leocad/common/lc_meshloader.cpp
2021-03-06 18:54:24 -08:00

1830 lines
56 KiB
C++

#include "lc_global.h"
#include "lc_meshloader.h"
#include "lc_file.h"
#include "lc_colors.h"
#include "lc_library.h"
#include "lc_application.h"
#include "lc_texture.h"
static lcVector2 lcCalculateTexCoord(const lcVector3& Position, const lcMeshLoaderTextureMap* TextureMap)
{
switch (TextureMap->Type)
{
case lcMeshLoaderTextureMapType::Planar:
return lcVector2(lcDot3(Position, TextureMap->Params.Planar.Planes[0]) + TextureMap->Params.Planar.Planes[0].w, lcDot3(Position, TextureMap->Params.Planar.Planes[1]) + TextureMap->Params.Planar.Planes[1].w);
case lcMeshLoaderTextureMapType::Cylindrical:
{
const lcVector4& FrontPlane = TextureMap->Params.Cylindrical.FrontPlane;
const lcVector4& Plane1 = TextureMap->Params.Cylindrical.Plane1;
const lcVector4& Plane2 = TextureMap->Params.Cylindrical.Plane2;
lcVector2 TexCoord;
float DotPlane1 = lcDot(lcVector4(Position, 1.0f), Plane1);
lcVector3 PointInPlane1 = Position - lcVector3(Plane1) * DotPlane1;
float DotFrontPlane = lcDot(lcVector4(PointInPlane1, 1.0f), FrontPlane);
float DotPlane2 = lcDot(lcVector4(PointInPlane1, 1.0f), Plane2);
float Angle1 = atan2f(DotPlane2, DotFrontPlane) / LC_PI * TextureMap->Angle1;
TexCoord.x = lcClamp(0.5f + 0.5f * Angle1, 0.0f, 1.0f);
TexCoord.y = DotPlane1 / TextureMap->Params.Cylindrical.UpLength;
return TexCoord;
}
case lcMeshLoaderTextureMapType::Spherical:
{
const lcVector4& FrontPlane = TextureMap->Params.Spherical.FrontPlane;
const lcVector3& Center = TextureMap->Params.Spherical.Center;
const lcVector4& Plane1 = TextureMap->Params.Spherical.Plane1;
const lcVector4& Plane2 = TextureMap->Params.Spherical.Plane2;
lcVector2 TexCoord;
lcVector3 VertexDir = Position - Center;
float DotPlane1 = lcDot(lcVector4(Position, 1.0f), Plane1);
lcVector3 PointInPlane1 = Position - lcVector3(Plane1) * DotPlane1;
float DotFrontPlane = lcDot(lcVector4(PointInPlane1, 1.0f), FrontPlane);
float DotPlane2 = lcDot(lcVector4(PointInPlane1, 1.0f), Plane2);
float Angle1 = atan2f(DotPlane2, DotFrontPlane) / LC_PI * TextureMap->Angle1;
TexCoord.x = 0.5f + 0.5f * Angle1;
float Angle2 = asinf(DotPlane1 / lcLength(VertexDir)) / LC_PI * TextureMap->Angle2;
TexCoord.y = 0.5f - Angle2;
return TexCoord;
}
}
return lcVector2(0.0f, 0.0f);
}
static void lcResequenceQuad(int* Indices, int a, int b, int c, int d)
{
Indices[0] = a;
Indices[1] = b;
Indices[2] = c;
Indices[3] = d;
}
static void lcTestQuad(int* QuadIndices, const lcVector3* Vertices)
{
lcVector3 v01 = Vertices[1] - Vertices[0];
lcVector3 v02 = Vertices[2] - Vertices[0];
lcVector3 v03 = Vertices[3] - Vertices[0];
lcVector3 cp1 = lcCross(v01, v02);
lcVector3 cp2 = lcCross(v02, v03);
if (lcDot(cp1, cp2) > 0.0f)
return;
lcVector3 v12 = Vertices[2] - Vertices[1];
lcVector3 v13 = Vertices[3] - Vertices[1];
lcVector3 v23 = Vertices[3] - Vertices[2];
if (lcDot(lcCross(v12, v01), lcCross(v01, v13)) > 0.0f)
{
if (-lcDot(lcCross(v02, v12), lcCross(v12, v23)) > 0.0f)
lcResequenceQuad(QuadIndices, 1, 2, 3, 0);
else
lcResequenceQuad(QuadIndices, 0, 3, 1, 2);
}
else
{
if (-lcDot(lcCross(v02, v12), lcCross(v12, v23)) > 0.0f)
lcResequenceQuad(QuadIndices, 0, 1, 3, 2);
else
lcResequenceQuad(QuadIndices, 1, 2, 3, 0);
}
}
const float lcDistanceEpsilon = 0.01f; // Maximum value for 50591.dat
const float lcTexCoordEpsilon = 0.01f;
static bool lcCompareVertices(const lcVector3& Position1, const lcVector3& Position2)
{
return fabsf(Position1.x - Position2.x) < lcDistanceEpsilon && fabsf(Position1.y - Position2.y) < lcDistanceEpsilon && fabsf(Position1.z - Position2.z) < lcDistanceEpsilon;
}
static bool lcCompareVertices(const lcVector3& Position1, const lcVector2& TexCoord1, const lcVector3& Position2, const lcVector2& TexCoord2)
{
return lcCompareVertices(Position1, Position2) && fabsf(TexCoord1.x - TexCoord2.x) < lcTexCoordEpsilon && fabsf(TexCoord1.y - TexCoord2.y) < lcTexCoordEpsilon;
}
static bool lcCompareConditionalVertices(const lcVector3* Position1, const lcVector3* Position2)
{
return lcCompareVertices(Position1[0], Position2[0]) && lcCompareVertices(Position1[1], Position2[1]) && lcCompareVertices(Position1[2], Position2[2]) && lcCompareVertices(Position1[3], Position2[3]);
}
lcLibraryMeshSection* lcMeshLoaderTypeData::AddSection(lcMeshPrimitiveType PrimitiveType, quint32 ColorCode, lcTexture* Texture)
{
for (std::unique_ptr<lcLibraryMeshSection>& Section : mSections)
if (Section->mColor == ColorCode && Section->mPrimitiveType == PrimitiveType && Section->mTexture == Texture)
return Section.get();
mSections.emplace_back(new lcLibraryMeshSection(PrimitiveType, ColorCode, Texture));
return mSections.back().get();
}
quint32 lcMeshLoaderTypeData::AddVertex(const lcVector3& Position, bool Optimize)
{
if (Optimize)
{
for (int VertexIdx = mVertices.GetSize() - 1; VertexIdx >= 0; VertexIdx--)
{
lcMeshLoaderVertex& Vertex = mVertices[VertexIdx];
if (lcCompareVertices(Position, Vertex.Position))
{
Vertex.Usage |= LC_LIBRARY_VERTEX_UNTEXTURED;
return VertexIdx;
}
}
}
lcMeshLoaderVertex& Vertex = mVertices.Add();
Vertex.Position = Position;
Vertex.Normal = lcVector3(0.0f, 0.0f, 0.0f);
Vertex.NormalWeight = 0.0f;
Vertex.TexCoord = lcVector2(0.0f, 0.0f);
Vertex.Usage = LC_LIBRARY_VERTEX_UNTEXTURED;
return mVertices.GetSize() - 1;
}
quint32 lcMeshLoaderTypeData::AddVertex(const lcVector3& Position, const lcVector3& Normal, bool Optimize)
{
if (Optimize)
{
for (int VertexIdx = mVertices.GetSize() - 1; VertexIdx >= 0; VertexIdx--)
{
lcMeshLoaderVertex& Vertex = mVertices[VertexIdx];
if (lcCompareVertices(Position, Vertex.Position))
{
if (Vertex.NormalWeight == 0.0f)
{
Vertex.Normal = Normal;
Vertex.NormalWeight = 1.0f;
Vertex.Usage |= LC_LIBRARY_VERTEX_UNTEXTURED;
return VertexIdx;
}
else if (lcDot(Normal, Vertex.Normal) > 0.707f)
{
Vertex.Normal = lcNormalize(Vertex.Normal * Vertex.NormalWeight + Normal);
Vertex.NormalWeight += 1.0f;
Vertex.Usage |= LC_LIBRARY_VERTEX_UNTEXTURED;
return VertexIdx;
}
}
}
}
lcMeshLoaderVertex& Vertex = mVertices.Add();
Vertex.Position = Position;
Vertex.Normal = Normal;
Vertex.NormalWeight = 1.0f;
Vertex.TexCoord = lcVector2(0.0f, 0.0f);
Vertex.Usage = LC_LIBRARY_VERTEX_UNTEXTURED;
return mVertices.GetSize() - 1;
}
quint32 lcMeshLoaderTypeData::AddTexturedVertex(const lcVector3& Position, const lcVector2& TexCoord, bool Optimize)
{
if (Optimize)
{
for (int VertexIdx = mVertices.GetSize() - 1; VertexIdx >= 0; VertexIdx--)
{
lcMeshLoaderVertex& Vertex = mVertices[VertexIdx];
if (Vertex.Usage & LC_LIBRARY_VERTEX_TEXTURED)
{
