mirror of
https://github.com/leozide/leocad
synced 2025-01-18 22:26:44 +01:00
1536 lines
39 KiB
C++
1536 lines
39 KiB
C++
// RModel.cpp: implementation of the CRModel class.
|
|
//
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
#include "stdafx.h"
|
|
#include "leocad.h"
|
|
#include "RModel.h"
|
|
#include <math.h>
|
|
|
|
#ifdef _DEBUG
|
|
#undef THIS_FILE
|
|
static char THIS_FILE[]=__FILE__;
|
|
#define new DEBUG_NEW
|
|
#endif
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
// Math functions
|
|
|
|
static inline void Midentity(double M[3][3])
|
|
{
|
|
M[0][0] = M[1][1] = M[2][2] = 1.0;
|
|
M[0][1] = M[1][2] = M[2][0] = 0.0;
|
|
M[0][2] = M[1][0] = M[2][1] = 0.0;
|
|
}
|
|
|
|
static inline void McM(double Mr[3][3], double M[3][3])
|
|
{
|
|
Mr[0][0] = M[0][0]; Mr[0][1] = M[0][1]; Mr[0][2] = M[0][2];
|
|
Mr[1][0] = M[1][0]; Mr[1][1] = M[1][1]; Mr[1][2] = M[1][2];
|
|
Mr[2][0] = M[2][0]; Mr[2][1] = M[2][1]; Mr[2][2] = M[2][2];
|
|
}
|
|
|
|
static inline void VcV(double Vr[3], double V[3])
|
|
{
|
|
Vr[0] = V[0]; Vr[1] = V[1]; Vr[2] = V[2];
|
|
}
|
|
|
|
static inline void MxM(double Mr[3][3], double M1[3][3], double M2[3][3])
|
|
{
|
|
Mr[0][0] = (M1[0][0] * M2[0][0] + M1[0][1] * M2[1][0] + M1[0][2] * M2[2][0]);
|
|
Mr[1][0] = (M1[1][0] * M2[0][0] + M1[1][1] * M2[1][0] + M1[1][2] * M2[2][0]);
|
|
Mr[2][0] = (M1[2][0] * M2[0][0] + M1[2][1] * M2[1][0] + M1[2][2] * M2[2][0]);
|
|
Mr[0][1] = (M1[0][0] * M2[0][1] + M1[0][1] * M2[1][1] + M1[0][2] * M2[2][1]);
|
|
Mr[1][1] = (M1[1][0] * M2[0][1] + M1[1][1] * M2[1][1] + M1[1][2] * M2[2][1]);
|
|
Mr[2][1] = (M1[2][0] * M2[0][1] + M1[2][1] * M2[1][1] + M1[2][2] * M2[2][1]);
|
|
Mr[0][2] = (M1[0][0] * M2[0][2] + M1[0][1] * M2[1][2] + M1[0][2] * M2[2][2]);
|
|
Mr[1][2] = (M1[1][0] * M2[0][2] + M1[1][1] * M2[1][2] + M1[1][2] * M2[2][2]);
|
|
Mr[2][2] = (M1[2][0] * M2[0][2] + M1[2][1] * M2[1][2] + M1[2][2] * M2[2][2]);
|
|
}
|
|
|
|
static inline void MTxM(double Mr[3][3], double M1[3][3], double M2[3][3])
|
|
{
|
|
Mr[0][0] = (M1[0][0] * M2[0][0] + M1[1][0] * M2[1][0] + M1[2][0] * M2[2][0]);
|
|
Mr[1][0] = (M1[0][1] * M2[0][0] + M1[1][1] * M2[1][0] + M1[2][1] * M2[2][0]);
|
|
Mr[2][0] = (M1[0][2] * M2[0][0] + M1[1][2] * M2[1][0] + M1[2][2] * M2[2][0]);
|
|
Mr[0][1] = (M1[0][0] * M2[0][1] + M1[1][0] * M2[1][1] + M1[2][0] * M2[2][1]);
|
|
Mr[1][1] = (M1[0][1] * M2[0][1] + M1[1][1] * M2[1][1] + M1[2][1] * M2[2][1]);
|
|
Mr[2][1] = (M1[0][2] * M2[0][1] + M1[1][2] * M2[1][1] + M1[2][2] * M2[2][1]);
|
|
Mr[0][2] = (M1[0][0] * M2[0][2] + M1[1][0] * M2[1][2] + M1[2][0] * M2[2][2]);
|
|
Mr[1][2] = (M1[0][1] * M2[0][2] + M1[1][1] * M2[1][2] + M1[2][1] * M2[2][2]);
|
|
Mr[2][2] = (M1[0][2] * M2[0][2] + M1[1][2] * M2[1][2] + M1[2][2] * M2[2][2]);
|
|
}
|
|
|
|
static inline void sMxVpV(double Vr[3], double s1, double M1[3][3], double V1[3], double V2[3])
|
|
{
|
|
Vr[0] = s1 * (M1[0][0] * V1[0] + M1[0][1] * V1[1] + M1[0][2] * V1[2]) + V2[0];
|
|
Vr[1] = s1 * (M1[1][0] * V1[0] + M1[1][1] * V1[1] + M1[1][2] * V1[2]) + V2[1];
|
|
Vr[2] = s1 * (M1[2][0] * V1[0] + M1[2][1] * V1[1] + M1[2][2] * V1[2]) + V2[2];
|
|
}
|
|
|
|
static inline void MTxV(double Vr[3], double M1[3][3], double V1[3])
|
|
{
|
|
Vr[0] = (M1[0][0] * V1[0] + M1[1][0] * V1[1] + M1[2][0] * V1[2]);
|
|
Vr[1] = (M1[0][1] * V1[0] + M1[1][1] * V1[1] + M1[2][1] * V1[2]);
|
|
Vr[2] = (M1[0][2] * V1[0] + M1[1][2] * V1[1] + M1[2][2] * V1[2]);
|
|
}
|
|
|
|
static inline void sMTxV(double Vr[3], double s1, double M1[3][3], double V1[3])
