leocad/common/im_gif.cpp
2012-03-22 23:44:56 +00:00

699 lines
19 KiB
C++

#include "lc_global.h"
#include <stdlib.h>
#include <string.h>
#include "image.h"
#include "quant.h"
#include "lc_file.h"
// =============================================================================
typedef struct
{
unsigned char colormap[3][256];
// State for GetCode and LZWReadByte
char code_buf[256+4];
int last_byte; // # of bytes in code_buf
int last_bit; // # of bits in code_buf
int cur_bit; // next bit index to read
bool out_of_blocks; // true if hit terminator data block
int input_code_size; // codesize given in GIF file
int clear_code,end_code;// values for Clear and End codes
int code_size; // current actual code size
int limit_code; // 2^code_size
int max_code; // first unused code value
bool first_time; // flags first call to LZWReadByte
// Private state for LZWReadByte
int oldcode; // previous LZW symbol
int firstcode; // first byte of oldcode's expansion
// LZW symbol table and expansion stack
lcuint16 *symbol_head; // => table of prefix symbols
lcuint8 *symbol_tail; // => table of suffix bytes
lcuint8 *symbol_stack; // => stack for symbol expansions
lcuint8 *sp; // stack pointer
// State for interlaced image processing
bool is_interlaced; // true if have interlaced image
// jvirt_sarray_ptr interlaced_image; // full image in interlaced order
unsigned char* interlaced_image;
lcuint32 cur_row_number; // need to know actual row number
lcuint32 pass2_offset; // # of pixel rows in pass 1
lcuint32 pass3_offset; // # of pixel rows in passes 1&2
lcuint32 pass4_offset; // # of pixel rows in passes 1,2,3
lcFile* input_file;
bool first_interlace;
unsigned char* buffer;//JSAMPARRAY buffer;
unsigned int width, height;
} gif_source_struct;
typedef gif_source_struct *gif_source_ptr;
// Macros for extracting header data --- note we assume chars may be signed
#define LM_to_uint(a,b) ((((b)&0xFF) << 8) | ((a)&0xFF))
#define BitSet(byte, bit) ((byte) & (bit))
#define INTERLACE 0x40 // mask for bit signifying interlaced image
#define COLORMAPFLAG 0x80 // mask for bit signifying colormap presence
#undef LZW_TABLE_SIZE
#define MAX_LZW_BITS 12 // maximum LZW code size
#define LZW_TABLE_SIZE (1<<MAX_LZW_BITS) // # of possible LZW symbols
static int GetDataBlock (gif_source_ptr sinfo, char *buf)
{
int count = sinfo->input_file->ReadU8();
if (count > 0)
sinfo->input_file->ReadBuffer(buf, count);
return count;
}
static int GetCode (gif_source_ptr sinfo)
{
register lcint32 accum;
int offs, ret, count;
while ((sinfo->cur_bit + sinfo->code_size) > sinfo->last_bit)
{
if (sinfo->out_of_blocks)
return sinfo->end_code; // fake something useful
sinfo->code_buf[0] = sinfo->code_buf[sinfo->last_byte-2];
sinfo->code_buf[1] = sinfo->code_buf[sinfo->last_byte-1];
if ((count = GetDataBlock(sinfo, &sinfo->code_buf[2])) == 0)
{
sinfo->out_of_blocks = true;
return sinfo->end_code; // fake something useful
}
sinfo->cur_bit = (sinfo->cur_bit - sinfo->last_bit) + 16;
sinfo->last_byte = 2 + count;
sinfo->last_bit = sinfo->last_byte * 8;
}
offs = sinfo->cur_bit >> 3; // byte containing cur_bit
accum = sinfo->code_buf[offs+2] & 0xFF;
accum <<= 8;
accum |= sinfo->code_buf[offs+1] & 0xFF;
accum <<= 8;
accum |= sinfo->code_buf[offs] & 0xFF;
accum >>= (sinfo->cur_bit & 7);
ret = ((int) accum) & ((1 << sinfo->code_size) - 1);
sinfo->cur_bit += sinfo->code_size;
return ret;
}
static int LZWReadByte (gif_source_ptr sinfo)
{
register int code; // current working code
int incode; // saves actual input code
// First time, just eat the expected Clear code(s) and return next code,
// which is expected to be a raw byte.
