leocad/common/lc_texture.cpp
2020-03-22 20:18:52 -07:00

341 lines
8.3 KiB
C++

#include "lc_global.h"
#include "lc_texture.h"
#include "lc_application.h"
#include "lc_library.h"
#include "image.h"
#include "lc_glextensions.h"
lcTexture* gGridTexture;
lcTexture* lcLoadTexture(const QString& FileName, int Flags)
{
lcTexture* Texture = new lcTexture();
if (!Texture->Load(FileName, Flags))
{
delete Texture;
Texture = nullptr;
}
else
{
strcpy(Texture->mName, QFileInfo(FileName).baseName().toLatin1());
Texture->SetTemporary(true);
}
return Texture;
}
void lcReleaseTexture(lcTexture* Texture)
{
if (Texture && !Texture->Release())
delete Texture;
}
lcTexture::lcTexture()
{
mTexture = 0;
mRefCount = 0;
mTemporary = false;
}
lcTexture::~lcTexture()
{
Unload();
}
void lcTexture::CreateGridTexture()
{
constexpr int NumLevels = 9;
mImages.resize(NumLevels);
quint8* Previous = nullptr;
for (int ImageLevel = 0; ImageLevel < NumLevels; ImageLevel++)
{
Image& GridImage = mImages[ImageLevel];
const int GridSize = 256 >> ImageLevel;
GridImage.Allocate(GridSize, GridSize, LC_PIXEL_FORMAT_A8);
if (Previous)
{
const int PreviousGridSize = 2 * GridSize;
for (int y = 0; y < GridSize - 1; y++)
{
for (int x = 0; x < GridSize - 1; x++)
{
const quint8 a = Previous[x * 2 + y * 2 * PreviousGridSize] > 64 ? 255 : 0;
const quint8 b = Previous[x * 2 + 1 + y * 2 * PreviousGridSize] > 64 ? 255 : 0;
const quint8 c = Previous[x * 2 + (y * 2 + 1) * PreviousGridSize] > 64 ? 255 : 0;
const quint8 d = Previous[x * 2 + 1 + (y * 2 + 1) * PreviousGridSize] > 64 ? 255 : 0;
GridImage.mData[x + y * GridSize] = (a + b + c + d) / 4;
}
int x = GridSize - 1;
const quint8 a = Previous[x * 2 + y * 2 * PreviousGridSize];
const quint8 c = Previous[x * 2 + (y * 2 + 1) * PreviousGridSize];
GridImage.mData[x + y * GridSize] = (a + c) / 2;
}
int y = GridSize - 1;
for (int x = 0; x < GridSize - 1; x++)
{
const quint8 a = Previous[x * 2 + y * 2 * PreviousGridSize];
const quint8 b = Previous[x * 2 + 1 + y * 2 * PreviousGridSize];
GridImage.mData[x + y * GridSize] = (a + b) / 2;
}
int x = GridSize - 1;
GridImage.mData[x + y * GridSize] = Previous[x + y * PreviousGridSize];
}
else
{
const float Radius1 = (80 >> ImageLevel) * (80 >> ImageLevel);
const float Radius2 = (72 >> ImageLevel) * (72 >> ImageLevel);
quint8* TempBuffer = new quint8[GridSize * GridSize];
for (int y = 0; y < GridSize; y++)
{
quint8* Pixel = TempBuffer + y * GridSize;
memset(Pixel, 0, GridSize);
const float y2 = (y - GridSize / 2) * (y - GridSize / 2);
if (Radius1 <= y2)
continue;
if (Radius2 <= y2)
{
const int x1 = sqrtf(Radius1 - y2);
for (int x = GridSize / 2 - x1; x < GridSize / 2 + x1; x++)
Pixel[x] = 255;
}
else
{
const int x1 = sqrtf(Radius1 - y2);
const int x2 = sqrtf(Radius2 - y2);
for (int x = GridSize / 2 - x1; x < GridSize / 2 - x2; x++)
Pixel[x] = 255;
for (int x = GridSize / 2 + x2; x < GridSize / 2 + x1; x++)
Pixel[x] = 255;
}
}
for (int y = 0; y < GridSize - 1; y++)
{
for (int x = 0; x < GridSize - 1; x++)
{
const quint8 a = TempBuffer[x + y * GridSize];
const quint8 b = TempBuffer[x + 1 + y * GridSize];
const quint8 c = TempBuffer[x + (y + 1) * GridSize];
const quint8 d = TempBuffer[x + 1 + (y + 1) * GridSize];
GridImage.mData[x + y * GridSize] = (a + b + c + d) / 4;
}
int x = GridSize - 1;
const quint8 a = TempBuffer[x + y * GridSize];
const quint8 c = TempBuffer[x + (y + 1) * GridSize];
GridImage.mData[x + y * GridSize] = (a + c) / 2;
}
int y = GridSize - 1;
for (int x = 0; x < GridSize - 1; x++)
{
const quint8 a = TempBuffer[x + y * GridSize];
const quint8 b = TempBuffer[x + 1 + y * GridSize];
GridImage.mData[x + y * GridSize] = (a + b) / 2;
}
int x = GridSize - 1;
GridImage.mData[x + y * GridSize] = TempBuffer[x + y * GridSize];
delete[] TempBuffer;
}
Previous = GridImage.mData;
}
mRefCount = 1;
mFlags = LC_TEXTURE_WRAPU | LC_TEXTURE_WRAPV | LC_TEXTURE_MIPMAPS | LC_TEXTURE_ANISOTROPIC;