|
|
{
|
|
Vr[0] = s1*(M1[0][0] * V1[0] + M1[1][0] * V1[1] + M1[2][0] * V1[2]);
|
|
Vr[1] = s1*(M1[0][1] * V1[0] + M1[1][1] * V1[1] + M1[2][1] * V1[2]);
|
|
Vr[2] = s1*(M1[0][2] * V1[0] + M1[1][2] * V1[1] + M1[2][2] * V1[2]);
|
|
}
|
|
|
|
static inline void VmV(double Vr[3], const double V1[3], const double V2[3])
|
|
{
|
|
Vr[0] = V1[0] - V2[0];
|
|
Vr[1] = V1[1] - V2[1];
|
|
Vr[2] = V1[2] - V2[2];
|
|
}
|
|
|
|
static inline void VcrossV(double Vr[3], const double V1[3], const double V2[3])
|
|
{
|
|
Vr[0] = V1[1]*V2[2] - V1[2]*V2[1];
|
|
Vr[1] = V1[2]*V2[0] - V1[0]*V2[2];
|
|
Vr[2] = V1[0]*V2[1] - V1[1]*V2[0];
|
|
}
|
|
|
|
static inline double Vlength(double V[3])
|
|
{
|
|
return sqrt(V[0]*V[0] + V[1]*V[1] + V[2]*V[2]);
|
|
}
|
|
|
|
static inline double VdotV(double V1[3], double V2[3])
|
|
{
|
|
return (V1[0]*V2[0] + V1[1]*V2[1] + V1[2]*V2[2]);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
static int tri_contact (double *P1, double *P2, double *P3, double *Q1, double *Q2, double *Q3);
|
|
static int obb_disjoint(double B[3][3], double T[3], double a[3], double b[3]);
|
|
#define myfabs(x) ((x < 0) ? -x : x)
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
// Construction/Destruction
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
static BOOL RAPID_initialized = FALSE;
|
|
static void RAPID_initialize();
|
|
|
|
CRModel::CRModel()
|
|
{
|
|
if (!RAPID_initialized) RAPID_initialize();
|
|
|
|
b = NULL;
|
|
num_boxes_alloced = 0;
|
|
|
|
tris = NULL;
|
|
num_tris = 0;
|
|
num_tris_alloced = 0;
|
|
build_state = RAPID_BUILD_STATE_CONST;
|
|
}
|
|
|
|
CRModel::~CRModel()
|
|
{
|
|
if (!RAPID_initialized) RAPID_initialize();
|
|
|
|
// the boxes and triangles pointed to should be deleted.
|
|
delete [] b;
|
|
delete [] tris;
|
|
}
|
|
|
|
int CRModel::BeginModel()
|
|
{
|
|
int bs = build_state;
|
|
|
|
if (!RAPID_initialized) RAPID_initialize();
|
|
|
|
// free whatever storage we had. Remember, it's okay to delete null
|
|
// pointers in C++, so we don't have to check them first.
|
|
delete [] b;
|
|
b = NULL;
|
|
num_boxes_alloced = 0;
|
|
delete [] tris;
|
|
tris = NULL;
|
|
num_tris = 0;
|
|
num_tris_alloced = 0;
|
|
|
|
build_state = RAPID_BUILD_STATE_BEGIN;
|
|
|
|
if ((bs == RAPID_BUILD_STATE_CONST) ||
|
|
(bs == RAPID_BUILD_STATE_PROCESSED))
|
|
return RAPID_OK;
|
|
|
|
if ((bs == RAPID_BUILD_STATE_BEGIN) ||
|
|
(bs == RAPID_BUILD_STATE_ADDTRI))
|
|
return RAPID_ERR_BUILD_OUT_OF_SEQUENCE;
|
|
|
|
return RAPID_OK;
|
|
}
|
|
|
|
int CRModel::EndModel()
|
|
{
|
|
if (!RAPID_initialized) RAPID_initialize();
|
|
|
|
if (num_tris == 0)
|
|
return RAPID_ERR_BUILD_EMPTY_MODEL;
|
|
|
|
int myrc = build_hierarchy();
|
|
|
|
// only change to processed state if successful.
|
|
if (myrc == RAPID_OK)
|
|
build_state = RAPID_BUILD_STATE_PROCESSED;
|
|
|
|
return myrc;
|
|
}
|
|
|
|
// int CRModel::AddTri(const double *p1, const double *p2, const double *p3, int id)
|
|
int CRModel::AddTri(float *p1, float *p2, float *p3, int id)
|
|
{
|
|
if (!RAPID_initialized) RAPID_initialize();
|
|
|
|
int myrc = RAPID_OK; // we'll return this unless a problem is found
|
|
|
|
// client forgot to call BeginModel() before calling AddTri().
|
|
if (build_state == RAPID_BUILD_STATE_PROCESSED)
|
|
return RAPID_ERR_BUILD_OUT_OF_SEQUENCE;
|
|
|
|
// first make sure that we haven't filled up our allocation.
|
|
// if we have, allocate a new array of twice the size, and copy
|
|
// the old data to it.