if (sinfo->first_time)
{
sinfo->first_time = false;
code = sinfo->clear_code; // enables sharing code with Clear case
}
else
{
// If any codes are stacked from a previously read symbol, return them
if (sinfo->sp > sinfo->symbol_stack)
return (int) *(-- sinfo->sp);
// Time to read a new symbol
code = GetCode(sinfo);
}
if (code == sinfo->clear_code)
{
sinfo->code_size = sinfo->input_code_size + 1;
sinfo->limit_code = sinfo->clear_code << 1; // 2^code_size
sinfo->max_code = sinfo->clear_code + 2; // first unused code value
sinfo->sp = sinfo->symbol_stack; // init stack to empty
do
{
code = GetCode(sinfo);
} while (code == sinfo->clear_code);
if (code > sinfo->clear_code)
code = 0; // use something valid
sinfo->firstcode = sinfo->oldcode = code;
return code;
}
if (code == sinfo->end_code)
{
if (!sinfo->out_of_blocks)
{
char buf[256];
while (GetDataBlock(sinfo, buf) > 0)
; // skip
sinfo->out_of_blocks = true;
}
return 0; // fake something usable
}
incode = code; // save for a moment
if (code >= sinfo->max_code)
{
// special case for not-yet-defined symbol
// code == max_code is OK; anything bigger is bad data
if (code > sinfo->max_code)
incode = 0; // prevent creation of loops in symbol table
// this symbol will be defined as oldcode/firstcode
*(sinfo->sp++) = (lcuint8) sinfo->firstcode;
code = sinfo->oldcode;
}
while (code >= sinfo->clear_code)
{
*(sinfo->sp++) = sinfo->symbol_tail[code]; // tail is a byte value
code = sinfo->symbol_head[code]; // head is another LZW symbol
}
sinfo->firstcode = code; // save for possible future use
if ((code = sinfo->max_code) < LZW_TABLE_SIZE)
{
sinfo->symbol_head[code] = sinfo->oldcode;
sinfo->symbol_tail[code] = (lcuint8) sinfo->firstcode;
sinfo->max_code++;
if ((sinfo->max_code >= sinfo->limit_code) &&
(sinfo->code_size < MAX_LZW_BITS))
{
sinfo->code_size++;
sinfo->limit_code <<= 1; // keep equal to 2^code_size
}
}
sinfo->oldcode = incode; // save last input symbol for future use
return sinfo->firstcode; // return first byte of symbol's expansion
}
bool Image::LoadGIF(lcFile& file)
{
gif_source_ptr source;
source = (gif_source_ptr)malloc (sizeof(gif_source_struct));
source->input_file = &file;
char hdrbuf[10];
unsigned int width, height;
int colormaplen, aspectRatio;
int c;
FreeData ();
source->input_file->ReadBuffer(hdrbuf, 6);
if ((hdrbuf[0] != 'G' || hdrbuf[1] != 'I' || hdrbuf[2] != 'F') ||
((hdrbuf[3] != '8' || hdrbuf[4] != '7' || hdrbuf[5] != 'a') &&
(hdrbuf[3] != '8' || hdrbuf[4] != '9' || hdrbuf[5] != 'a')))
return false;
source->input_file->ReadBuffer(hdrbuf, 7);
width = LM_to_uint(hdrbuf[0],hdrbuf[1]);
height = LM_to_uint(hdrbuf[2],hdrbuf[3]);
source->height = height;
source->width = width;
colormaplen = 2 << (hdrbuf[4] & 0x07);
aspectRatio = hdrbuf[6] & 0xFF;
if (BitSet(hdrbuf[4], COLORMAPFLAG))
for (int i = 0; i < colormaplen; i++)
{
source->colormap[0][i] = source->input_file->ReadU8();
source->colormap[1][i] = source->input_file->ReadU8();
source->colormap[2][i] = source->input_file->ReadU8();
}
for (;;)
{
c = source->input_file->ReadU8();
// if (c == ';')
// ERREXIT(cinfo, JERR_GIF_IMAGENOTFOUND);
if (c == '!')