lcGetPiecesLibrary()->QueueTextureUpload(this);
}
bool lcTexture::Load()
{
return lcGetPiecesLibrary()->LoadTexture(this);
}
bool lcTexture::Load(const QString& FileName, int Flags)
{
mImages.resize(1);
if (!mImages[0].FileLoad(FileName))
return false;
return Load(Flags);
}
bool lcTexture::Load(lcMemFile& File, int Flags)
{
mImages.resize(1);
if (!mImages[0].FileLoad(File))
return false;
return Load(Flags);
}
void lcTexture::SetImage(Image* Image, int Flags)
{
mImages.clear();
mImages.emplace_back(std::move(*Image));
Load(Flags);
}
void lcTexture::SetImage(std::vector<Image>&& Images, int Flags)
{
mImages = std::move(Images);
Load(Flags);
}
void lcTexture::Upload(lcContext* Context)
{
mWidth = mImages[0].mWidth;
mHeight = mImages[0].mHeight;
if (!mTexture)
glGenTextures(1, &mTexture);
constexpr int Filters[2][5] =
{
{ GL_NEAREST_MIPMAP_NEAREST, GL_NEAREST_MIPMAP_LINEAR, GL_LINEAR_MIPMAP_NEAREST, GL_LINEAR_MIPMAP_LINEAR, GL_LINEAR_MIPMAP_LINEAR },
{ GL_NEAREST, GL_LINEAR, GL_LINEAR, GL_LINEAR, GL_LINEAR },
};
const int FilterFlags = mFlags & LC_TEXTURE_FILTER_MASK;
const int FilterIndex = FilterFlags >> LC_TEXTURE_FILTER_SHIFT;
const int MipIndex = mFlags & LC_TEXTURE_MIPMAPS ? 0 : 1;
unsigned int Faces, Target;
if ((mFlags & LC_TEXTURE_CUBEMAP) == 0)
{
Faces = 1;
Target = GL_TEXTURE_2D;
Context->BindTexture2D(mTexture);
}
else
{
Faces = 6;
Target = GL_TEXTURE_CUBE_MAP;
Context->BindTextureCubeMap(mTexture);
}
glTexParameteri(Target, GL_TEXTURE_WRAP_S, (mFlags & LC_TEXTURE_WRAPU) ? GL_REPEAT : GL_CLAMP_TO_EDGE);
glTexParameteri(Target, GL_TEXTURE_WRAP_T, (mFlags & LC_TEXTURE_WRAPV) ? GL_REPEAT : GL_CLAMP_TO_EDGE);
glTexParameteri(Target, GL_TEXTURE_MIN_FILTER, Filters[MipIndex][FilterIndex]);
glTexParameteri(Target, GL_TEXTURE_MAG_FILTER, Filters[1][FilterIndex]);
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
if (gSupportsAnisotropic && FilterFlags == LC_TEXTURE_ANISOTROPIC)
glTexParameterf(Target, GL_TEXTURE_MAX_ANISOTROPY_EXT, lcMin(4.0f, gMaxAnisotropy));
int Format;
switch (mImages[0].mFormat)
{
default:
case LC_PIXEL_FORMAT_INVALID:
Format = 0;
break;
case LC_PIXEL_FORMAT_A8:
Format = GL_ALPHA;
break;
case LC_PIXEL_FORMAT_L8A8:
Format = GL_LUMINANCE_ALPHA;
break;
case LC_PIXEL_FORMAT_R8G8B8:
Format = GL_RGB;
break;
case LC_PIXEL_FORMAT_R8G8B8A8:
Format = GL_RGBA;
break;
}
int CurrentImage = 0;
if (mFlags & LC_TEXTURE_CUBEMAP)
Target = GL_TEXTURE_CUBE_MAP_POSITIVE_X;
for (size_t FaceIdx = 0; FaceIdx < Faces; FaceIdx++)
{
void* Data = mImages[CurrentImage].mData;
glTexImage2D(Target, 0, Format, mWidth, mHeight, 0, Format, GL_UNSIGNED_BYTE, Data);
if (mFlags & LC_TEXTURE_MIPMAPS || FilterFlags >= LC_TEXTURE_BILINEAR)
{
int Width = mWidth;
int Height = mHeight;
int Components = mImages[CurrentImage].GetBPP();
for (int Level = 1; ((Width != 1) || (Height != 1)); Level++)
{
int RowStride = Width * Components;
Width = lcMax(1, Width >> 1);
Height = lcMax(1, Height >> 1);
if (mImages.size() == Faces)
{
GLubyte *Out, *In;
In = Out = (GLubyte*)Data;
for (int y = 0; y < Height; y++, In += RowStride)
for (int x = 0; x < Width; x++, Out += Components, In += 2 * Components)
for (int c = 0; c < Components; c++)
Out[c] = (In[c] + In[c + Components] + In[RowStride] + In[c + RowStride + Components]) / 4;
}
else
Data = mImages[++CurrentImage].mData;
glTexImage2D(Target, Level, Format, Width, Height, 0, Format, GL_UNSIGNED_BYTE, Data);
}
if (mImages.size() == Faces)
CurrentImage++;
}
else
CurrentImage++;
Target++;
}
if ((mFlags & LC_TEXTURE_CUBEMAP) == 0)
Context->UnbindTexture2D(mTexture);
else
Context->UnbindTextureCubeMap(mTexture);
}
bool lcTexture::Load(int Flags)
{
for (Image& Image : mImages)
Image.ResizePow2();
mFlags = Flags;
lcGetPiecesLibrary()->QueueTextureUpload(this);
return true;
}
void lcTexture::Unload()
{
if (mTexture)
glDeleteTextures(1, &mTexture);
mTexture = 0;
}