|
|
if (num_tris == num_tris_alloced)
|
|
{
|
|
// decide on new size -- accounting for first time, where none are
|
|
// allocated
|
|
int n = num_tris_alloced*2;
|
|
if (n == 0) n = 1;
|
|
|
|
// make new array, and copy the old one to it
|
|
tri *t = new tri[n];
|
|
|
|
// if we can't get any more space, return an error
|
|
if (!t)
|
|
{
|
|
// we are leaving the model unchanged.
|
|
return RAPID_ERR_MODEL_OUT_OF_MEMORY;
|
|
}
|
|
|
|
int i;
|
|
for(i=0; i<num_tris; i++)
|
|
t[i] = tris[i];
|
|
|
|
// free the old array and reassign.
|
|
delete [] tris;
|
|
tris = t;
|
|
|
|
// update the allocation counter.
|
|
num_tris_alloced = n;
|
|
}
|
|
|
|
// now copy the new tri into the array
|
|
tris[num_tris].p1[0] = p1[0];
|
|
tris[num_tris].p1[1] = p1[1];
|
|
tris[num_tris].p1[2] = p1[2];
|
|
tris[num_tris].p2[0] = p2[0];
|
|
tris[num_tris].p2[1] = p2[1];
|
|
tris[num_tris].p2[2] = p2[2];
|
|
tris[num_tris].p3[0] = p3[0];
|
|
tris[num_tris].p3[1] = p3[1];
|
|
tris[num_tris].p3[2] = p3[2];
|
|
tris[num_tris].id = id;
|
|
|
|
// update the counter
|
|
num_tris++;
|
|
|
|
return myrc;
|
|
}
|
|
|
|
#define rfabs(x) ((x < 0) ? -x : x)
|
|
#define ROT(a,i,j,k,l) g=a[i][j]; h=a[k][l]; a[i][j]=g-s*(h+g*tau); a[k][l]=h+s*(g-h*tau);
|
|
|
|
static int inline Meigen(double vout[3][3], double dout[3], double a[3][3])
|
|
{
|
|
int i;
|
|
double tresh,theta,tau,t,sm,s,h,g,c;
|
|
int nrot;
|
|
double b[3];
|
|
double z[3];
|
|
double v[3][3];
|
|
double d[3];
|
|
|
|
v[0][0] = v[1][1] = v[2][2] = 1.0;
|
|
v[0][1] = v[1][2] = v[2][0] = 0.0;
|
|
v[0][2] = v[1][0] = v[2][1] = 0.0;
|
|
|
|
b[0] = a[0][0]; d[0] = a[0][0]; z[0] = 0.0;
|
|
b[1] = a[1][1]; d[1] = a[1][1]; z[1] = 0.0;
|
|
b[2] = a[2][2]; d[2] = a[2][2]; z[2] = 0.0;
|
|
|
|
nrot = 0;
|
|
|
|
for (i = 0; i < 50; i++)
|
|
{
|
|
sm=0.0; sm+=fabs(a[0][1]); sm+=fabs(a[0][2]); sm+=fabs(a[1][2]);
|
|
if (sm == 0.0) { McM(vout,v); VcV(dout,d); return i; }
|
|
|
|
if (i < 3) tresh=0.2*sm/(3*3); else tresh=0.0;
|
|
|
|
{
|
|
g = 100.0*rfabs(a[0][1]);
|
|
if (i>3 && rfabs(d[0])+g==rfabs(d[0]) && rfabs(d[1])+g==rfabs(d[1]))
|
|
a[0][1]=0.0;
|
|
else if (rfabs(a[0][1])>tresh)
|
|
{
|
|
h = d[1]-d[0];
|
|
if (rfabs(h)+g == rfabs(h)) t=(a[0][1])/h;
|
|
else
|
|
{
|
|
theta=0.5*h/(a[0][1]);
|
|
t=1.0/(rfabs(theta)+sqrt(1.0+theta*theta));
|
|
if (theta < 0.0) t = -t;
|
|
}
|
|
c=1.0/sqrt(1+t*t); s=t*c; tau=s/(1.0+c); h=t*a[0][1];
|
|
z[0] -= h; z[1] += h; d[0] -= h; d[1] += h;
|
|
a[0][1]=0.0;
|
|
ROT(a,0,2,1,2); ROT(v,0,0,0,1); ROT(v,1,0,1,1); ROT(v,2,0,2,1);
|
|
nrot++;
|
|
}
|
|
}
|
|
|
|
{
|
|
g = 100.0*rfabs(a[0][2]);
|
|
if (i>3 && rfabs(d[0])+g==rfabs(d[0]) && rfabs(d[2])+g==rfabs(d[2]))
|
|
a[0][2]=0.0;
|
|
else if (rfabs(a[0][2])>tresh)
|
|
{
|
|
h = d[2]-d[0];
|
|
if (rfabs(h)+g == rfabs(h)) t=(a[0][2])/h;
|
|
else
|
|
{
|
|
theta=0.5*h/(a[0][2]);
|
|
t=1.0/(rfabs(theta)+sqrt(1.0+theta*theta));
|
|
if (theta < 0.0) t = -t;
|
|
}
|
|
c=1.0/sqrt(1+t*t); s=t*c; tau=s/(1.0+c); h=t*a[0][2];
|
|
z[0] -= h; z[2] += h; d[0] -= h; d[2] += h;
|
|
a[0][2]=0.0;
|
|
ROT(a,0,1,1,2); ROT(v,0,0,0,2); ROT(v,1,0,1,2); ROT(v,2,0,2,2);
|
|
nrot++;
|
|
}
|
|
}
|
|
|
|
|
|
{
|
|
g = 100.0*rfabs(a[1][2]);
|
|
if (i>3 && rfabs(d[1])+g==rfabs(d[1]) && rfabs(d[2])+g==rfabs(d[2]))
|
|
a[1][2]=0.0;
|
|
else if (rfabs(a[1][2])>tresh)
|
|
{
|
|
h = d[2]-d[1];
|
|
if (rfabs(h)+g == rfabs(h)) t=(a[1][2])/h;
|
|
else
|
|
{
|
|
theta=0.5*h/(a[1][2]);
|
|
t=1.0/(rfabs(theta)+sqrt(1.0+theta*theta));
|
|
if (theta < 0.0) t = -t;
|
|
}
|
|
c=1.0/sqrt(1+t*t); s=t*c; tau=s/(1.0+c); h=t*a[1][2];
|
|
z[1] -= h; z[2] += h; d[1] -= h; d[2] += h;
|
|
a[1][2]=0.0;
|
|
ROT(a,0,1,0,2); ROT(v,0,1,0,2); ROT(v,1,1,1,2); ROT(v,2,1,2,2);
