mirror of
https://github.com/leozide/leocad
synced 2025-01-17 18:11:42 +01:00
433 lines
11 KiB
C++
433 lines
11 KiB
C++
//
|
|
// Math and Linear Algebra stuff.
|
|
//
|
|
|
|
#include "defines.h"
|
|
#include "algebra.h"
|
|
|
|
// ============================================================================
|
|
// 4x4 Matrix class.
|
|
|
|
void Matrix44::CreateLookAt(const Vector3& Eye, const Vector3& Target, const Vector3& Up)
|
|
{
|
|
Vector3 x, y, z;
|
|
|
|
// Z = Eye - Target
|
|
z = Eye - Target;
|
|
|
|
// X = Y Cross Z
|
|
x = Cross3(Up, z);
|
|
|
|
// Y = Z Cross X
|
|
y = Cross3(z, x);
|
|
|
|
// Normalize everything.
|
|
x.Normalize();
|
|
y.Normalize();
|
|
z.Normalize();
|
|
|
|
m_Rows[0] = Vector4(x[0], y[0], z[0], 0.0f);
|
|
m_Rows[1] = Vector4(x[1], y[1], z[1], 0.0f);
|
|
m_Rows[2] = Vector4(x[2], y[2], z[2], 0.0f);
|
|
m_Rows[3] = m_Rows[0]*-Eye[0] + m_Rows[1]*-Eye[1] + m_Rows[2]*-Eye[2];
|
|
m_Rows[3][3] = 1.0f;
|
|
}
|
|
|
|
void Matrix44::CreatePerspective(float FoVy, float Aspect, float Near, float Far)
|
|
{
|
|
float Left, Right, Bottom, Top;
|
|
|
|
Top = Near * (float)tan(FoVy * LC_PI / 360.0f);
|
|
Bottom = -Top;
|
|
|
|
Left = Bottom * Aspect;
|
|
Right = Top * Aspect;
|
|
|
|
if ((Near <= 0.0f) || (Far <= 0.0f) || (Near == Far) || (Left == Right) || (Top == Bottom))
|
|
return;
|
|
|
|
float x, y, a, b, c, d;
|
|
|
|
x = (2.0f * Near) / (Right - Left);
|
|
y = (2.0f * Near) / (Top - Bottom);
|
|
a = (Right + Left) / (Right - Left);
|
|
b = (Top + Bottom) / (Top - Bottom);
|
|
c = -(Far + Near) / (Far - Near);
|
|
d = -(2.0f * Far * Near) / (Far - Near);
|
|
|
|
m_Rows[0] = Vector4(x, 0, 0, 0);
|
|
m_Rows[1] = Vector4(0, y, 0, 0);
|
|
m_Rows[2] = Vector4(a, b, c, -1);
|
|
m_Rows[3] = Vector4(0, 0, d, 0);
|
|
}
|
|
|
|
// Inverse code from the GLU library.
|
|
Matrix44 Inverse(const Matrix44& m)
|
|
{
|
|
#define SWAP_ROWS(a, b) { float *_tmp = a; (a)=(b); (b)=_tmp; }
|
|
#define MAT(m,c,r) m.m_Rows[r][c]
|
|
|
|
float wtmp[4][8];
|
|
float m0, m1, m2, m3, s;
|
|
float *r0, *r1, *r2, *r3;
|
|
|
|
r0 = wtmp[0], r1 = wtmp[1], r2 = wtmp[2], r3 = wtmp[3];
|
|
|
|
r0[0] = MAT(m,0,0), r0[1] = MAT(m,0,1),
|
|
r0[2] = MAT(m,0,2), r0[3] = MAT(m,0,3),
|
|
r0[4] = 1.0, r0[5] = r0[6] = r0[7] = 0.0,
|
|
|
|
r1[0] = MAT(m,1,0), r1[1] = MAT(m,1,1),
|
|
r1[2] = MAT(m,1,2), r1[3] = MAT(m,1,3),
|
|
