPitch;
|
|
m[5] = cosYaw * cosRoll + sinYaw * sinPitch * sinRoll;
|
|
m[9] = sinYaw * sinPitch * cosRoll - cosYaw * sinRoll;
|
|
m[13] = 0.0f;
|
|
|
|
m[2] = -sinPitch;
|
|
m[6] = cosPitch * sinRoll;
|
|
m[10] = cosPitch * cosRoll;
|
|
m[14] = 0.0f;
|
|
|
|
m[3] = 0.0f;
|
|
m[7] = 0.0f;
|
|
m[11] = 0.0f;
|
|
m[15] = 1.0f;
|
|
}
|
|
|
|
// Create a rotation matrix (angle is in degrees)
|
|
void Matrix::FromAxisAngle (const float *axis, float angle)
|
|
{
|
|
if (angle == 0.0f)
|
|
return;
|
|
rotation_matrix (angle, axis[0], axis[1], axis[2], m);
|
|
}
|
|
|
|
void Matrix::Transpose3()
|
|
{
|
|
float tmp;
|
|
|
|
tmp = m[1]; m[1] = m[4]; m[4] = tmp;
|
|
tmp = m[2]; m[2] = m[8]; m[8] = tmp;
|
|
tmp = m[6]; m[6] = m[9]; m[9] = tmp;
|
|
}
|
|
|
|
bool Matrix::Invert ()
|
|
{
|
|
double t, inverse[16];
|
|
int i, j, k, swap;
|
|
double tmp[4][4];
|
|
|
|
for (i = 0; i < 16; i++)
|
|
inverse[i] = 0.0;
|
|
inverse[0] = inverse[5] = inverse[10] = inverse[15] = 1.0;
|
|
|
|
for (i = 0; i < 4; i++)
|
|
for (j = 0; j < 4; j++)
|
|
tmp[i][j] = m[i*4+j];
|
|
|
|
for (i = 0; i < 4; i++)
|
|
{
|
|
// look for largest element in column.
|
|
swap = i;
|
|
for (j = i + 1; j < 4; j++)
|
|
if (fabs(tmp[j][i]) > fabs(tmp[i][i]))
|
|
swap = j;
|
|
|
|
if (swap != i)
|
|
{
|
|
// swap rows.
|
|
for (k = 0; k < 4; k++)
|
|
{
|
|
t = tmp[i][k];
|
|
tmp[i][k] = tmp[swap][k];
|
|
tmp[swap][k] = t;
|
|
|
|
t = inverse[i*4+k];
|
|
inverse[i*4+k] = inverse[swap*4+k];
|
|
inverse[swap*4+k] = t;
|
|
}
|
|
}
|
|
|
|
if (tmp[i][i] == 0)
|
|
{
|
|
// The matrix is singular, which shouldn't happen.
|
|
return false;
|
|
}
|
|
|
|
t = tmp[i][i];
|
|
for (k = 0; k < 4; k++)
|
|
{
|
|
tmp[i][k] /= t;
|
|
inverse[i*4+k] /= t;
|
|
}
|
|
|
|
for (j = 0; j < 4; j++)
|
|
{
|
|
if (j != i)
|
|
{
|
|
t = tmp[j][i];
|
|
for (k = 0; k < 4; k++)
|
|
{
|
|
tmp[j][k] -= tmp[i][k]*t;
|
|
inverse[j*4+k] -= inverse[i*4+k]*t;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < 16; i++)
|
|
m[i] = (float)inverse[i];
|
|
|
|
return true;
|
|
}
|
|
|
|
void Matrix::CreatePerspective (float fovy, float aspect, float nearval, float farval)
|
|
{
|
|
float left, right, bottom, top;
|
|
float x, y, a, b, c, d;
|
|
|
|
LoadIdentity ();
|
|
|
|
top = nearval * (float)tan (fovy * M_PI / 360.0);
|
|
bottom = -top;
|
|
|
|