{
int extlabel;
char buf[256];
extlabel = source->input_file->ReadU8();
while (GetDataBlock(source, buf) > 0)
; // skip
continue;
}
if (c != ',')
continue;
source->input_file->ReadBuffer(hdrbuf, 9);
width = LM_to_uint(hdrbuf[4],hdrbuf[5]);
height = LM_to_uint(hdrbuf[6],hdrbuf[7]);
source->is_interlaced = (hdrbuf[8] & INTERLACE) != 0;
if (BitSet(hdrbuf[8], COLORMAPFLAG))
{
colormaplen = 2 << (hdrbuf[8] & 0x07);
for (int i = 0; i < colormaplen; i++)
{
source->colormap[0][i] = source->input_file->ReadU8();
source->colormap[1][i] = source->input_file->ReadU8();
source->colormap[2][i] = source->input_file->ReadU8();
}
}
source->input_code_size = source->input_file->ReadU8();
// if (source->input_code_size < 2 || source->input_code_size >= MAX_LZW_BITS)
// ERREXIT1(cinfo, JERR_GIF_CODESIZE, source->input_code_size);
break;
}
source->symbol_head = (lcuint16*) malloc(LZW_TABLE_SIZE * sizeof(lcuint16));
source->symbol_tail = (lcuint8*) malloc (LZW_TABLE_SIZE * sizeof(lcuint8));
source->symbol_stack = (lcuint8*) malloc (LZW_TABLE_SIZE * sizeof(lcuint8));
source->last_byte = 2; // make safe to "recopy last two bytes"
source->last_bit = 0; // nothing in the buffer
source->cur_bit = 0; // force buffer load on first call
source->out_of_blocks = false;
source->clear_code = 1 << source->input_code_size;
source->end_code = source->clear_code + 1;
source->first_time = true;
source->code_size = source->input_code_size + 1;
source->limit_code = source->clear_code << 1; // 2^code_size
source->max_code = source->clear_code + 2; // first unused code value
source->sp = source->symbol_stack; // init stack to empty
if (source->is_interlaced)
{
source->first_interlace = true;
source->interlaced_image = (unsigned char*)malloc(width*height);
}
else
source->first_interlace = false;
source->buffer = (unsigned char*)malloc(width*3);
m_pData = (unsigned char*)malloc(width*height*3);
m_nWidth = width;
m_nHeight = height;
m_bAlpha = false; // FIXME: create the alpha channel for transparent files
unsigned char* buf = m_pData;
for (unsigned long scanline = 0; scanline < height; scanline++)
{
if (source->is_interlaced)
{
if (source->first_interlace)
{
register lcuint8 *sptr;
register lcuint32 col;
lcuint32 row;
for (row = 0; row < source->height; row++)
{
sptr = &source->interlaced_image[row*source->width];
for (col = source->width; col > 0; col--)
*sptr++ = (lcuint8) LZWReadByte(source);
}
source->first_interlace = false;
source->cur_row_number = 0;
source->pass2_offset = (source->height + 7) / 8;
source->pass3_offset = source->pass2_offset + (source->height + 3) / 8;
source->pass4_offset = source->pass3_offset + (source->height + 1) / 4;
}
register int c;
register lcuint8 *sptr, *ptr;
register lcuint32 col;
lcuint32 irow;
// Figure out which row of interlaced image is needed, and access it.
switch ((int) (source->cur_row_number & 7))
{
case 0: // first-pass row
irow = source->cur_row_number >> 3;
break;
case 4: // second-pass row
irow = (source->cur_row_number >> 3) + source->pass2_offset;
break;
case 2: // third-pass row
case 6:
irow = (source->cur_row_number >> 2) + source->pass3_offset;
break;
default: // fourth-pass row
irow = (source->cur_row_number >> 1) + source->pass4_offset;
break;
}
sptr = &source->interlaced_image[irow*source->width];
ptr = source->buffer;
for (col = source->width; col > 0; col--)
{
c = *sptr++;
*ptr++ = source->colormap[0][c];
*ptr++ = source->colormap[1][c];
*ptr++ = source->colormap[2][c];
}
source->cur_row_number++; // for next time
}
else
{
register int c;
register lcuint8 *ptr;
register lcuint32 col;
ptr = source->buffer;
for (col = source->width; col > 0; col--)
{
c = LZWReadByte(source);
*ptr++ = source->colormap[0][c];
*ptr++ = source->colormap[1][c];
*ptr++ = source->colormap[2][c];
}
}