if (lcCompareVertices(Position, TexCoord, Vertex.Position, Vertex.TexCoord))
return VertexIdx;
}
else
{
if (lcCompareVertices(Position, Vertex.Position))
{
Vertex.TexCoord = TexCoord;
Vertex.Usage |= LC_LIBRARY_VERTEX_TEXTURED;
return VertexIdx;
}
}
}
}
lcMeshLoaderVertex& Vertex = mVertices.Add();
Vertex.Position = Position;
Vertex.Normal = lcVector3(0.0f, 0.0f, 0.0f);
Vertex.NormalWeight = 0.0f;
Vertex.TexCoord = TexCoord;
Vertex.Usage = LC_LIBRARY_VERTEX_TEXTURED;
return mVertices.GetSize() - 1;
}
quint32 lcMeshLoaderTypeData::AddTexturedVertex(const lcVector3& Position, const lcVector3& Normal, const lcVector2& TexCoord, bool Optimize)
{
if (Optimize)
{
for (int VertexIdx = mVertices.GetSize() - 1; VertexIdx >= 0; VertexIdx--)
{
lcMeshLoaderVertex& Vertex = mVertices[VertexIdx];
if (Vertex.Usage & LC_LIBRARY_VERTEX_TEXTURED)
{
if (lcCompareVertices(Position, TexCoord, Vertex.Position, Vertex.TexCoord))
{
if (Vertex.NormalWeight == 0.0f)
{
Vertex.Normal = Normal;
Vertex.NormalWeight = 1.0f;
return VertexIdx;
}
else if (lcDot(Normal, Vertex.Normal) > 0.707f)
{
Vertex.Normal = lcNormalize(Vertex.Normal * Vertex.NormalWeight + Normal);
Vertex.NormalWeight += 1.0f;
return VertexIdx;
}
}
}
else
{
if (lcCompareVertices(Position, Vertex.Position))
{
if (Vertex.NormalWeight == 0.0f)
{
Vertex.Normal = Normal;
Vertex.NormalWeight = 1.0f;
Vertex.TexCoord = TexCoord;
Vertex.Usage |= LC_LIBRARY_VERTEX_TEXTURED;
return VertexIdx;
}
else if (lcDot(Normal, Vertex.Normal) > 0.707f)
{
Vertex.Normal = lcNormalize(Vertex.Normal * Vertex.NormalWeight + Normal);
Vertex.NormalWeight += 1.0f;
Vertex.TexCoord = TexCoord;
Vertex.Usage |= LC_LIBRARY_VERTEX_TEXTURED;
return VertexIdx;
}
}
}
}
}
lcMeshLoaderVertex& Vertex = mVertices.Add();
Vertex.Position = Position;
Vertex.Normal = Normal;
Vertex.NormalWeight = 1.0f;
Vertex.TexCoord = TexCoord;
Vertex.Usage = LC_LIBRARY_VERTEX_TEXTURED;
return mVertices.GetSize() - 1;
}
quint32 lcMeshLoaderTypeData::AddConditionalVertex(const lcVector3* Position, bool Optimize)
{
if (Optimize)
{
for (int VertexIdx = mConditionalVertices.GetSize() - 1; VertexIdx >= 0; VertexIdx--)
{
lcMeshLoaderConditionalVertex& Vertex = mConditionalVertices[VertexIdx];
if (lcCompareConditionalVertices(Position, Vertex.Position))
return VertexIdx;
}
}
lcMeshLoaderConditionalVertex& Vertex = mConditionalVertices.Add();
Vertex.Position[0] = Position[0];
Vertex.Position[1] = Position[1];
Vertex.Position[2] = Position[2];
Vertex.Position[3] = Position[3];
return mConditionalVertices.GetSize() - 1;
}
void lcMeshLoaderTypeData::ProcessLine(int LineType, quint32 ColorCode, bool WindingCCW, lcVector3* Vertices, bool Optimize)
{
lcMeshPrimitiveType PrimitiveTypes[4] = { LC_MESH_LINES, LC_MESH_TRIANGLES, LC_MESH_TRIANGLES, LC_MESH_CONDITIONAL_LINES };
lcMeshPrimitiveType PrimitiveType = PrimitiveTypes[LineType - 2];
lcLibraryMeshSection* Section = AddSection(PrimitiveType, ColorCode, nullptr);
int QuadIndices[4] = { 0, 1, 2, 3 };
int Indices[4] = { -1, -1, -1, -1 };
if (LineType == 3 || LineType == 4)
{
if (LineType == 4)
lcTestQuad(QuadIndices, Vertices);
lcVector3 Normal = lcNormalize(lcCross(Vertices[1] - Vertices[0], Vertices[2] - Vertices[0]));
if (!WindingCCW)
Normal = -Normal;
for (int IndexIdx = 0; IndexIdx < lcMin(LineType, 4); IndexIdx++)
{
const lcVector3& Position = Vertices[QuadIndices[IndexIdx]];
Indices[IndexIdx] = AddVertex(Position, Normal, Optimize);
}
}
else if (LineType == 2)
{
for (int IndexIdx = 0; IndexIdx < 2; IndexIdx++)
{
const lcVector3& Position = Vertices[QuadIndices[IndexIdx]];
Indices[IndexIdx] = AddVertex(Position, Optimize);
}
}
else if (LineType == 5)
{
Indices[0] = AddConditionalVertex(Vertices, Optimize);
std::swap(Vertices[0], Vertices[1]);
Indices[1] = AddConditionalVertex(Vertices, Optimize);
}
switch (LineType)
{
case 5:
if (Indices[0] != Indices[1])
{
Section->mIndices.Add(Indices[0]);
Section->mIndices.Add(Indices[1]);
}
break;
case 4:
if (Indices[0] != Indices[2] && Indices[0] != Indices[3] && Indices[2] != Indices[3])
{
if (WindingCCW)
{
Section->mIndices.Add(Indices[2]);
Section->mIndices.Add(Indices[3]);
Section->mIndices.Add(Indices[0]);
}
else
{
Section->mIndices.Add(Indices[0]);
Section->mIndices.Add(Indices[3]);
Section->mIndices.Add(Indices[2]);
}
}
Q_FALLTHROUGH();
case 3:
if (Indices[0] != Indices[1] && Indices[0] != Indices[2] && Indices[1] != Indices[2])
{
if (WindingCCW)
{
Section->mIndices.Add(Indices[0]);
Section->mIndices.Add(Indices[1]);
Section->mIndices.Add(Indices[2]);
}
else
{
Section->mIndices.Add(Indices[2]);
Section->mIndices.Add(Indices[1]);
Section->mIndices.Add(Indices[0]);
}
}
break;
case 2:
if (Indices[0] != Indices[1])
{
Section->mIndices.Add(Indices[0]);
Section->mIndices.Add(Indices[1]);
}
break;
}
}
void lcMeshLoaderTypeData::ProcessTexturedLine(int LineType, quint32 ColorCode, bool WindingCCW, const lcMeshLoaderTextureMap& TextureMap, const lcVector3* Vertices, bool Optimize)
{
lcMeshPrimitiveType PrimitiveType = LC_MESH_TEXTURED_TRIANGLES;
lcLibraryMeshSection* Section = AddSection(PrimitiveType, ColorCode, TextureMap.Texture);
int QuadIndices[4] = { 0, 1, 2, 3 };
int Indices[4] = { -1, -1, -1, -1 };
if (LineType == 4)
lcTestQuad(QuadIndices, Vertices);
lcVector3 Normal = lcNormalize(lcCross(Vertices[1] - Vertices[0], Vertices[2] - Vertices[0]));
if (!WindingCCW)
Normal = -Normal;
lcVector2 TexCoords[4];
for (int IndexIdx = 0; IndexIdx < lcMin(LineType, 4); IndexIdx++)
{
const lcVector3& Position = Vertices[QuadIndices[IndexIdx]];
TexCoords[QuadIndices[IndexIdx]] = lcCalculateTexCoord(Position, &TextureMap);
}
if (TextureMap.Type == lcMeshLoaderTextureMapType::Cylindrical || TextureMap.Type == lcMeshLoaderTextureMapType::Spherical)
{
auto CheckTexCoordsWrap = [&TexCoords, &Vertices, &TextureMap](int Index1, int Index2, int Index3)
{
float u12 = fabsf(TexCoords[Index1].x - TexCoords[Index2].x);
float u13 = fabsf(TexCoords[Index1].x - TexCoords[Index3].x);
float u23 = fabsf(TexCoords[Index2].x - TexCoords[Index3].x);
if (u12 < 0.5f && u13 < 0.5f && u23 < 0.5f)
return;
const lcVector4& Plane2 = (TextureMap.Type == lcMeshLoaderTextureMapType::Cylindrical) ? TextureMap.Params.Cylindrical.Plane2 : TextureMap.Params.Spherical.Plane2;
float Dot1 = fabsf(lcDot(Plane2, lcVector4(Vertices[Index1], 1.0f)));
float Dot2 = fabsf(lcDot(Plane2, lcVector4(Vertices[Index2], 1.0f)));
float Dot3 = fabsf(lcDot(Plane2, lcVector4(Vertices[Index3], 1.0f)));
if (Dot1 > Dot2)
{
if (Dot1 > Dot3)
{
if (u12 > 0.5f)
TexCoords[Index2].x += TexCoords[Index2].x < 0.5f ? 1.0f : -1.0f;
if (u13 > 0.5f)