|
|
nrot++;
|
|
}
|
|
}
|
|
|
|
b[0] += z[0]; d[0] = b[0]; z[0] = 0.0;
|
|
b[1] += z[1]; d[1] = b[1]; z[1] = 0.0;
|
|
b[2] += z[2]; d[2] = b[2]; z[2] = 0.0;
|
|
|
|
}
|
|
|
|
// fprintf(stderr, "eigen: too many iterations in Jacobi transform (%d).\n", i);
|
|
|
|
return i;
|
|
}
|
|
|
|
// not a full sort -- just makes column 1 the largest
|
|
static int eigen_and_sort1(double evecs[3][3], double cov[3][3])
|
|
{
|
|
double t;
|
|
double evals[3];
|
|
int n;
|
|
|
|
n = Meigen(evecs, evals, cov);
|
|
|
|
if (evals[2] > evals[0])
|
|
{
|
|
if (evals[2] > evals[1])
|
|
{
|
|
// 2 is largest, swap with column 0
|
|
t = evecs[0][2];
|
|
evecs[0][2] = evecs[0][0];
|
|
evecs[0][0] = t;
|
|
t = evecs[1][2];
|
|
evecs[1][2] = evecs[1][0];
|
|
evecs[1][0] = t;
|
|
t = evecs[2][2];
|
|
evecs[2][2] = evecs[2][0];
|
|
evecs[2][0] = t;
|
|
}
|
|
else
|
|
{
|
|
// 1 is largest, swap with column 0
|
|
t = evecs[0][1];
|
|
evecs[0][1] = evecs[0][0];
|
|
evecs[0][0] = t;
|
|
t = evecs[1][1];
|
|
evecs[1][1] = evecs[1][0];
|
|
evecs[1][0] = t;
|
|
t = evecs[2][1];
|
|
evecs[2][1] = evecs[2][0];
|
|
evecs[2][0] = t;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (evals[0] > evals[1])
|
|
{
|
|
// 0 is largest, do nothing
|
|
}
|
|
else
|
|
{
|
|
// 1 is largest
|
|
t = evecs[0][1];
|
|
evecs[0][1] = evecs[0][0];
|
|
evecs[0][0] = t;
|
|
t = evecs[1][1];
|
|
evecs[1][1] = evecs[1][0];
|
|
evecs[1][0] = t;
|
|
t = evecs[2][1];
|
|
evecs[2][1] = evecs[2][0];
|
|
evecs[2][0] = t;
|
|
}
|
|
}
|
|
|
|
// we are returning the number of iterations Meigen took.
|
|
// too many iterations means our chosen orientation is bad.
|
|
return n;
|
|
}
|
|
|
|
static inline void minmax(double &mn, double &mx, double v)
|
|
{
|
|
if (v < mn) mn = v;
|
|
else if (v > mx) mx = v;
|
|
}
|
|
|
|
typedef struct
|
|
{
|
|
double A;
|
|
double m[3];
|
|
double s[3][3];
|
|
} moment;
|
|
|
|
typedef struct
|
|
{
|
|
double A;
|
|
double m[3];
|
|
double s[3][3];
|
|
} accum;
|
|
|
|
static inline void clear_accum(accum &a)
|
|
{
|
|
a.m[0] = a.m[1] = a.m[2] = 0.0;
|
|
a.s[0][0] = a.s[0][1] = a.s[0][2] = 0.0;
|
|
a.s[1][0] = a.s[1][1] = a.s[1][2] = 0.0;
|
|
a.s[2][0] = a.s[2][1] = a.s[2][2] = 0.0;
|
|
a.A = 0.0;
|
|
}
|
|
|
|
static inline void accum_moment(accum &a, moment &b)
|
|
{
|
|
a.m[0] += b.m[0] * b.A;
|
|
a.m[1] += b.m[1] * b.A;
|
|
a.m[2] += b.m[2] * b.A;
|
|
|
|
a.s[0][0] += b.s[0][0];
|
|
a.s[0][1] += b.s[0][1];
|
|
a.s[0][2] += b.s[0][2];
|
|
a.s[1][0] += b.s[1][0];
|
|
a.s[1][1] += b.s[1][1];
|
|
a.s[1][2] += b.s[1][2];
|
|
a.s[2][0] += b.s[2][0];
|
|
a.s[2][1] += b.s[2][1];
|
|
a.s[2][2] += b.s[2][2];
|
|
|
|
a.A += b.A;
|
|
}
|
|
|
|
static inline void mean_from_moment(double M[3], moment &m)
|
|
{
|
|
M[0] = m.m[0];
|
|
M[1] = m.m[1];
|
|
M[2] = m.m[2];
|
|
}
|
|
|
|
static inline void mean_from_accum(double M[3], accum &a)
|
|
{
|
|
M[0] = a.m[0] / a.A;
|
|
M[1] = a.m[1] / a.A;
|
|
M[2] = a.m[2] / a.A;
|
|
}
|
|
|
|
static inline void covariance_from_accum(double C[3][3], accum &a)
|
|
{
|
|
int i,j;
|
|
for(i=0; i<3; i++)
|
|
for(j=0; j<3; j++)
|
|
C[i][j] = a.s[i][j] - a.m[i]*a.m[j]/a.A;
|
|
}
|
|
|
|
static inline void compute_moment(moment &M, double p[3], double q[3], double r[3])
|
|
{
|
|
double u[3], v[3], w[3];
|
|
|
|
// compute the area of the triangle
|
|
VmV(u, q, p);
|
|
VmV(v, r, p);
|
|
VcrossV(w, u, v);
|
|
M.A = 0.5 * Vlength(w);
|
|
|
|
if (M.A == 0.0)
|
|
{
|
|
// This triangle has zero area. The second order components
|
|
// would be eliminated with the usual formula, so, for the
|
|
// sake of robustness we use an alternative form. These are the
|
|
// centroid and second-order components of the triangle's vertices.