memcpy (buf+(width*scanline*3), source->buffer, 3*width);
}
if (source->is_interlaced)
free(source->interlaced_image);
free(source->buffer);
free(source->symbol_head);
free(source->symbol_tail);
free(source->symbol_stack);
free(source);
return true;
}
// =============================================================================
#undef LZW_TABLE_SIZE
#define MAX_LZW_BITS 12
typedef lcint16 code_int;
#define LZW_TABLE_SIZE ((code_int) 1 << MAX_LZW_BITS)
#define HSIZE 5003
typedef int hash_int;
#define MAXCODE(n_bits) (((code_int) 1 << (n_bits)) - 1)
typedef lcint32 hash_entry;
#define HASH_ENTRY(prefix,suffix) ((((hash_entry) (prefix)) << 8) | (suffix))
typedef struct
{
int n_bits;
code_int maxcode;
int init_bits;
lcint32 cur_accum;
int cur_bits;
code_int waiting_code;
bool first_byte;
code_int ClearCode;
code_int EOFCode;
code_int free_code;
code_int *hash_code;
hash_entry *hash_value;
int bytesinpkt;
char packetbuf[256];
lcFile* output_file;
void* buffer;//JSAMPARRAY buffer;
} gif_dest_struct;
typedef gif_dest_struct* gif_dest_ptr;
// Emit a 16-bit word, LSB first
static void put_word(lcFile& output_file, unsigned int w)
{
output_file.WriteU8(w & 0xFF);
output_file.WriteU8((w >> 8) & 0xFF);
}
static void flush_packet(gif_dest_ptr dinfo)
{
if (dinfo->bytesinpkt > 0)
{
dinfo->packetbuf[0] = (char) dinfo->bytesinpkt++;
dinfo->output_file->WriteBuffer(dinfo->packetbuf, dinfo->bytesinpkt);
dinfo->bytesinpkt = 0;
}
}
static void output(gif_dest_ptr dinfo, code_int code)
{
dinfo->cur_accum |= ((lcint32) code) << dinfo->cur_bits;
dinfo->cur_bits += dinfo->n_bits;
while (dinfo->cur_bits >= 8)
{
(dinfo)->packetbuf[++(dinfo)->bytesinpkt] = (char) (dinfo->cur_accum & 0xFF);
if ((dinfo)->bytesinpkt >= 255)
flush_packet(dinfo);
dinfo->cur_accum >>= 8;
dinfo->cur_bits -= 8;
}
if (dinfo->free_code > dinfo->maxcode)
{
dinfo->n_bits++;
if (dinfo->n_bits == MAX_LZW_BITS)
dinfo->maxcode = LZW_TABLE_SIZE;
else
dinfo->maxcode = MAXCODE(dinfo->n_bits);
}
}
// Accept and compress one 8-bit byte
static void compress_byte (gif_dest_ptr dinfo, int c)
{
register hash_int i;
register hash_int disp;
register hash_entry probe_value;
if (dinfo->first_byte)
{
dinfo->waiting_code = c;
dinfo->first_byte = false;
return;
}
i = ((hash_int) c << (MAX_LZW_BITS-8)) + dinfo->waiting_code;
if (i >= HSIZE)
i -= HSIZE;
probe_value = HASH_ENTRY(dinfo->waiting_code, c);
if (dinfo->hash_code[i] != 0)
{
if (dinfo->hash_value[i] == probe_value)
{
dinfo->waiting_code = dinfo->hash_code[i];
return;
}
if (i == 0)
disp = 1;
else
disp = HSIZE - i;
for (;;)
{
i -= disp;
if (i < 0)
i += HSIZE;
if (dinfo->hash_code[i] == 0)
break;
if (dinfo->hash_value[i] == probe_value)
{
dinfo->waiting_code = dinfo->hash_code[i];
return;
}
}
}
output(dinfo, dinfo->waiting_code);
if (dinfo->free_code < LZW_TABLE_SIZE)
{
dinfo->hash_code[i] = dinfo->free_code++;
dinfo->hash_value[i] = probe_value;
}
else
{
memset(dinfo->hash_code, 0, HSIZE * sizeof(code_int));
dinfo->free_code = dinfo->ClearCode + 2;
output(dinfo, dinfo->ClearCode);
dinfo->n_bits = dinfo->init_bits;
dinfo->maxcode = MAXCODE(dinfo->n_bits);
}
dinfo->waiting_code = c;
}
bool Image::SaveGIF(lcFile& file, bool transparent, bool interlaced, unsigned char* background) const
{
int InitCodeSize, FlagByte, i;
unsigned char pal[3][256];
unsigned char* colormappedbuffer = (unsigned char*)malloc (m_nWidth*m_nHeight);
dl1quant (m_pData, colormappedbuffer, m_nWidth, m_nHeight, 256, true, pal);
gif_dest_ptr dinfo;
dinfo = (gif_dest_ptr) malloc (sizeof(gif_dest_struct));
dinfo->output_file = &file;
dinfo->buffer = malloc(m_nWidth*sizeof(lcuint32));
dinfo->hash_code = (code_int*) malloc(HSIZE * sizeof(code_int));
dinfo->hash_value = (hash_entry*)malloc(HSIZE*sizeof(hash_entry));
InitCodeSize = 8;
// Write the GIF header.