TexCoords[Index3].x += TexCoords[Index3].x < 0.5f ? 1.0f : -1.0f;
}
else
{
if (u13 > 0.5f)
TexCoords[Index1].x += TexCoords[Index1].x < 0.5f ? 1.0f : -1.0f;
if (u23 > 0.5f)
TexCoords[Index2].x += TexCoords[Index2].x < 0.5f ? 1.0f : -1.0f;
}
}
else
{
if (Dot2 > Dot3)
{
if (u12 > 0.5f)
TexCoords[Index1].x += TexCoords[Index1].x < 0.5f ? 1.0f : -1.0f;
if (u23 > 0.5f)
TexCoords[Index3].x += TexCoords[Index3].x < 0.5f ? 1.0f : -1.0f;
}
else
{
if (u13 > 0.5f)
TexCoords[Index1].x += TexCoords[Index1].x < 0.5f ? 1.0f : -1.0f;
if (u23 > 0.5f)
TexCoords[Index2].x += TexCoords[Index2].x < 0.5f ? 1.0f : -1.0f;
}
}
};
CheckTexCoordsWrap(QuadIndices[0], QuadIndices[1], QuadIndices[2]);
if (LineType == 4)
CheckTexCoordsWrap(QuadIndices[2], QuadIndices[3], QuadIndices[0]);
}
if (TextureMap.Type == lcMeshLoaderTextureMapType::Spherical)
{
auto CheckTexCoordsPole = [&TexCoords, &Vertices, &TextureMap](int Index1, int Index2, int Index3)
{
const lcVector4& FrontPlane = TextureMap.Params.Spherical.FrontPlane;
const lcVector4& Plane2 = TextureMap.Params.Spherical.Plane2;
int PoleIndex;
int EdgeIndex1, EdgeIndex2;
if (fabsf(lcDot(lcVector4(Vertices[Index1], 1.0f), FrontPlane)) < 0.01f && fabsf(lcDot(lcVector4(Vertices[Index1], 1.0f), Plane2)) < 0.01f)
{
PoleIndex = Index1;
EdgeIndex1 = Index2;
EdgeIndex2 = Index3;
}
else if (fabsf(lcDot(lcVector4(Vertices[Index2], 1.0f), FrontPlane)) < 0.01f && fabsf(lcDot(lcVector4(Vertices[Index2], 1.0f), Plane2)) < 0.01f)
{
PoleIndex = Index2;
EdgeIndex1 = Index1;
EdgeIndex2 = Index3;
}
else if (fabsf(lcDot(lcVector4(Vertices[Index3], 1.0f), FrontPlane)) < 0.01f && fabsf(lcDot(lcVector4(Vertices[Index3], 1.0f), Plane2)) < 0.01f)
{
PoleIndex = Index3;
EdgeIndex1 = Index1;
EdgeIndex2 = Index2;
}
else
return;
lcVector3 OppositeEdge = Vertices[EdgeIndex2] - Vertices[EdgeIndex1];
lcVector3 SideEdge = Vertices[PoleIndex] - Vertices[EdgeIndex1];
float OppositeLength = lcLength(OppositeEdge);
float Projection = lcDot(OppositeEdge, SideEdge) / (OppositeLength * OppositeLength);
TexCoords[PoleIndex].x = TexCoords[EdgeIndex1].x + (TexCoords[EdgeIndex2].x - TexCoords[EdgeIndex1].x) * Projection;
};
CheckTexCoordsPole(QuadIndices[0], QuadIndices[1], QuadIndices[2]);
if (LineType == 4)
CheckTexCoordsPole(QuadIndices[2], QuadIndices[3], QuadIndices[0]);
}
for (int IndexIdx = 0; IndexIdx < lcMin(LineType, 4); IndexIdx++)
{
const lcVector3& Position = Vertices[QuadIndices[IndexIdx]];
Indices[IndexIdx] = AddTexturedVertex(Position, Normal, TexCoords[QuadIndices[IndexIdx]], Optimize);
}
if (LineType == 4)
{
if (Indices[0] != Indices[2] && Indices[0] != Indices[3] && Indices[2] != Indices[3])
{
if (WindingCCW)
{
Section->mIndices.Add(Indices[2]);
Section->mIndices.Add(Indices[3]);
Section->mIndices.Add(Indices[0]);
}
else
{
Section->mIndices.Add(Indices[0]);
Section->mIndices.Add(Indices[3]);
Section->mIndices.Add(Indices[2]);
}
}
}
if (Indices[0] != Indices[1] && Indices[0] != Indices[2] && Indices[1] != Indices[2])
{
if (WindingCCW)
{
Section->mIndices.Add(Indices[0]);
Section->mIndices.Add(Indices[1]);
Section->mIndices.Add(Indices[2]);
}
else
{
Section->mIndices.Add(Indices[2]);
Section->mIndices.Add(Indices[1]);
Section->mIndices.Add(Indices[0]);
}
}
}
void lcMeshLoaderTypeData::AddMeshData(const lcMeshLoaderTypeData& Data, const lcMatrix44& Transform, quint32 CurrentColorCode, bool InvertWinding, bool InvertNormals, lcMeshLoaderTextureMap* TextureMap)
{
const lcArray<lcMeshLoaderVertex>& DataVertices = Data.mVertices;
lcArray<quint32> IndexRemap(DataVertices.GetSize());
if (!TextureMap)
{
mVertices.AllocGrow(DataVertices.GetSize());
for (const lcMeshLoaderVertex& DataVertex : DataVertices)
{
lcVector3 Position = lcMul31(DataVertex.Position, Transform);
int Index;
if ((DataVertex.Usage & LC_LIBRARY_VERTEX_TEXTURED) == 0)
{
if (DataVertex.NormalWeight == 0.0f)
Index = AddVertex(Position, true);
else
{
lcVector3 Normal = lcNormalize(lcMul30(DataVertex.Normal, Transform));
if (InvertNormals)
Normal = -Normal;
Index = AddVertex(Position, Normal, true);
}
}
else
{
if (DataVertex.NormalWeight == 0.0f)
Index = AddTexturedVertex(Position, DataVertex.TexCoord, true);
else
{
lcVector3 Normal = lcNormalize(lcMul30(DataVertex.Normal, Transform));
if (InvertNormals)
Normal = -Normal;
Index = AddTexturedVertex(Position, Normal, DataVertex.TexCoord, true);
}
mVertices[Index].Usage = DataVertex.Usage; // todo: I think this should be |=
}
IndexRemap.Add(Index);
}
}
else
{
for (const lcMeshLoaderVertex& DataVertex : DataVertices)
{
lcVector3 Position = lcMul31(DataVertex.Position, Transform);
lcVector2 TexCoord = lcCalculateTexCoord(Position, TextureMap);
int Index;
if (DataVertex.NormalWeight == 0.0f)
Index = AddTexturedVertex(Position, TexCoord, true);
else
{
lcVector3 Normal = lcNormalize(lcMul30(DataVertex.Normal, Transform));
if (InvertNormals)
Normal = -Normal;
Index = AddTexturedVertex(Position, Normal, TexCoord, true);
}
IndexRemap.Add(Index);
}
}
mConditionalVertices.AllocGrow(Data.mConditionalVertices.GetSize());
lcArray<quint32> ConditionalRemap(Data.mConditionalVertices.GetSize());
for (const lcMeshLoaderConditionalVertex& DataVertex : Data.mConditionalVertices)
{
lcVector3 Position[4];
Position[0] = lcMul31(DataVertex.Position[0], Transform);
Position[1] = lcMul31(DataVertex.Position[1], Transform);
Position[2] = lcMul31(DataVertex.Position[2], Transform);
Position[3] = lcMul31(DataVertex.Position[3], Transform);
int Index = AddConditionalVertex(Position, true);
ConditionalRemap.Add(Index);
}
for (const std::unique_ptr<lcLibraryMeshSection>& SrcSection : Data.mSections)
{
quint32 ColorCode = SrcSection->mColor == 16 ? CurrentColorCode : SrcSection->mColor;
lcTexture* Texture;
lcMeshPrimitiveType PrimitiveType = SrcSection->mPrimitiveType;
if (SrcSection->mTexture)
Texture = SrcSection->mTexture;
else if (TextureMap && SrcSection->mPrimitiveType == LC_MESH_TRIANGLES)
{
Texture = TextureMap->Texture;
PrimitiveType = LC_MESH_TEXTURED_TRIANGLES;
}
else
Texture = nullptr;
lcLibraryMeshSection* DstSection = AddSection(PrimitiveType, ColorCode, Texture);
DstSection->mIndices.AllocGrow(SrcSection->mIndices.GetSize());
if (PrimitiveType == LC_MESH_CONDITIONAL_LINES)
{
for (quint32 Index : SrcSection->mIndices)
DstSection->mIndices.Add(ConditionalRemap[Index]);
}
else if (!InvertWinding || (PrimitiveType == LC_MESH_LINES))
{
for (quint32 Index : SrcSection->mIndices)
DstSection->mIndices.Add(IndexRemap[Index]);
}
else
{
for (int IndexIdx = 0; IndexIdx < SrcSection->mIndices.GetSize(); IndexIdx += 3)
{
DstSection->mIndices.Add(IndexRemap[SrcSection->mIndices[IndexIdx + 2]]);