|
|
|
|
// centroid
|
|
M.m[0] = (p[0] + q[0] + r[0]) /3;
|
|
M.m[1] = (p[1] + q[1] + r[1]) /3;
|
|
M.m[2] = (p[2] + q[2] + r[2]) /3;
|
|
|
|
// second-order components
|
|
M.s[0][0] = (p[0]*p[0] + q[0]*q[0] + r[0]*r[0]);
|
|
M.s[0][1] = (p[0]*p[1] + q[0]*q[1] + r[0]*r[1]);
|
|
M.s[0][2] = (p[0]*p[2] + q[0]*q[2] + r[0]*r[2]);
|
|
M.s[1][1] = (p[1]*p[1] + q[1]*q[1] + r[1]*r[1]);
|
|
M.s[1][2] = (p[1]*p[2] + q[1]*q[2] + r[1]*r[2]);
|
|
M.s[2][2] = (p[2]*p[2] + q[2]*q[2] + r[2]*r[2]);
|
|
M.s[2][1] = M.s[1][2];
|
|
M.s[1][0] = M.s[0][1];
|
|
M.s[2][0] = M.s[0][2];
|
|
|
|
return;
|
|
}
|
|
|
|
// get the centroid
|
|
M.m[0] = (p[0] + q[0] + r[0])/3;
|
|
M.m[1] = (p[1] + q[1] + r[1])/3;
|
|
M.m[2] = (p[2] + q[2] + r[2])/3;
|
|
|
|
// get the second order components -- note the weighting by the area
|
|
M.s[0][0] = M.A*(9*M.m[0]*M.m[0]+p[0]*p[0]+q[0]*q[0]+r[0]*r[0])/12;
|
|
M.s[0][1] = M.A*(9*M.m[0]*M.m[1]+p[0]*p[1]+q[0]*q[1]+r[0]*r[1])/12;
|
|
M.s[1][1] = M.A*(9*M.m[1]*M.m[1]+p[1]*p[1]+q[1]*q[1]+r[1]*r[1])/12;
|
|
M.s[0][2] = M.A*(9*M.m[0]*M.m[2]+p[0]*p[2]+q[0]*q[2]+r[0]*r[2])/12;
|
|
M.s[1][2] = M.A*(9*M.m[1]*M.m[2]+p[1]*p[2]+q[1]*q[2]+r[1]*r[2])/12;
|
|
M.s[2][2] = M.A*(9*M.m[2]*M.m[2]+p[2]*p[2]+q[2]*q[2]+r[2]*r[2])/12;
|
|
M.s[2][1] = M.s[1][2];
|
|
M.s[1][0] = M.s[0][1];
|
|
M.s[2][0] = M.s[0][2];
|
|
}
|
|
|
|
static inline void compute_moments(moment *M, tri *tris, int num_tris)
|
|
{
|
|
int i;
|
|
|
|
// first collect all the moments, and obtain the area of the
|
|
// smallest nonzero area triangle.
|
|
|
|
double Amin = 0.0;
|
|
int zero = 0;
|
|
int nonzero = 0;
|
|
for(i=0; i<num_tris; i++)
|
|
{
|
|
compute_moment(M[i],
|
|
tris[i].p1,
|
|
tris[i].p2,
|
|
tris[i].p3);
|
|
if (M[i].A == 0.0)
|
|
{
|
|
zero = 1;
|
|
}
|
|
else
|
|
{
|
|
nonzero = 1;
|
|
if (Amin == 0.0) Amin = M[i].A;
|
|
else if (M[i].A < Amin) Amin = M[i].A;
|
|
}
|
|
}
|
|
|
|
if (zero)
|
|
{
|
|
fprintf(stderr, "----\n");
|
|
fprintf(stderr, "Warning! Some triangles have zero area!\n");
|
|
fprintf(stderr, "----\n");
|
|
|
|
// if there are any zero area triangles, go back and set their area
|
|
|
|
// if ALL the triangles have zero area, then set the area thingy
|
|
// to some arbitrary value.