r1[5] = 1.0, r1[4] = r1[6] = r1[7] = 0.0,
|
|
|
|
r2[0] = MAT(m,2,0), r2[1] = MAT(m,2,1),
|
|
r2[2] = MAT(m,2,2), r2[3] = MAT(m,2,3),
|
|
r2[6] = 1.0, r2[4] = r2[5] = r2[7] = 0.0,
|
|
|
|
r3[0] = MAT(m,3,0), r3[1] = MAT(m,3,1),
|
|
r3[2] = MAT(m,3,2), r3[3] = MAT(m,3,3),
|
|
r3[7] = 1.0, r3[4] = r3[5] = r3[6] = 0.0;
|
|
|
|
// choose pivot - or die
|
|
if (fabs(r3[0])>fabs(r2[0])) SWAP_ROWS(r3, r2);
|
|
if (fabs(r2[0])>fabs(r1[0])) SWAP_ROWS(r2, r1);
|
|
if (fabs(r1[0])>fabs(r0[0])) SWAP_ROWS(r1, r0);
|
|
// if (0.0 == r0[0]) return GL_FALSE;
|
|
|
|
// eliminate first variable
|
|
m1 = r1[0]/r0[0]; m2 = r2[0]/r0[0]; m3 = r3[0]/r0[0];
|
|
s = r0[1]; r1[1] -= m1 * s; r2[1] -= m2 * s; r3[1] -= m3 * s;
|
|
s = r0[2]; r1[2] -= m1 * s; r2[2] -= m2 * s; r3[2] -= m3 * s;
|
|
s = r0[3]; r1[3] -= m1 * s; r2[3] -= m2 * s; r3[3] -= m3 * s;
|
|
s = r0[4];
|
|
if (s != 0.0) { r1[4] -= m1 * s; r2[4] -= m2 * s; r3[4] -= m3 * s; }
|
|
s = r0[5];
|
|
if (s != 0.0) { r1[5] -= m1 * s; r2[5] -= m2 * s; r3[5] -= m3 * s; }
|
|
s = r0[6];
|
|
if (s != 0.0) { r1[6] -= m1 * s; r2[6] -= m2 * s; r3[6] -= m3 * s; }
|
|
s = r0[7];
|
|
if (s != 0.0) { r1[7] -= m1 * s; r2[7] -= m2 * s; r3[7] -= m3 * s; }
|
|
|
|
// choose pivot - or die
|
|
if (fabs(r3[1])>fabs(r2[1])) SWAP_ROWS(r3, r2);
|
|
if (fabs(r2[1])>fabs(r1[1])) SWAP_ROWS(r2, r1);
|
|
// if (0.0 == r1[1]) return GL_FALSE;
|
|
|
|
// eliminate second variable
|
|
m2 = r2[1]/r1[1]; m3 = r3[1]/r1[1];
|
|
r2[2] -= m2 * r1[2]; r3[2] -= m3 * r1[2];
|
|
r2[3] -= m2 * r1[3]; r3[3] -= m3 * r1[3];
|
|
s = r1[4]; if (0.0 != s) { r2[4] -= m2 * s; r3[4] -= m3 * s; }
|
|
s = r1[5]; if (0.0 != s) { r2[5] -= m2 * s; r3[5] -= m3 * s; }
|
|
s = r1[6]; if (0.0 != s) { r2[6] -= m2 * s; r3[6] -= m3 * s; }
|
|
s = r1[7]; if (0.0 != s) { r2[7] -= m2 * s; r3[7] -= m3 * s; }
|
|
|
|
// choose pivot - or die
|
|
if (fabs(r3[2])>fabs(r2[2])) SWAP_ROWS(r3, r2);
|
|
// if (0.0 == r2[2]) return GL_FALSE;
|
|
|
|
// eliminate third variable
|
|
m3 = r3[2]/r2[2];
|
|
r3[3] -= m3 * r2[3], r3[4] -= m3 * r2[4],
|
|
r3[5] -= m3 * r2[5], r3[6] -= m3 * r2[6],
|
|
r3[7] -= m3 * r2[7];
|
|
|
|
// last check
|
|
// if (0.0 == r3[3]) return GL_FALSE;
|
|
|
|
s = 1.0f/r3[3]; // now back substitute row 3
|
|
r3[4] *= s; r3[5] *= s; r3[6] *= s; r3[7] *= s;
|
|
|
|
m2 = r2[3]; // now back substitute row 2
|
|
s = 1.0f/r2[2];
|
|