DstSection->mIndices.Add(IndexRemap[SrcSection->mIndices[IndexIdx + 1]]);
DstSection->mIndices.Add(IndexRemap[SrcSection->mIndices[IndexIdx + 0]]);
}
}
}
}
void lcMeshLoaderTypeData::AddMeshDataNoDuplicateCheck(const lcMeshLoaderTypeData& Data, const lcMatrix44& Transform, quint32 CurrentColorCode, bool InvertWinding, bool InvertNormals, lcMeshLoaderTextureMap* TextureMap)
{
const lcArray<lcMeshLoaderVertex>& DataVertices = Data.mVertices;
quint32 BaseIndex;
if (!TextureMap)
{
BaseIndex = mVertices.GetSize();
mVertices.SetGrow(lcMin(mVertices.GetSize(), 8 * 1024 * 1024));
mVertices.AllocGrow(DataVertices.GetSize());
for (int SrcVertexIdx = 0; SrcVertexIdx < DataVertices.GetSize(); SrcVertexIdx++)
{
const lcMeshLoaderVertex& SrcVertex = DataVertices[SrcVertexIdx];
lcMeshLoaderVertex& DstVertex = mVertices.Add();
DstVertex.Position = lcMul31(SrcVertex.Position, Transform);
DstVertex.Normal = lcNormalize(lcMul30(SrcVertex.Normal, Transform));
if (InvertNormals)
DstVertex.Normal = -DstVertex.Normal;
DstVertex.NormalWeight = SrcVertex.NormalWeight;
DstVertex.TexCoord = SrcVertex.TexCoord;
DstVertex.Usage = SrcVertex.Usage;
}
}
else
{
BaseIndex = mVertices.GetSize();
mVertices.AllocGrow(DataVertices.GetSize());
for (int SrcVertexIdx = 0; SrcVertexIdx < DataVertices.GetSize(); SrcVertexIdx++)
{
const lcMeshLoaderVertex& SrcVertex = DataVertices[SrcVertexIdx];
lcMeshLoaderVertex& DstVertex = mVertices.Add();
lcVector3 Position = lcMul31(SrcVertex.Position, Transform);
lcVector2 TexCoord = lcCalculateTexCoord(Position, TextureMap);
DstVertex.Position = Position;
DstVertex.Normal = lcNormalize(lcMul30(SrcVertex.Normal, Transform));
if (InvertNormals)
DstVertex.Normal = -DstVertex.Normal;
DstVertex.NormalWeight = SrcVertex.NormalWeight;
DstVertex.TexCoord = TexCoord;
DstVertex.Usage = LC_LIBRARY_VERTEX_TEXTURED;
}
}
mConditionalVertices.AllocGrow(Data.mConditionalVertices.GetSize());
quint32 BaseConditional = mConditionalVertices.GetSize();
for (const lcMeshLoaderConditionalVertex& DataVertex : Data.mConditionalVertices)
{
lcMeshLoaderConditionalVertex& Vertex = mConditionalVertices.Add();
Vertex.Position[0] = lcMul31(DataVertex.Position[0], Transform);
Vertex.Position[1] = lcMul31(DataVertex.Position[1], Transform);
Vertex.Position[2] = lcMul31(DataVertex.Position[2], Transform);
Vertex.Position[3] = lcMul31(DataVertex.Position[3], Transform);
}
for (const std::unique_ptr<lcLibraryMeshSection>& SrcSection : Data.mSections)
{
quint32 ColorCode = SrcSection->mColor == 16 ? CurrentColorCode : SrcSection->mColor;
lcTexture* Texture;
lcMeshPrimitiveType PrimitiveType = SrcSection->mPrimitiveType;
if (SrcSection->mTexture)
Texture = SrcSection->mTexture;
else if (TextureMap && SrcSection->mPrimitiveType == LC_MESH_TRIANGLES)
{
Texture = TextureMap->Texture;
PrimitiveType = LC_MESH_TEXTURED_TRIANGLES;
}
else
Texture = nullptr;
lcLibraryMeshSection* DstSection = AddSection(SrcSection->mPrimitiveType, ColorCode, Texture);
DstSection->mIndices.SetGrow(lcMin(DstSection->mIndices.GetSize(), 8 * 1024 * 1024));
DstSection->mIndices.AllocGrow(SrcSection->mIndices.GetSize());
if (PrimitiveType == LC_MESH_CONDITIONAL_LINES)
{
for (quint32 Index : SrcSection->mIndices)
DstSection->mIndices.Add(BaseConditional + Index);
}
else if (!InvertWinding || (PrimitiveType == LC_MESH_LINES))
{
for (quint32 Index : SrcSection->mIndices)
DstSection->mIndices.Add(BaseIndex + Index);
}
else
{
for (int IndexIdx = 0; IndexIdx < SrcSection->mIndices.GetSize(); IndexIdx += 3)
{
DstSection->mIndices.Add(BaseIndex + SrcSection->mIndices[IndexIdx + 2]);
DstSection->mIndices.Add(BaseIndex + SrcSection->mIndices[IndexIdx + 1]);
DstSection->mIndices.Add(BaseIndex + SrcSection->mIndices[IndexIdx + 0]);
}
}
}
}
void lcLibraryMeshData::AddVertices(lcMeshDataType MeshDataType, int VertexCount, int* BaseVertex, lcMeshLoaderVertex** VertexBuffer)
{
lcArray<lcMeshLoaderVertex>& Vertices = mData[MeshDataType].mVertices;
int CurrentSize = Vertices.GetSize();
Vertices.SetSize(CurrentSize + VertexCount);
*BaseVertex = CurrentSize;
*VertexBuffer = &Vertices[CurrentSize];
}
void lcLibraryMeshData::AddIndices(lcMeshDataType MeshDataType, lcMeshPrimitiveType PrimitiveType, quint32 ColorCode, int IndexCount, quint32** IndexBuffer)
{
lcLibraryMeshSection* Section = mData[MeshDataType].AddSection(PrimitiveType, ColorCode, nullptr);
lcArray<quint32>& Indices = Section->mIndices;
int CurrentSize = Indices.GetSize();
Indices.SetSize(CurrentSize + IndexCount);
*IndexBuffer = &Indices[CurrentSize];
}
void lcLibraryMeshData::AddMeshData(const lcLibraryMeshData& Data, const lcMatrix44& Transform, quint32 CurrentColorCode, bool InvertWinding, bool InvertNormals, lcMeshLoaderTextureMap* TextureMap, lcMeshDataType OverrideDestIndex)
{
for (int MeshDataIdx = 0; MeshDataIdx < LC_NUM_MESHDATA_TYPES; MeshDataIdx++)
{
const int DestIndex = OverrideDestIndex == LC_MESHDATA_SHARED ? MeshDataIdx : OverrideDestIndex;
mData[DestIndex].AddMeshData(Data.mData[MeshDataIdx], Transform, CurrentColorCode, InvertWinding, InvertNormals, TextureMap);
}
mHasTextures |= (Data.mHasTextures || TextureMap);
}
void lcLibraryMeshData::AddMeshDataNoDuplicateCheck(const lcLibraryMeshData& Data, const lcMatrix44& Transform, quint32 CurrentColorCode, bool InvertWinding, bool InvertNormals, lcMeshLoaderTextureMap* TextureMap, lcMeshDataType OverrideDestIndex)
{
for (int MeshDataIdx = 0; MeshDataIdx < LC_NUM_MESHDATA_TYPES; MeshDataIdx++)
{
const int DestIndex = OverrideDestIndex == LC_MESHDATA_SHARED ? MeshDataIdx : OverrideDestIndex;
mData[DestIndex].AddMeshDataNoDuplicateCheck(Data.mData[MeshDataIdx], Transform, CurrentColorCode, InvertWinding, InvertNormals, TextureMap);
}
mHasTextures |= (Data.mHasTextures || TextureMap);
}
struct lcMergeSection
{
lcLibraryMeshSection* Shared;
lcLibraryMeshSection* Lod;
};
static bool lcLibraryMeshSectionCompare(const lcMergeSection& First, const lcMergeSection& Second)
{
lcLibraryMeshSection* a = First.Lod ? First.Lod : First.Shared;
lcLibraryMeshSection* b = Second.Lod ? Second.Lod : Second.Shared;
if (a->mPrimitiveType != b->mPrimitiveType)
{
int PrimitiveOrder[LC_MESH_NUM_PRIMITIVE_TYPES] =
{
LC_MESH_TRIANGLES,
LC_MESH_TEXTURED_TRIANGLES,
LC_MESH_LINES,
LC_MESH_CONDITIONAL_LINES
};
for (int PrimitiveType = 0; PrimitiveType < LC_MESH_NUM_PRIMITIVE_TYPES; PrimitiveType++)
{
int Primitive = PrimitiveOrder[PrimitiveType];
if (a->mPrimitiveType == Primitive)
return true;
if (b->mPrimitiveType == Primitive)
return false;
}
}
bool TranslucentA = lcIsColorTranslucent(a->mColor);