|
|
if (Amin == 0.0) Amin = 1.0;
|
|
|
|
for(i=0; i<num_tris; i++)
|
|
{
|
|
if (M[i].A == 0.0) M[i].A = Amin;
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
static moment *RAPID_moment = NULL;
|
|
static tri *RAPID_tri = NULL;
|
|
static box *RAPID_boxes = NULL;
|
|
static int RAPID_boxes_inited = 0;
|
|
|
|
// There are <n> tri structures in an array starting at <t>.
|
|
//
|
|
// We are told that the mean point is <mp> and the orientation
|
|
// for the parent box will be <or>. The split axis is to be the
|
|
// vector given by <ax>.
|
|
//
|
|
// <or>, <ax>, and <mp> are model space coordinates.
|
|
int CRModel::build_hierarchy()
|
|
{
|
|
// allocate the boxes and set the box list globals
|
|
num_boxes_alloced = num_tris * 2;
|
|
b = new box[num_boxes_alloced];
|
|
if (b == 0) return RAPID_ERR_MODEL_OUT_OF_MEMORY;
|
|
RAPID_boxes = b;
|
|
RAPID_boxes_inited = 1; // we are in process of initializing b[0].
|
|
|
|
// Determine initial orientation, mean point, and splitting axis.
|
|
int i;
|
|
accum M;
|
|
|
|
// double F1[3];
|
|
// double S1[6];
|
|
double C[3][3];
|
|
|
|
RAPID_moment = new moment[num_tris];
|
|
if (RAPID_moment == 0)
|
|
{
|
|
delete [] b;
|
|
return RAPID_ERR_MODEL_OUT_OF_MEMORY;
|
|
}
|
|
compute_moments(RAPID_moment, tris, num_tris);
|
|
|
|
clear_accum(M);
|
|
for(i=0; i<num_tris; i++)
|
|
accum_moment(M, RAPID_moment[i]);
|
|
|
|
mean_from_accum(b[0].pT, M);
|
|
covariance_from_accum(C, M);
|
|
|
|
eigen_and_sort1(b[0].pR, C);
|
|
|
|
// create the index list
|
|
int *t = new int[num_tris];
|
|
if (t == 0)
|
|
{
|
|
delete [] b;
|
|
delete [] RAPID_moment;
|
|
return RAPID_ERR_MODEL_OUT_OF_MEMORY;
|
|
}
|
|
for(i=0; i<num_tris; i++) t[i] = i;
|
|
|
|
// set the tri pointer
|
|
RAPID_tri = tris;
|
|
|
|
// do the build
|
|
int rc = b[0].split_recurse(t, num_tris);
|
|
if (rc != RAPID_OK)
|
|
{
|
|
delete [] b;
|
|
delete [] RAPID_moment;
|
|
delete [] t;
|
|
return RAPID_ERR_MODEL_OUT_OF_MEMORY;
|
|
}
|
|
|
|
// free the moment list
|
|
delete [] RAPID_moment; RAPID_moment = 0;
|
|
|
|
// null the tri pointer
|
|
RAPID_tri = 0;
|
|
|
|
// free the index list
|
|
delete [] t;
|
|
|
|
return RAPID_OK;
|
|
}
|
|
|
|
static inline void reaccum_moments(accum &A, int *t, int n)
|
|
{
|
|
clear_accum(A);
|
|
for(int i=0; i<n; i++)
|
|
accum_moment(A, RAPID_moment[t[i]]);
|
|
}
|
|
|
|
int box::split_recurse(int *t, int n)
|
|
{
|
|
// The orientation for the parent box is already assigned to this->pR.
|
|
// The axis along which to split will be column 0 of this->pR.
|
|
// The mean point is passed in on this->pT.
|
|
|
|
// When this routine completes, the position and orientation in model
|
|
// space will be established, as well as its dimensions. Child boxes
|
|
// will be constructed and placed in the parent's CS.
|
|
|
|
if (n == 1)
|
|
{
|
|
return split_recurse(t);
|
|
}
|
|
|
|
// walk along the tris for the box, and do the following:
|
|
// 1. collect the max and min of the vertices along the axes of <or>.
|
|
// 2. decide which group the triangle goes in, performing appropriate swap.
|
|
// 3. accumulate the mean point and covariance data for that triangle.
|
|
|
|
accum M1, M2;
|
|
double C[3][3];
|
|
double c[3];
|
|
double minval[3], maxval[3];
|
|
|
|
int rc; // for return code on procedure calls.
|
|
int in;
|
|
tri *ptr;
|
|
int i;
|
|
double axdmp;
|
|
int n1 = 0; // The number of tris in group 1.
|
|
// Group 2 will have n - n1 tris.
|
|
|
|
// project approximate mean point onto splitting axis, and get coord.
|
|
axdmp = (pR[0][0] * pT[0] + pR[1][0] * pT[1] + pR[2][0] * pT[2]);
|
|
|
|
clear_accum(M1);
|
|
clear_accum(M2);
|
|
|
|
MTxV(c, pR, RAPID_tri[t[0]].p1);
|
|
minval[0] = maxval[0] = c[0];
|
|
minval[1] = maxval[1] = c[1];
|
|
minval[2] = maxval[2] = c[2];
|
|
for(i=0; i<n; i++)
|
|
{
|
|
in = t[i];
|
|
ptr = RAPID_tri + in;
|
|
|
|
MTxV(c, pR, ptr->p1);
|
|
minmax(minval[0], maxval[0], c[0]);
|
|
minmax(minval[1], maxval[1], c[1]);
|
|
minmax(minval[2], maxval[2], c[2]);
|
|
|
|
MTxV(c, pR, ptr->p2);
|
|
minmax(minval[0], maxval[0], c[0]);
|
|
minmax(minval[1], maxval[1], c[1]);
|
|
minmax(minval[2], maxval[2], c[2]);
|
|
|
|
MTxV(c, pR, ptr->p3);
|
|
minmax(minval[0], maxval[0], c[0]);
|
|
minmax(minval[1], maxval[1], c[1]);
|
|
minmax(minval[2], maxval[2], c[2]);
|
|
|
|
// grab the mean point of the in'th triangle, project
|
|
// it onto the splitting axis (1st column of pR) and
|
|
// see where it lies with respect to axdmp.