r2[4] = s * (r2[4] - r3[4] * m2), r2[5] = s * (r2[5] - r3[5] * m2),
|
|
r2[6] = s * (r2[6] - r3[6] * m2), r2[7] = s * (r2[7] - r3[7] * m2);
|
|
m1 = r1[3];
|
|
r1[4] -= r3[4] * m1, r1[5] -= r3[5] * m1,
|
|
r1[6] -= r3[6] * m1, r1[7] -= r3[7] * m1;
|
|
m0 = r0[3];
|
|
r0[4] -= r3[4] * m0, r0[5] -= r3[5] * m0,
|
|
r0[6] -= r3[6] * m0, r0[7] -= r3[7] * m0;
|
|
|
|
m1 = r1[2]; // now back substitute row 1
|
|
s = 1.0f/r1[1];
|
|
r1[4] = s * (r1[4] - r2[4] * m1), r1[5] = s * (r1[5] - r2[5] * m1),
|
|
r1[6] = s * (r1[6] - r2[6] * m1), r1[7] = s * (r1[7] - r2[7] * m1);
|
|
m0 = r0[2];
|
|
r0[4] -= r2[4] * m0, r0[5] -= r2[5] * m0,
|
|
r0[6] -= r2[6] * m0, r0[7] -= r2[7] * m0;
|
|
|
|
m0 = r0[1]; // now back substitute row 0
|
|
s = 1.0f/r0[0];
|
|
r0[4] = s * (r0[4] - r1[4] * m0), r0[5] = s * (r0[5] - r1[5] * m0),
|
|
r0[6] = s * (r0[6] - r1[6] * m0), r0[7] = s * (r0[7] - r1[7] * m0);
|
|
|
|
Vector4 Row0(r0[4], r1[4], r2[4], r3[4]);
|
|
Vector4 Row1(r0[5], r1[5], r2[5], r3[5]);
|
|
Vector4 Row2(r0[6], r1[6], r2[6], r3[6]);
|
|
Vector4 Row3(r0[7], r1[7], r2[7], r3[7]);
|
|
|
|
Matrix44 out(Row0, Row1, Row2, Row3);
|
|
|
|
return out;
|
|
|
|
#undef MAT
|
|
#undef SWAP_ROWS
|
|
}
|
|
|
|
// ============================================================================
|
|
// Project/Unproject a point.
|
|
|
|
// Convert world coordinates to screen coordinates.
|
|
Vector3 ProjectPoint(const Vector3& Pt, const Matrix44& ModelView, const Matrix44& Projection, const int Viewport[4])
|
|
{
|
|
Vector4 Tmp;
|
|
|
|
Tmp = Mul4(Vector4(Pt[0], Pt[1], Pt[2], 1.0f), ModelView);
|
|
Tmp = Mul4(Tmp, Projection);
|
|
|
|
// Normalize.
|
|
Tmp /= Tmp[3];
|
|
|
|
// Screen coordinates.
|
|
return Vector3(Viewport[0]+(1+Tmp[0])*Viewport[2]/2, Viewport[1]+(1+Tmp[1])*Viewport[3]/2, (1+Tmp[2])/2);
|
|
}
|
|
|
|
void ProjectPoints(Vector3* Points, int NumPoints, const Matrix44& ModelView, const Matrix44& Projection, const int Viewport[4])
|
|
{
|
|
for (int i = 0; i < NumPoints; i++)
|
|
{
|
|
Vector4 Tmp;
|
|
|
|
Tmp = Mul4(Vector4(Points[i][0], Points[i][1], Points[i][2], 1.0f), ModelView);
|
|
Tmp = Mul4(Tmp, Projection);
|
|
|
|
// Normalize.
|
|
Tmp /= Tmp[3];
|
|
|
|
// Screen coordinates.
|
|
Points[i] = Vector3(Viewport[0]+(1+Tmp[0])*Viewport[2]/2, Viewport[1]+(1+Tmp[1])*Viewport[3]/2, (1+Tmp[2])/2);
|
|
}
|
|
}
|
|
|
|
// Convert screen coordinates to world coordinates.