bool TranslucentB = lcIsColorTranslucent(b->mColor);
if (TranslucentA != TranslucentB)
return !TranslucentA;
return a->mColor > b->mColor;
}
lcMesh* lcLibraryMeshData::CreateMesh()
{
lcMesh* Mesh = new lcMesh();
int BaseVertices[LC_NUM_MESHDATA_TYPES];
int BaseTexturedVertices[LC_NUM_MESHDATA_TYPES];
int BaseConditionalVertices[LC_NUM_MESHDATA_TYPES];
int NumVertices = 0;
int NumTexturedVertices = 0;
int ConditionalVertexCount = 0;
std::vector<quint32> IndexRemap[LC_NUM_MESHDATA_TYPES];
std::vector<quint32> TexturedIndexRemap[LC_NUM_MESHDATA_TYPES];
if (!mHasTextures)
{
for (int MeshDataIdx = 0; MeshDataIdx < LC_NUM_MESHDATA_TYPES; MeshDataIdx++)
{
std::vector<std::unique_ptr<lcLibraryMeshSection>>& Sections = mData[MeshDataIdx].mSections;
for (const std::unique_ptr<lcLibraryMeshSection>& Section : Sections)
Section->mColor = lcGetColorIndex(Section->mColor);
BaseVertices[MeshDataIdx] = NumVertices;
NumVertices += mData[MeshDataIdx].mVertices.GetSize();
BaseConditionalVertices[MeshDataIdx] = ConditionalVertexCount;
ConditionalVertexCount += mData[MeshDataIdx].mConditionalVertices.GetSize();
}
}
else
{
for (int MeshDataIdx = 0; MeshDataIdx < LC_NUM_MESHDATA_TYPES; MeshDataIdx++)
{
std::vector<std::unique_ptr<lcLibraryMeshSection>>& Sections = mData[MeshDataIdx].mSections;
for (const std::unique_ptr<lcLibraryMeshSection>& Section : Sections)
Section->mColor = lcGetColorIndex(Section->mColor);
BaseVertices[MeshDataIdx] = NumVertices;
BaseTexturedVertices[MeshDataIdx] = NumTexturedVertices;
const lcArray<lcMeshLoaderVertex>& Vertices = mData[MeshDataIdx].mVertices;
IndexRemap[MeshDataIdx].resize(Vertices.GetSize());
TexturedIndexRemap[MeshDataIdx].resize(Vertices.GetSize());
for (int VertexIdx = 0; VertexIdx < Vertices.GetSize(); VertexIdx++)
{
const lcMeshLoaderVertex& Vertex = Vertices[VertexIdx];
if (Vertex.Usage & LC_LIBRARY_VERTEX_UNTEXTURED)
{
IndexRemap[MeshDataIdx][VertexIdx] = NumVertices;
NumVertices++;
}
if (Vertex.Usage & LC_LIBRARY_VERTEX_TEXTURED)
{
TexturedIndexRemap[MeshDataIdx][VertexIdx] = NumTexturedVertices;
NumTexturedVertices++;
}
}
BaseConditionalVertices[MeshDataIdx] = ConditionalVertexCount;
ConditionalVertexCount += mData[MeshDataIdx].mConditionalVertices.GetSize();
}
}
quint16 NumSections[LC_NUM_MESH_LODS];
int NumIndices = 0;
lcArray<lcMergeSection> MergeSections[LC_NUM_MESH_LODS];
for (int LodIdx = 0; LodIdx < LC_NUM_MESH_LODS; LodIdx++)
{
std::vector<std::unique_ptr<lcLibraryMeshSection>>& SharedSections = mData[LC_MESHDATA_SHARED].mSections;
std::vector<std::unique_ptr<lcLibraryMeshSection>>& Sections = mData[LodIdx].mSections;
for (std::unique_ptr<lcLibraryMeshSection>& SharedSection : SharedSections)
{
NumIndices += SharedSection->mIndices.GetSize();
lcMergeSection& MergeSection = MergeSections[LodIdx].Add();
MergeSection.Shared = SharedSection.get();
MergeSection.Lod = nullptr;
}
for (std::unique_ptr<lcLibraryMeshSection>& Section : Sections)
{
bool Found = false;
NumIndices += Section->mIndices.GetSize();
for (int SharedSectionIdx = 0; SharedSectionIdx < (int)SharedSections.size(); SharedSectionIdx++)
{
lcLibraryMeshSection* SharedSection = SharedSections[SharedSectionIdx].get();
if (SharedSection->mColor == Section->mColor && SharedSection->mPrimitiveType == Section->mPrimitiveType && SharedSection->mTexture == Section->mTexture)
{
lcMergeSection& MergeSection = MergeSections[LodIdx][SharedSectionIdx];
MergeSection.Lod = Section.get();
Found = true;
break;
}
}
if (!Found)
{
lcMergeSection& MergeSection = MergeSections[LodIdx].Add();
MergeSection.Shared = nullptr;
MergeSection.Lod = Section.get();
}
}
NumSections[LodIdx] = MergeSections[LodIdx].GetSize();
std::sort(MergeSections[LodIdx].begin(), MergeSections[LodIdx].end(), lcLibraryMeshSectionCompare);
}
Mesh->Create(NumSections, NumVertices, NumTexturedVertices, ConditionalVertexCount, NumIndices);
lcVertex* DstVerts = (lcVertex*)Mesh->mVertexData;
if (!mHasTextures)
{
for (lcMeshLoaderTypeData& Data : mData)
{
for (const lcMeshLoaderVertex& SrcVertex : Data.mVertices)
{
lcVertex& DstVertex = *DstVerts++;
DstVertex.Position = lcVector3LDrawToLeoCAD(SrcVertex.Position);
DstVertex.Normal = lcPackNormal(lcVector3LDrawToLeoCAD(SrcVertex.Normal));
}
}
lcVertexConditional* DstConditionalVerts = (lcVertexConditional*)DstVerts;
for (lcMeshLoaderTypeData& Data : mData)
{
for (const lcMeshLoaderConditionalVertex& SrcVertex : Data.mConditionalVertices)
{
lcVertexConditional& DstVertex = *DstConditionalVerts++;
DstVertex.Position1 = lcVector3LDrawToLeoCAD(SrcVertex.Position[0]);
DstVertex.Position2 = lcVector3LDrawToLeoCAD(SrcVertex.Position[1]);
DstVertex.Position3 = lcVector3LDrawToLeoCAD(SrcVertex.Position[2]);
DstVertex.Position4 = lcVector3LDrawToLeoCAD(SrcVertex.Position[3]);
}
}
}
else
{
for (lcMeshLoaderTypeData& Data : mData)
{
for (const lcMeshLoaderVertex& SrcVertex : Data.mVertices)
{
if ((SrcVertex.Usage & LC_LIBRARY_VERTEX_UNTEXTURED) == 0)
continue;
lcVertex& DstVertex = *DstVerts++;
DstVertex.Position = lcVector3LDrawToLeoCAD(SrcVertex.Position);
DstVertex.Normal = lcPackNormal(lcVector3LDrawToLeoCAD(SrcVertex.Normal));
}
}
lcVertexTextured* DstTexturedVerts = (lcVertexTextured*)DstVerts;
for (lcMeshLoaderTypeData& Data : mData)
{
for (const lcMeshLoaderVertex& SrcVertex : Data.mVertices)
{
if ((SrcVertex.Usage & LC_LIBRARY_VERTEX_TEXTURED) == 0)
continue;
lcVertexTextured& DstVertex = *DstTexturedVerts++;
DstVertex.Position = lcVector3LDrawToLeoCAD(SrcVertex.Position);
DstVertex.Normal = lcPackNormal(lcVector3LDrawToLeoCAD(SrcVertex.Normal));
DstVertex.TexCoord = SrcVertex.TexCoord;
}
}
for (int MeshDataIdx = 0; MeshDataIdx < LC_NUM_MESHDATA_TYPES; MeshDataIdx++)
{
for (const std::unique_ptr<lcLibraryMeshSection>& Section : mData[MeshDataIdx].mSections)
{
if (Section->mPrimitiveType == LC_MESH_TRIANGLES)
{
for (quint32& Index : Section->mIndices)
Index = IndexRemap[MeshDataIdx][Index];
}
else
{
if (!Section->mTexture)
{
for (quint32& Index : Section->mIndices)
Index = IndexRemap[MeshDataIdx][Index];
}
else
{
for (quint32& Index : Section->mIndices)
Index = TexturedIndexRemap[MeshDataIdx][Index];
}
}
}
}
lcVertexConditional* DstConditionalVerts = (lcVertexConditional*)DstTexturedVerts;
for (lcMeshLoaderTypeData& Data : mData)
{
for (const lcMeshLoaderConditionalVertex& SrcVertex : Data.mConditionalVertices)
{
lcVertexConditional& DstVertex = *DstConditionalVerts++;
DstVertex.Position1 = lcVector3LDrawToLeoCAD(SrcVertex.Position[0]);
DstVertex.Position2 = lcVector3LDrawToLeoCAD(SrcVertex.Position[1]);
DstVertex.Position3 = lcVector3LDrawToLeoCAD(SrcVertex.Position[2]);