|
|
mean_from_moment(c, RAPID_moment[in]);
|
|
|
|
if (((pR[0][0]*c[0] + pR[1][0]*c[1] + pR[2][0]*c[2]) < axdmp)
|
|
&& ((n!=2)) || ((n==2) && (i==0)))
|
|
{
|
|
// accumulate first and second order moments for group 1
|
|
accum_moment(M1, RAPID_moment[in]);
|
|
|
|
// put it in group 1 by swapping t[i] with t[n1]
|
|
int temp = t[i];
|
|
t[i] = t[n1];
|
|
t[n1] = temp;
|
|
n1++;
|
|
}
|
|
else
|
|
{
|
|
// accumulate first and second order moments for group 2
|
|
accum_moment(M2, RAPID_moment[in]);
|
|
|
|
// leave it in group 2
|
|
// do nothing...it happens by default
|
|
}
|
|
}
|
|
|
|
// done using this->pT as a mean point.
|
|
|
|
|
|
// error check!
|
|
if ((n1 == 0) || (n1 == n))
|
|
{
|
|
// our partitioning has failed: all the triangles fell into just
|
|
// one of the groups. So, we arbitrarily partition them into
|
|
// equal parts, and proceed.
|
|
|
|
n1 = n/2;
|
|
|
|
// now recompute accumulated stuff
|
|
reaccum_moments(M1, t, n1);
|
|
reaccum_moments(M2, t + n1, n - n1);
|
|
}
|
|
|
|
// With the max and min data, determine the center point and dimensions
|
|
// of the parent box.
|
|
|
|
c[0] = (minval[0] + maxval[0])*0.5;
|
|
c[1] = (minval[1] + maxval[1])*0.5;
|
|
c[2] = (minval[2] + maxval[2])*0.5;
|
|
|
|
pT[0] = c[0] * pR[0][0] + c[1] * pR[0][1] + c[2] * pR[0][2];
|
|
pT[1] = c[0] * pR[1][0] + c[1] * pR[1][1] + c[2] * pR[1][2];
|
|
pT[2] = c[0] * pR[2][0] + c[1] * pR[2][1] + c[2] * pR[2][2];
|
|
d[0] = (maxval[0] - minval[0])*0.5;
|
|
d[1] = (maxval[1] - minval[1])*0.5;
|
|
d[2] = (maxval[2] - minval[2])*0.5;
|
|
|
|
// allocate new boxes
|
|
P = RAPID_boxes + RAPID_boxes_inited++;
|
|
N = RAPID_boxes + RAPID_boxes_inited++;
|
|
|
|
// Compute the orienations for the child boxes (eigenvectors of
|
|
// covariance matrix). Select the direction of maximum spread to be
|
|
// the split axis for each child.
|
|
|
|
double tR[3][3];
|
|
|
|
if (n1 > 1)
|
|
{
|
|
mean_from_accum(P->pT, M1);
|
|
covariance_from_accum(C, M1);
|
|
|
|
if (eigen_and_sort1(tR, C) > 30)
|
|
{
|
|
// unable to find an orientation. We'll just pick identity.
|
|
Midentity(tR);
|
|
}
|
|
|
|
McM(P->pR, tR);
|
|
if ((rc = P->split_recurse(t, n1)) != RAPID_OK) return rc;
|
|
}
|
|
else
|
|
{
|
|
if ((rc = P->split_recurse(t)) != RAPID_OK) return rc;
|
|
}
|
|
McM(C, P->pR); MTxM(P->pR, pR, C); // and F1
|
|
VmV(c, P->pT, pT); MTxV(P->pT, pR, c);
|
|
|
|
if ((n-n1) > 1)
|
|
{
|
|
mean_from_accum(N->pT, M2);
|
|
covariance_from_accum (C, M2);
|
|
|
|
if (eigen_and_sort1(tR, C) > 30)
|
|
{
|
|
// unable to find an orientation. We'll just pick identity.
|
|
Midentity(tR);
|
|
}
|
|
|
|
McM(N->pR, tR);
|
|
if ((rc = N->split_recurse(t + n1, n - n1)) != RAPID_OK) return rc;
|
|
}
|
|
else
|
|
{
|
|
if ((rc = N->split_recurse(t+n1)) != RAPID_OK) return rc;
|
|
}
|
|
McM(C, N->pR); MTxM(N->pR, pR, C);
|
|
VmV(c, N->pT, pT); MTxV(N->pT, pR, c);
|
|
|
|
return RAPID_OK;
|
|
}
|
|
|
|
int box::split_recurse(int *t)
|
|
{
|
|
// For a single triangle, orientation is easily determined.
|
|
// The major axis is parallel to the longest edge.
|
|
// The minor axis is normal to the triangle.
|
|
// The in-between axis is determine by these two.
|
|
|
|
// this->pR, this->d, and this->pT are set herein.