left = bottom * aspect;
|
|
right = top * aspect;
|
|
|
|
if ((nearval<=0.0 || farval<=0.0) || (nearval == farval) || (left == right) || (top == bottom))
|
|
return;
|
|
|
|
x = (2.0f*nearval) / (right-left);
|
|
y = (2.0f*nearval) / (top-bottom);
|
|
a = (right+left) / (right-left);
|
|
b = (top+bottom) / (top-bottom);
|
|
c = -(farval+nearval) / ( farval-nearval);
|
|
d = -(2.0f*farval*nearval) / (farval-nearval);
|
|
|
|
#define M(row,col) m[col*4+row]
|
|
M(0,0) = x; M(0,1) = 0.0F; M(0,2) = a; M(0,3) = 0.0F;
|
|
M(1,0) = 0.0F; M(1,1) = y; M(1,2) = b; M(1,3) = 0.0F;
|
|
M(2,0) = 0.0F; M(2,1) = 0.0F; M(2,2) = c; M(2,3) = d;
|
|
M(3,0) = 0.0F; M(3,1) = 0.0F; M(3,2) = -1.0F; M(3,3) = 0.0F;
|
|
#undef M
|
|
}
|
|
|
|
void Matrix::CreateLookat (const float *eye, const float *target, const float *up)
|
|
{
|
|
float x[3], y[3], z[3];
|
|
float mag;
|
|
|
|
z[0] = eye[0] - target[0];
|
|
z[1] = eye[1] - target[1];
|
|
z[2] = eye[2] - target[2];
|
|
mag = (float)sqrt (z[0]*z[0] + z[1]*z[1] + z[2]*z[2]);
|
|
if (mag)
|
|
{
|
|
z[0] /= mag;
|
|
z[1] /= mag;
|
|
z[2] /= mag;
|
|
}
|
|
|
|
y[0] = up[0];
|
|
y[1] = up[1];
|
|
y[2] = up[2];
|
|
|
|
// X vector = Y cross Z
|
|
x[0] = y[1]*z[2] - y[2]*z[1];
|
|
x[1] = -y[0]*z[2] + y[2]*z[0];
|
|
x[2] = y[0]*z[1] - y[1]*z[0];
|
|
|
|
// Recompute Y = Z cross X
|
|
y[0] = z[1]*x[2] - z[2]*x[1];
|
|
y[1] = -z[0]*x[2] + z[2]*x[0];
|
|
y[2] = z[0]*x[1] - z[1]*x[0];
|
|
|
|
mag = (float)sqrt (x[0]*x[0] + x[1]*x[1] + x[2]*x[2]);
|
|
if (mag)
|
|
{
|
|
x[0] /= mag;
|
|
x[1] /= mag;
|
|
x[2] /= mag;
|
|
}
|
|
|
|
mag = (float)sqrt (y[0]*y[0] + y[1]*y[1] + y[2]*y[2]);
|
|
if (mag)
|
|
{
|
|
y[0] /= mag;
|
|
y[1] /= mag;
|
|
y[2] /= mag;
|
|
}
|
|
|
|
#define M(row,col) m[col*4+row]
|
|
M(0,0) = x[0]; M(0,1) = x[1]; M(0,2) = x[2]; M(0,3) = 0.0;
|
|
M(1,0) = y[0]; M(1,1) = y[1]; M(1,2) = y[2]; M(1,3) = 0.0;
|
|
M(2,0) = z[0]; M(2,1) = z[1]; M(2,2) = z[2]; M(2,3) = 0.0;
|
|
M(3,0) = 0.0; M(3,1) = 0.0; M(3,2) = 0.0; M(3,3) = 1.0;
|
|
#undef M
|
|
|
|
// Translate Eye to Origin
|
|
m[12] = m[0] * -eye[0] + m[4] * -eye[1] + m[8] * -eye[2] + m[12];
|
|
m[13] = m[1] * -eye[0] + m[5] * -eye[1] + m[9] * -eye[2] + m[13];
|
|
m[14] = m[2] * -eye[0] + m[6] * -eye[1] + m[10] * -eye[2] + m[14];
|
|
m[15] = m[3] * -eye[0] + m[7] * -eye[1] + m[11] * -eye[2] + m[15];
|
|
}
|