DstVertex.Position4 = lcVector3LDrawToLeoCAD(SrcVertex.Position[3]);
}
}
}
NumIndices = 0;
for (int LodIdx = 0; LodIdx < LC_NUM_MESH_LODS; LodIdx++)
{
for (int SectionIdx = 0; SectionIdx < MergeSections[LodIdx].GetSize(); SectionIdx++)
{
lcMergeSection& MergeSection = MergeSections[LodIdx][SectionIdx];
lcMeshSection& DstSection = Mesh->mLods[LodIdx].Sections[SectionIdx];
lcLibraryMeshSection* SetupSection = MergeSection.Shared ? MergeSection.Shared : MergeSection.Lod;
DstSection.ColorIndex = SetupSection->mColor;
DstSection.PrimitiveType = SetupSection->mPrimitiveType;
DstSection.NumIndices = 0;
DstSection.Texture = SetupSection->mTexture;
if (DstSection.Texture)
DstSection.Texture->AddRef();
if (Mesh->mNumVertices < 0x10000)
{
DstSection.IndexOffset = NumIndices * 2;
quint16* Index = (quint16*)Mesh->mIndexData + NumIndices;
if (MergeSection.Shared)
{
lcLibraryMeshSection* SrcSection = MergeSection.Shared;
if (DstSection.PrimitiveType != LC_MESH_CONDITIONAL_LINES)
{
if (!mHasTextures)
{
quint16 BaseVertex = DstSection.Texture ? BaseTexturedVertices[LC_MESHDATA_SHARED] : BaseVertices[LC_MESHDATA_SHARED];
for (int IndexIdx = 0; IndexIdx < SrcSection->mIndices.GetSize(); IndexIdx++)
*Index++ = BaseVertex + SrcSection->mIndices[IndexIdx];
}
else
for (int IndexIdx = 0; IndexIdx < SrcSection->mIndices.GetSize(); IndexIdx++)
*Index++ = SrcSection->mIndices[IndexIdx];
}
else
{
quint16 BaseVertex = BaseConditionalVertices[LC_MESHDATA_SHARED];
for (int IndexIdx = 0; IndexIdx < SrcSection->mIndices.GetSize(); IndexIdx++)
*Index++ = BaseVertex + SrcSection->mIndices[IndexIdx];
}
DstSection.NumIndices += SrcSection->mIndices.GetSize();
}
if (MergeSection.Lod)
{
lcLibraryMeshSection* SrcSection = MergeSection.Lod;
if (DstSection.PrimitiveType != LC_MESH_CONDITIONAL_LINES)
{
if (!mHasTextures)
{
quint16 BaseVertex = DstSection.Texture ? BaseTexturedVertices[LodIdx] : BaseVertices[LodIdx];
for (int IndexIdx = 0; IndexIdx < SrcSection->mIndices.GetSize(); IndexIdx++)
*Index++ = BaseVertex + SrcSection->mIndices[IndexIdx];
}
else
for (int IndexIdx = 0; IndexIdx < SrcSection->mIndices.GetSize(); IndexIdx++)
*Index++ = SrcSection->mIndices[IndexIdx];
}
else
{
quint16 BaseVertex = BaseConditionalVertices[LodIdx];
for (int IndexIdx = 0; IndexIdx < SrcSection->mIndices.GetSize(); IndexIdx++)
*Index++ = BaseVertex + SrcSection->mIndices[IndexIdx];
}
DstSection.NumIndices += SrcSection->mIndices.GetSize();
}
}
else
{
DstSection.IndexOffset = NumIndices * 4;
quint32* Index = (quint32*)Mesh->mIndexData + NumIndices;
if (MergeSection.Shared)
{
lcLibraryMeshSection* SrcSection = MergeSection.Shared;
if (DstSection.PrimitiveType != LC_MESH_CONDITIONAL_LINES)
{
if (!mHasTextures)
{
quint32 BaseVertex = DstSection.Texture ? BaseTexturedVertices[LC_MESHDATA_SHARED] : BaseVertices[LC_MESHDATA_SHARED];
for (int IndexIdx = 0; IndexIdx < SrcSection->mIndices.GetSize(); IndexIdx++)
*Index++ = BaseVertex + SrcSection->mIndices[IndexIdx];
}
else
for (int IndexIdx = 0; IndexIdx < SrcSection->mIndices.GetSize(); IndexIdx++)
*Index++ = SrcSection->mIndices[IndexIdx];
}
else
{
quint32 BaseVertex = BaseConditionalVertices[LC_MESHDATA_SHARED];
for (int IndexIdx = 0; IndexIdx < SrcSection->mIndices.GetSize(); IndexIdx++)
*Index++ = BaseVertex + SrcSection->mIndices[IndexIdx];
}
DstSection.NumIndices += SrcSection->mIndices.GetSize();
}
if (MergeSection.Lod)
{
lcLibraryMeshSection* SrcSection = MergeSection.Lod;
if (DstSection.PrimitiveType != LC_MESH_CONDITIONAL_LINES)
{
if (!mHasTextures)
{
quint32 BaseVertex = DstSection.Texture ? BaseTexturedVertices[LodIdx] : BaseVertices[LodIdx];
for (int IndexIdx = 0; IndexIdx < SrcSection->mIndices.GetSize(); IndexIdx++)
*Index++ = BaseVertex + SrcSection->mIndices[IndexIdx];
DstSection.NumIndices += SrcSection->mIndices.GetSize();
}
else
for (int IndexIdx = 0; IndexIdx < SrcSection->mIndices.GetSize(); IndexIdx++)
*Index++ = SrcSection->mIndices[IndexIdx];
}
else
{
quint16 BaseVertex = BaseConditionalVertices[LodIdx];
for (int IndexIdx = 0; IndexIdx < SrcSection->mIndices.GetSize(); IndexIdx++)
*Index++ = BaseVertex + SrcSection->mIndices[IndexIdx];
}
DstSection.NumIndices += SrcSection->mIndices.GetSize();
}
}
if (DstSection.PrimitiveType == LC_MESH_TRIANGLES || DstSection.PrimitiveType == LC_MESH_TEXTURED_TRIANGLES)
{
if (DstSection.ColorIndex == gDefaultColor)
Mesh->mFlags |= lcMeshFlag::HasDefault;
else
{
if (lcIsColorTranslucent(DstSection.ColorIndex))
Mesh->mFlags |= lcMeshFlag::HasTranslucent;
else
Mesh->mFlags |= lcMeshFlag::HasSolid;
}
}
else
Mesh->mFlags |= lcMeshFlag::HasLines;
if (DstSection.PrimitiveType == LC_MESH_TEXTURED_TRIANGLES)
Mesh->mFlags |= lcMeshFlag::HasTexture;
NumIndices += DstSection.NumIndices;
}
}
if (mHasStyleStud)
Mesh->mFlags |= lcMeshFlag::HasStyleStud;
lcVector3 MeshMin(FLT_MAX, FLT_MAX, FLT_MAX), MeshMax(-FLT_MAX, -FLT_MAX, -FLT_MAX);
bool UpdatedBoundingBox = false;
for (int LodIdx = 0; LodIdx < LC_NUM_MESH_LODS; LodIdx++)
{
lcMeshLod& Lod = Mesh->mLods[LodIdx];
for (int SectionIdx = 0; SectionIdx < Lod.NumSections; SectionIdx++)
{
lcMeshSection& Section = Lod.Sections[SectionIdx];
lcVector3 SectionMin(FLT_MAX, FLT_MAX, FLT_MAX), SectionMax(-FLT_MAX, -FLT_MAX, -FLT_MAX);
if (Mesh->mNumVertices < 0x10000)
{
const quint16* IndexBuffer = static_cast<quint16*>(Mesh->mIndexData) + Section.IndexOffset / 2;
if (!Section.Texture)
{
if (Section.PrimitiveType != LC_MESH_CONDITIONAL_LINES)
{
const lcVertex* VertexBuffer = static_cast<lcVertex*>(Mesh->mVertexData);
for (int Index = 0; Index < Section.NumIndices; Index++)
{
const lcVector3& Position = VertexBuffer[IndexBuffer[Index]].Position;
SectionMin = lcMin(SectionMin, Position);
SectionMax = lcMax(SectionMax, Position);
}
}
else
{
const lcVertexConditional* VertexBuffer = reinterpret_cast<lcVertexConditional*>(static_cast<char*>(Mesh->mVertexData) + Mesh->mNumVertices * sizeof(lcVertex) + Mesh->mNumTexturedVertices * sizeof(lcVertexTextured));
for (int Index = 0; Index < Section.NumIndices; Index++)
{
const lcVector3& Position = VertexBuffer[IndexBuffer[Index]].Position1;
SectionMin = lcMin(SectionMin, Position);
SectionMax = lcMax(SectionMax, Position);
}
}
}
else
{
const lcVertexTextured* VertexBuffer = reinterpret_cast<lcVertexTextured*>(static_cast<char*>(Mesh->mVertexData) + Mesh->mNumVertices * sizeof(lcVertex));
for (int Index = 0; Index < Section.NumIndices; Index++)
{
const lcVector3& Position = VertexBuffer[IndexBuffer[Index]].Position;
SectionMin = lcMin(SectionMin, Position);
SectionMax = lcMax(SectionMax, Position);