|
|
Vector3 UnprojectPoint(const Vector3& Point, const Matrix44& ModelView, const Matrix44& Projection, const int Viewport[4])
|
|
{
|
|
Vector3 Tmp = Point;
|
|
UnprojectPoints(&Tmp, 1, ModelView, Projection, Viewport);
|
|
return Tmp;
|
|
}
|
|
|
|
void UnprojectPoints(Vector3* Points, int NumPoints, const Matrix44& ModelView, const Matrix44& Projection, const int Viewport[4])
|
|
{
|
|
// Calculate the screen to model transform.
|
|
Matrix44 Transform = Inverse(Mul(ModelView, Projection));
|
|
|
|
for (int i = 0; i < NumPoints; i++)
|
|
{
|
|
Vector4 Tmp;
|
|
|
|
// Convert the point to homogeneous coordinates.
|
|
Tmp[0] = (Points[i][0] - Viewport[0]) * 2.0f / Viewport[2] - 1.0f;
|
|
Tmp[1] = (Points[i][1] - Viewport[1]) * 2.0f / Viewport[3] - 1.0f;
|
|
Tmp[2] = Points[i][2] * 2.0f - 1.0f;
|
|
Tmp[3] = 1.0f;
|
|
|
|
Tmp = Mul4(Tmp, Transform);
|
|
|
|
if (Tmp[3] != 0.0f)
|
|
Tmp /= Tmp[3];
|
|
|
|
Points[i] = Vector3(Tmp[0], Tmp[1], Tmp[2]);
|
|
}
|
|
}
|
|
|
|
// ============================================================================
|
|
// Geometry functions.
|
|
|
|
// Sutherland-Hodgman method of clipping a polygon to a plane.
|
|
void PolygonPlaneClip(Vector3* InPoints, int NumInPoints, Vector3* OutPoints, int* NumOutPoints, const Vector4& Plane)
|
|
{
|
|
Vector3 *s, *p, i;
|
|
|
|
*NumOutPoints = 0;
|
|
s = &InPoints[NumInPoints-1];
|
|
|
|
for (int j = 0; j < NumInPoints; j++)
|
|
{
|
|
p = &InPoints[j];
|
|
|
|
if (Dot3(*p, Plane) + Plane[3] <= 0)
|
|
{
|
|
if (Dot3(*s, Plane) + Plane[3] <= 0)
|
|
{
|
|
// Both points inside.
|
|
OutPoints[*NumOutPoints] = *p;
|
|
*NumOutPoints = *NumOutPoints + 1;
|
|
}
|
|
else
|
|
{
|
|
// Outside, inside.
|
|
LinePlaneIntersection(i, *s, *p, Plane);
|
|
|
|
OutPoints[*NumOutPoints] = i;
|
|
*NumOutPoints = *NumOutPoints + 1;
|
|
OutPoints[*NumOutPoints] = *p;
|
|
*NumOutPoints = *NumOutPoints + 1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (Dot3(*s, Plane) + Plane[3] <= 0)
|
|
{
|
|
// Inside, outside.
|
|
LinePlaneIntersection(i, *s, *p, Plane);
|
|
|
|
OutPoints[*NumOutPoints] = i;
|
|
*NumOutPoints = *NumOutPoints + 1;
|
|
}
|
|
}
|
|
|
|
s = p;
|
|
}
|
|
}
|
|
|
|
// Calculate the intersection of a line segment and a plane and returns false
|
|
// if they are parallel or the intersection is outside the line segment.
|
|
bool LinePlaneIntersection(Vector3& Intersection, const Vector3& Start, const Vector3& End, const Vector4& Plane)
|
|
{
|
|
Vector3 Dir = End - Start;
|
|
|
|
float t1 = Dot3(Plane, Start) + Plane[3];
|
|
float t2 = Dot3(Plane, Dir);
|
|
|
|
if (t2 == 0.0f)
|
|
return false;
|
|
|
|
float t = -t1 / t2;
|
|
|
|
Intersection = Start + t * Dir;
|
|
|
|
if ((t < 0.0f) || (t > 1.0f))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool LineTriangleMinIntersection(const Vector3& p1, const Vector3& p2, const Vector3& p3, const Vector3& Start, const Vector3& End, float& MinDist, Vector3& Intersection)
|
|
{
|
|
// Calculate the polygon plane.