file.WriteU8('G');
file.WriteU8('I');
file.WriteU8('F');
file.WriteU8('8');
file.WriteU8(transparent ? '9' : '7');
file.WriteU8('a');
// Write the Logical Screen Descriptor
put_word(file, (unsigned int)m_nWidth);
put_word(file, (unsigned int)m_nHeight);
FlagByte = 0x80;
FlagByte |= (7) << 4; // color resolution
FlagByte |= (7); // size of global color table
file.WriteU8(FlagByte);
file.WriteU8(0); // Background color index
file.WriteU8(0); // Reserved (aspect ratio in GIF89)
// Write the Global Color Map
for (i = 0; i < 256; i++)
{
file.WriteU8(pal[0][i]);
file.WriteU8(pal[1][i]);
file.WriteU8(pal[2][i]);
}
// Write out extension for transparent colour index, if necessary.
if (transparent)
{
unsigned char index = 0;
for (i = 0; i < 256; i++)
if (background[0] == pal[0][i] &&
background[1] == pal[1][i] &&
background[2] == pal[2][i])
{
index = i;
break;
}
file.WriteU8('!');
file.WriteU8(0xf9);
file.WriteU8(4);
file.WriteU8(1);
file.WriteU8(0);
file.WriteU8(0);
file.WriteU8(index);
file.WriteU8(0);
}
// Write image separator and Image Descriptor
file.WriteU8(',');
put_word(file, 0);
put_word(file, 0);
put_word(file, (unsigned int)m_nWidth);
put_word(file, (unsigned int)m_nHeight);
// flag byte: interlaced
if (interlaced)
file.WriteU8(0x40);
else
file.WriteU8(0x00);
file.WriteU8(InitCodeSize);// Write Initial Code Size byte
// Initialize for LZW compression of image data
dinfo->n_bits = dinfo->init_bits = InitCodeSize+1;
dinfo->maxcode = MAXCODE(dinfo->n_bits);
dinfo->ClearCode = ((code_int) 1 << (InitCodeSize));
dinfo->EOFCode = dinfo->ClearCode + 1;
dinfo->free_code = dinfo->ClearCode + 2;
dinfo->first_byte = true;
dinfo->bytesinpkt = 0;
dinfo->cur_accum = 0;
dinfo->cur_bits = 0;
memset(dinfo->hash_code, 0, HSIZE * sizeof(code_int));
output(dinfo, dinfo->ClearCode);
int scanline = 0;
int pass = 0;
while (scanline < m_nHeight)
{
memcpy(dinfo->buffer, colormappedbuffer+(scanline*m_nWidth), m_nWidth);
register lcuint8 *ptr;
register lcuint32 col;
ptr = (unsigned char*)dinfo->buffer;
for (col = m_nWidth; col > 0; col--)
compress_byte(dinfo, *ptr++);
if (interlaced)
{
switch (pass)
{
case 0:
{
scanline += 8;
if (scanline >= m_nHeight)
{
pass++;
scanline = 4;
}
} break;
case 1:
{
scanline += 8;
if (scanline >= m_nHeight)
{
pass++;
scanline = 2;
}
} break;
case 2:
{
scanline += 4;
if (scanline >= m_nHeight)
{
pass++;
scanline = 1;
}
} break;
case 3:
{
scanline += 2;
} break;
}
}
else
scanline++;
}
// Finish up at the end of the file.
if (!dinfo->first_byte)
output(dinfo, dinfo->waiting_code);
output(dinfo, dinfo->EOFCode);
if (dinfo->cur_bits > 0)
{
(dinfo)->packetbuf[++(dinfo)->bytesinpkt] = (char) (dinfo->cur_accum & 0xFF);
if ((dinfo)->bytesinpkt >= 255)
flush_packet(dinfo);
}
flush_packet(dinfo);
file.WriteU8(0);
file.WriteU8(';');
file.Flush();
free(dinfo->buffer);
free(dinfo->hash_code);
free(dinfo->hash_value);
free(dinfo);
free(colormappedbuffer);
return true;
}