}
}
}
else
{
const quint32* IndexBuffer = static_cast<quint32*>(Mesh->mIndexData) + Section.IndexOffset / 4;
if (!Section.Texture)
{
if (Section.PrimitiveType != LC_MESH_CONDITIONAL_LINES)
{
const lcVertex* VertexBuffer = static_cast<lcVertex*>(Mesh->mVertexData);
for (int Index = 0; Index < Section.NumIndices; Index++)
{
const lcVector3& Position = VertexBuffer[IndexBuffer[Index]].Position;
SectionMin = lcMin(SectionMin, Position);
SectionMax = lcMax(SectionMax, Position);
}
}
else
{
const lcVertexConditional* VertexBuffer = reinterpret_cast<lcVertexConditional*>(static_cast<char*>(Mesh->mVertexData) + Mesh->mNumVertices * sizeof(lcVertex) + Mesh->mNumTexturedVertices * sizeof(lcVertexTextured));
for (int Index = 0; Index < Section.NumIndices; Index++)
{
const lcVector3& Position = VertexBuffer[IndexBuffer[Index]].Position1;
SectionMin = lcMin(SectionMin, Position);
SectionMax = lcMax(SectionMax, Position);
}
}
}
else
{
const lcVertexTextured* VertexBuffer = static_cast<lcVertexTextured*>(Mesh->mVertexData);
for (int Index = 0; Index < Section.NumIndices; Index++)
{
const lcVector3& Position = VertexBuffer[IndexBuffer[Index]].Position;
SectionMin = lcMin(SectionMin, Position);
SectionMax = lcMax(SectionMax, Position);
}
}
}
Section.BoundingBox.Max = SectionMax;
Section.BoundingBox.Min = SectionMin;
Section.Radius = lcLength((SectionMax - SectionMin) / 2.0f);
if (Section.PrimitiveType == LC_MESH_TRIANGLES || Section.PrimitiveType == LC_MESH_TEXTURED_TRIANGLES)
{
UpdatedBoundingBox = true;
MeshMin = lcMin(SectionMin, MeshMin);
MeshMax = lcMax(SectionMax, MeshMax);
}
}
}
if (!UpdatedBoundingBox)
MeshMin = MeshMax = lcVector3(0.0f, 0.0f, 0.0f);
Mesh->mBoundingBox.Max = MeshMax;
Mesh->mBoundingBox.Min = MeshMin;
Mesh->mRadius = lcLength((MeshMax - MeshMin) / 2.0f);
return Mesh;
}
lcMeshLoader::lcMeshLoader(lcLibraryMeshData& MeshData, bool Optimize, Project* CurrentProject, bool SearchProjectFolder)
: mMeshData(MeshData), mOptimize(Optimize), mCurrentProject(CurrentProject), mSearchProjectFolder(SearchProjectFolder)
{
}
bool lcMeshLoader::LoadMesh(lcFile& File, lcMeshDataType MeshDataType)
{
lcArray<lcMeshLoaderTextureMap> TextureStack;
return ReadMeshData(File, lcMatrix44Identity(), 16, false, TextureStack, MeshDataType);
}
bool lcMeshLoader::ReadMeshData(lcFile& File, const lcMatrix44& CurrentTransform, quint32 CurrentColorCode, bool InvertWinding, lcArray<lcMeshLoaderTextureMap>& TextureStack, lcMeshDataType MeshDataType)
{
char Buffer[1024];
char* Line;
bool InvertNext = false;
bool WindingCCW = !InvertWinding;
lcPiecesLibrary* Library = lcGetPiecesLibrary();
while (File.ReadLine(Buffer, sizeof(Buffer)))
{
if (Library->ShouldCancelLoading())
return false;
quint32 ColorCode, ColorCodeHex;
bool LastToken = false;
int LineType;
Line = Buffer;
if (sscanf(Line, "%d", &LineType) != 1)
continue;
if (LineType == 0)
{
char* Token = Line;
while (*Token && *Token <= 32)
Token++;
Token++;
while (*Token && *Token <= 32)
Token++;
char* End = Token;
while (*End && *End > 32)
End++;
LastToken = (*End == 0);
*End = 0;
if (!strcmp(Token, "!TEXMAP"))
{
Token += 8;
while (*Token && *Token <= 32)
Token++;
End = Token;
while (*End && *End > 32)
End++;
*End = 0;
bool Start = false;
bool Next = false;
if (!strcmp(Token, "START"))
{
Token += 6;
Start = true;
}
else if (!strcmp(Token, "NEXT"))
{
Token += 5;
Next = true;
}
if (Start || Next)
{
while (*Token && *Token <= 32)
Token++;
End = Token;
while (*End && *End > 32)
End++;
*End = 0;
auto CleanTextureName = [](char* FileName)
{
char* Ch;
for (Ch = FileName; *Ch; Ch++)
{
if (*Ch >= 'a' && *Ch <= 'z')
*Ch = *Ch + 'A' - 'a';
else if (*Ch == '\\')
*Ch = '/';
}
if (Ch - FileName > 4)
{
Ch -= 4;
if (!memcmp(Ch, ".PNG", 4))
*Ch = 0;
}
};
if (!strcmp(Token, "PLANAR"))
{
Token += 7;
char FileName[LC_MAXPATH];
lcVector3 Points[3];
sscanf(Token, "%f %f %f %f %f %f %f %f %f %s", &Points[0].x, &Points[0].y, &Points[0].z, &Points[1].x, &Points[1].y, &Points[1].z, &Points[2].x, &Points[2].y, &Points[2].z, FileName);
Points[0] = lcMul31(Points[0], CurrentTransform);
Points[1] = lcMul31(Points[1], CurrentTransform);
Points[2] = lcMul31(Points[2], CurrentTransform);
CleanTextureName(FileName);
lcMeshLoaderTextureMap& Map = TextureStack.Add();
Map.Next = false;
Map.Fallback = false;
Map.Texture = Library->FindTexture(FileName, mCurrentProject, mSearchProjectFolder);
Map.Type = lcMeshLoaderTextureMapType::Planar;
for (int EdgeIdx = 0; EdgeIdx < 2; EdgeIdx++)
{
lcVector3 Normal = Points[EdgeIdx + 1] - Points[0];
float Length = lcLength(Normal);
Normal /= Length;
Map.Params.Planar.Planes[EdgeIdx].x = Normal.x / Length;
Map.Params.Planar.Planes[EdgeIdx].y = Normal.y / Length;
Map.Params.Planar.Planes[EdgeIdx].z = Normal.z / Length;
Map.Params.Planar.Planes[EdgeIdx].w = -lcDot(Normal, Points[0]) / Length;
}
}
else if (!strcmp(Token, "CYLINDRICAL"))
{
Token += 12;
char FileName[LC_MAXPATH];
lcVector3 Points[3];
float Angle;
sscanf(Token, "%f %f %f %f %f %f %f %f %f %f %s", &Points[0].x, &Points[0].y, &Points[0].z, &Points[1].x, &Points[1].y, &Points[1].z, &Points[2].x, &Points[2].y, &Points[2].z, &Angle, FileName);
Points[0] = lcMul31(Points[0], CurrentTransform);
Points[1] = lcMul31(Points[1], CurrentTransform);
Points[2] = lcMul31(Points[2], CurrentTransform);
CleanTextureName(FileName);
lcMeshLoaderTextureMap& Map = TextureStack.Add();
Map.Next = false;
Map.Fallback = false;
Map.Texture = Library->FindTexture(FileName, mCurrentProject, mSearchProjectFolder);
Map.Type = lcMeshLoaderTextureMapType::Cylindrical;
lcVector3 Up = Points[0] - Points[1];
float UpLength = lcLength(Up);
lcVector3 Front = lcNormalize(Points[2] - Points[1]);
lcVector3 Plane1Normal = Up / UpLength;
lcVector3 Plane2Normal = lcNormalize(lcCross(Front, Up));
Map.Params.Cylindrical.FrontPlane = lcVector4(Front, -lcDot(Front, Points[1]));
Map.Params.Cylindrical.UpLength = UpLength;
Map.Params.Cylindrical.Plane1 = lcVector4(Plane1Normal, -lcDot(Plane1Normal, Points[1]));
Map.Params.Cylindrical.Plane2 = lcVector4(Plane2Normal, -lcDot(Plane2Normal, Points[1]));
Map.Angle1 = 360.0f / Angle;
}
else if (!strcmp(Token, "SPHERICAL"))
{
Token += 10;
char FileName[LC_MAXPATH];
lcVector3 Points[3];
float Angle1, Angle2;
sscanf(Token, "%f %f %f %f %f %f %f %f %f %f %f %s", &Points[0].x, &Points[0].y, &Points[0].z, &Points[1].x, &Points[1].y, &Points[1].z, &Points[2].x, &Points[2].y, &Points[2].z, &Angle1, &Angle2, FileName);
Points[0] = lcMul31(Points[0], CurrentTransform);
Points[1] = lcMul31(Points[1], CurrentTransform);
Points[2] = lcMul31(Points[2], CurrentTransform);