|
|
Vector4 Plane;
|
|
Plane = Cross3(p1 - p2, p3 - p2);
|
|
Plane[3] = -Dot3(Plane, p1);
|
|
|
|
// Check if the line is parallel to the plane.
|
|
Vector3 Dir = End - Start;
|
|
|
|
float t1 = Dot3(Plane, Start) + Plane[3];
|
|
float t2 = Dot3(Plane, Dir);
|
|
|
|
if (t2 == 0)
|
|
return false;
|
|
|
|
float t = -(t1 / t2);
|
|
|
|
if (t < 0)
|
|
return false;
|
|
|
|
// Intersection of the plane and line segment.
|
|
Intersection = Start - (t1 / t2) * Dir;
|
|
|
|
float Dist = (Start - Intersection).Length();
|
|
|
|
if (Dist > MinDist)
|
|
return false;
|
|
|
|
// Check if we're inside the triangle.
|
|
Vector3 pa1, pa2, pa3;
|
|
pa1 = (p1 - Intersection).Normalize();
|
|
pa2 = (p2 - Intersection).Normalize();
|
|
pa3 = (p3 - Intersection).Normalize();
|
|
|
|
float a1, a2, a3;
|
|
a1 = Dot3(pa1, pa2);
|
|
a2 = Dot3(pa2, pa3);
|
|
a3 = Dot3(pa3, pa1);
|
|
|
|
float total = (acosf(a1) + acosf(a2) + acosf(a3)) * RTOD;
|
|
|
|
if (fabs(total - 360) <= 0.001f)
|
|
{
|
|
MinDist = Dist;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool LineQuadMinIntersection(const Vector3& p1, const Vector3& p2, const Vector3& p3, const Vector3& p4, const Vector3& Start, const Vector3& End, float& MinDist, Vector3& Intersection)
|
|
{
|
|
// Calculate the polygon plane.
|
|
Vector4 Plane;
|
|
Plane = Cross3(p1 - p2, p3 - p2);
|
|
Plane[3] = -Dot3(Plane, p1);
|
|
|
|
// Check if the line is parallel to the plane.
|
|
Vector3 Dir = End - Start;
|
|
|
|
float t1 = Dot3(Plane, Start) + Plane[3];
|
|
float t2 = Dot3(Plane, Dir);
|
|
|
|
if (t2 == 0)
|
|
return false;
|
|
|
|
float t = -(t1 / t2);
|
|
|
|
if (t < 0)
|
|
return false;
|
|
|
|
// Intersection of the plane and line segment.
|
|
Intersection = Start - (t1 / t2) * Dir;
|
|
|
|
float Dist = (Start - Intersection).Length();
|
|
|
|
if (Dist > MinDist)
|
|
return false;
|
|
|
|
// Check if we're inside the triangle.
|
|
Vector3 pa1, pa2, pa3;
|
|
pa1 = (p1 - Intersection).Normalize();
|
|
pa2 = (p2 - Intersection).Normalize();
|
|
pa3 = (p3 - Intersection).Normalize();
|
|
|
|
float a1, a2, a3;
|
|
a1 = Dot3(pa1, pa2);
|
|
a2 = Dot3(pa2, pa3);
|
|
a3 = Dot3(pa3, pa1);
|
|
|
|
float total = (acosf(a1) + acosf(a2) + acosf(a3)) * RTOD;
|
|
|
|
if (fabs(total - 360) <= 0.001f)
|
|
{
|
|
MinDist = Dist;
|
|
return true;
|
|
}
|
|
|
|
// Check if we're inside the second triangle.
|
|
pa2 = (p4 - Intersection).Normalize();
|
|
|
|
a1 = Dot3(pa1, pa2);
|
|
a2 = Dot3(pa2, pa3);
|
|
a3 = Dot3(pa3, pa1);
|
|
|
|
total = (acosf(a1) + acosf(a2) + acosf(a3)) * RTOD;
|
|
|
|
if (fabs(total - 360) <= 0.001f)
|
|
{
|
|
MinDist = Dist;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|