CleanTextureName(FileName);
lcMeshLoaderTextureMap& Map = TextureStack.Add();
Map.Next = false;
Map.Fallback = false;
Map.Texture = Library->FindTexture(FileName, mCurrentProject, mSearchProjectFolder);
Map.Type = lcMeshLoaderTextureMapType::Spherical;
lcVector3 Front = lcNormalize(Points[1] - Points[0]);
lcVector3 Plane1Normal = lcNormalize(lcCross(Front, Points[2] - Points[0]));
lcVector3 Plane2Normal = lcNormalize(lcCross(Plane1Normal, Front));
Map.Params.Spherical.FrontPlane = lcVector4(Front, -lcDot(Front, Points[0]));
Map.Params.Spherical.Center = Points[0];
Map.Params.Spherical.Plane1 = lcVector4(Plane1Normal, -lcDot(Plane1Normal, Points[0]));
Map.Params.Spherical.Plane2 = lcVector4(Plane2Normal, -lcDot(Plane2Normal, Points[0]));
Map.Angle1 = 360.0f / Angle1;
Map.Angle2 = 180.0f / Angle2;
}
}
else if (!strcmp(Token, "FALLBACK"))
{
if (TextureStack.GetSize())
TextureStack[TextureStack.GetSize() - 1].Fallback = true;
}
else if (!strcmp(Token, "END"))
{
if (TextureStack.GetSize())
TextureStack.RemoveIndex(TextureStack.GetSize() - 1);
}
continue;
}
else if (!strcmp(Token, "BFC"))
{
while (!LastToken)
{
Token = End + 1;
while (*Token && *Token <= 32)
Token++;
End = Token;
while (*End && *End > 32)
End++;
LastToken = (*End == 0);
*End = 0;
if (!strcmp(Token, "INVERTNEXT"))
InvertNext = true;
else if (!strcmp(Token, "CCW"))
WindingCCW = !InvertWinding;
else if (!strcmp(Token, "CW"))
WindingCCW = InvertWinding;
}
}
else if (!strcmp(Token, "!:"))
{
Token += 3;
Line = Token;
if (!TextureStack.GetSize())
continue;
}
else
continue;
}
if (sscanf(Line, "%d %d", &LineType, &ColorCode) != 2)
continue;
if (LineType < 1 || LineType > 5)
continue;
if (ColorCode == 0)
{
sscanf(Line, "%d %i", &LineType, &ColorCodeHex);
if (ColorCode != ColorCodeHex)
ColorCode = ColorCodeHex | LC_COLOR_DIRECT;
}
if (ColorCode == 16)
ColorCode = CurrentColorCode;
lcMeshLoaderTextureMap* TextureMap = nullptr;
if (TextureStack.GetSize())
{
TextureMap = &TextureStack[TextureStack.GetSize() - 1];
if (TextureMap->Texture)
{
if (TextureMap->Fallback)
continue;
}
else
{
if (!TextureMap->Fallback)
continue;
TextureMap = nullptr;
}
}
int Dummy;
lcVector3 Points[4];
switch (LineType)
{
case 1:
{
char OriginalFileName[LC_MAXPATH];
float fm[12];
sscanf(Line, "%d %i %f %f %f %f %f %f %f %f %f %f %f %f %s", &LineType, &Dummy, &fm[0], &fm[1], &fm[2], &fm[3], &fm[4], &fm[5], &fm[6], &fm[7], &fm[8], &fm[9], &fm[10], &fm[11], OriginalFileName);
char FileName[LC_MAXPATH];
strcpy(FileName, OriginalFileName);
char* Ch;
for (Ch = FileName; *Ch; Ch++)
{
if (*Ch >= 'a' && *Ch <= 'z')
*Ch = *Ch + 'A' - 'a';
else if (*Ch == '\\')
*Ch = '/';
}
lcLibraryPrimitive* Primitive = !TextureMap ? Library->FindPrimitive(FileName) : nullptr;
lcMatrix44 IncludeTransform(lcVector4(fm[3], fm[6], fm[9], 0.0f), lcVector4(fm[4], fm[7], fm[10], 0.0f), lcVector4(fm[5], fm[8], fm[11], 0.0f), lcVector4(fm[0], fm[1], fm[2], 1.0f));
IncludeTransform = lcMul(IncludeTransform, CurrentTransform);
bool Mirror = IncludeTransform.Determinant() < 0.0f;
auto FileCallback = [this, &IncludeTransform, &ColorCode, &Mirror, &InvertNext, &TextureStack, &MeshDataType](lcFile& File)
{
ReadMeshData(File, IncludeTransform, ColorCode, Mirror ^ InvertNext, TextureStack, MeshDataType);
};
if (Primitive)
{
if (Primitive->mState != lcPrimitiveState::Loaded && !Library->LoadPrimitive(Primitive))
break;
if (Primitive->mStud)
mMeshData.AddMeshDataNoDuplicateCheck(Primitive->mMeshData, IncludeTransform, ColorCode, Mirror ^ InvertNext, InvertNext, TextureMap, MeshDataType);
else if (!Primitive->mSubFile)
{
if (mOptimize)
mMeshData.AddMeshData(Primitive->mMeshData, IncludeTransform, ColorCode, Mirror ^ InvertNext, InvertNext, TextureMap, MeshDataType);
else
mMeshData.AddMeshDataNoDuplicateCheck(Primitive->mMeshData, IncludeTransform, ColorCode, Mirror ^ InvertNext, InvertNext, TextureMap, MeshDataType);
}
else
Library->GetPrimitiveFile(Primitive, FileCallback);
mMeshData.mHasStyleStud |= Primitive->mStudStyle | Primitive->mMeshData.mHasStyleStud;
}
else
Library->GetPieceFile(FileName, FileCallback);
} break;
case 2:
sscanf(Line, "%d %i %f %f %f %f %f %f", &LineType, &Dummy, &Points[0].x, &Points[0].y, &Points[0].z, &Points[1].x, &Points[1].y, &Points[1].z);
Points[0] = lcMul31(Points[0], CurrentTransform);
Points[1] = lcMul31(Points[1], CurrentTransform);
mMeshData.mData[MeshDataType].ProcessLine(LineType, ColorCode, WindingCCW, Points, mOptimize);
break;
case 3:
sscanf(Line, "%d %i %f %f %f %f %f %f %f %f %f", &LineType, &Dummy, &Points[0].x, &Points[0].y, &Points[0].z,
&Points[1].x, &Points[1].y, &Points[1].z, &Points[2].x, &Points[2].y, &Points[2].z);
Points[0] = lcMul31(Points[0], CurrentTransform);
Points[1] = lcMul31(Points[1], CurrentTransform);
Points[2] = lcMul31(Points[2], CurrentTransform);
if (TextureMap)
{
mMeshData.mHasTextures = true;
mMeshData.mData[MeshDataType].ProcessTexturedLine(LineType, ColorCode, WindingCCW, *TextureMap, Points, mOptimize);
if (TextureMap->Next)
TextureStack.RemoveIndex(TextureStack.GetSize() - 1);
}
else
mMeshData.mData[MeshDataType].ProcessLine(LineType, ColorCode, WindingCCW, Points, mOptimize);
break;
case 4:
sscanf(Line, "%d %i %f %f %f %f %f %f %f %f %f %f %f %f", &LineType, &Dummy, &Points[0].x, &Points[0].y, &Points[0].z,
&Points[1].x, &Points[1].y, &Points[1].z, &Points[2].x, &Points[2].y, &Points[2].z, &Points[3].x, &Points[3].y, &Points[3].z);
Points[0] = lcMul31(Points[0], CurrentTransform);
Points[1] = lcMul31(Points[1], CurrentTransform);
Points[2] = lcMul31(Points[2], CurrentTransform);
Points[3] = lcMul31(Points[3], CurrentTransform);
if (TextureMap)
{
mMeshData.mHasTextures = true;
mMeshData.mData[MeshDataType].ProcessTexturedLine(LineType, ColorCode, WindingCCW, *TextureMap, Points, mOptimize);
if (TextureMap->Next)
TextureStack.RemoveIndex(TextureStack.GetSize() - 1);
}
else
mMeshData.mData[MeshDataType].ProcessLine(LineType, ColorCode, WindingCCW, Points, mOptimize);
break;
case 5:
sscanf(Line, "%d %i %f %f %f %f %f %f %f %f %f %f %f %f", &LineType, &Dummy, &Points[0].x, &Points[0].y, &Points[0].z,
&Points[1].x, &Points[1].y, &Points[1].z, &Points[2].x, &Points[2].y, &Points[2].z, &Points[3].x, &Points[3].y, &Points[3].z);
Points[0] = lcMul31(Points[0], CurrentTransform);
Points[1] = lcMul31(Points[1], CurrentTransform);
Points[2] = lcMul31(Points[2], CurrentTransform);
Points[3] = lcMul31(Points[3], CurrentTransform);
mMeshData.mData[MeshDataType].ProcessLine(LineType, ColorCode, WindingCCW, Points, mOptimize);
break;
}
InvertNext = false;
}
return true;
}