|
|
|
|
P = N = 0;
|
|
tri *ptr = RAPID_tri + t[0];
|
|
|
|
// Find the major axis: parallel to the longest edge.
|
|
double u12[3], u23[3], u31[3];
|
|
|
|
// First compute the squared-lengths of each edge
|
|
VmV(u12, ptr->p1, ptr->p2);
|
|
double d12 = VdotV(u12,u12);
|
|
VmV(u23, ptr->p2, ptr->p3);
|
|
double d23 = VdotV(u23,u23);
|
|
VmV(u31, ptr->p3, ptr->p1);
|
|
double d31 = VdotV(u31,u31);
|
|
|
|
// Find the edge of longest squared-length, normalize it to
|
|
// unit length, and put result into a0.
|
|
double a0[3];
|
|
double l;
|
|
if (d12 > d23)
|
|
{
|
|
if (d12 > d31)
|
|
{
|
|
l = 1.0 / sqrt(d12);
|
|
a0[0] = u12[0] * l;
|
|
a0[1] = u12[1] * l;
|
|
a0[2] = u12[2] * l;
|
|
}
|
|
else
|
|
{
|
|
l = 1.0 / sqrt(d31);
|
|
a0[0] = u31[0] * l;
|
|
a0[1] = u31[1] * l;
|
|
a0[2] = u31[2] * l;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (d23 > d31)
|
|
{
|
|
l = 1.0 / sqrt(d23);
|
|
a0[0] = u23[0] * l;
|
|
a0[1] = u23[1] * l;
|
|
a0[2] = u23[2] * l;
|
|
}
|
|
else
|
|
{
|
|
l = 1.0 / sqrt(d31);
|
|
a0[0] = u31[0] * l;
|
|
a0[1] = u31[1] * l;
|
|
a0[2] = u31[2] * l;
|
|
}
|
|
}
|
|
|
|
// Now compute unit normal to triangle, and put into a2.
|
|
double a2[3];
|
|
VcrossV(a2, u12, u23);
|
|
l = 1.0 / Vlength(a2); a2[0] *= l; a2[1] *= l; a2[2] *= l;
|
|
|
|
// a1 is a2 cross a0.
|
|
double a1[3];
|
|
VcrossV(a1, a2, a0);
|
|
|
|
// Now make the columns of this->pR the vectors a0, a1, and a2.
|
|
pR[0][0] = a0[0]; pR[0][1] = a1[0]; pR[0][2] = a2[0];
|
|
pR[1][0] = a0[1]; pR[1][1] = a1[1]; pR[1][2] = a2[1];
|
|
pR[2][0] = a0[2]; pR[2][1] = a1[2]; pR[2][2] = a2[2];
|
|
|
|
// Now compute the maximum and minimum extents of each vertex
|
|
// along each of the box axes. From this we will compute the
|
|
// box center and box dimensions.
|
|
double minval[3], maxval[3];
|
|
double c[3];
|
|
|
|
MTxV(c, pR, ptr->p1);
|
|
minval[0] = maxval[0] = c[0];
|
|
minval[1] = maxval[1] = c[1];
|
|
minval[2] = maxval[2] = c[2];
|
|
|
|
MTxV(c, pR, ptr->p2);
|
|
minmax(minval[0], maxval[0], c[0]);
|
|
minmax(minval[1], maxval[1], c[1]);
|
|
minmax(minval[2], maxval[2], c[2]);
|
|
|
|
MTxV(c, pR, ptr->p3);
|
|
minmax(minval[0], maxval[0], c[0]);
|
|
minmax(minval[1], maxval[1], c[1]);
|
|
minmax(minval[2], maxval[2], c[2]);
|
|
|
|
// With the max and min data, determine the center point and dimensions
|
|
// of the box
|
|
c[0] = (minval[0] + maxval[0])*0.5;
|
|
c[1] = (minval[1] + maxval[1])*0.5;
|
|
c[2] = (minval[2] + maxval[2])*0.5;
|
|
|
|
pT[0] = c[0] * pR[0][0] + c[1] * pR[0][1] + c[2] * pR[0][2];
|
|
pT[1] = c[0] * pR[1][0] + c[1] * pR[1][1] + c[2] * pR[1][2];
|
|
pT[2] = c[0] * pR[2][0] + c[1] * pR[2][1] + c[2] * pR[2][2];
|
|
|
|
d[0] = (maxval[0] - minval[0])*0.5;
|
|
d[1] = (maxval[1] - minval[1])*0.5;
|
|
d[2] = (maxval[2] - minval[2])*0.5;
|
|
|
|
// Assign the one triangle to this box
|
|
trp = ptr;
|
|
|
|
return RAPID_OK;
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
// Overlap
|
|
|
|
static inline double _max(double a, double b, double c)
|
|
{
|
|
double t = a;
|
|
if (b > t) t = b;
|
|
if (c > t) t = c;
|
|
return t;
|
|
}
|
|
|
|
static inline double _min(double a, double b, double c)
|
|
{
|
|
double t = a;
|
|
if (b < t) t = b;
|
|
if (c < t) t = c;
|
|
return t;
|
|
}
|
|
|
|
static int project6(double *ax, double *p1, double *p2, double *p3, double *q1, double *q2, double *q3)
|
|
{
|
|
double P1 = VdotV(ax, p1);
|
|
double P2 = VdotV(ax, p2);
|
|
double P3 = VdotV(ax, p3);
|
|
double Q1 = VdotV(ax, q1);
|
|
double Q2 = VdotV(ax, q2);
|
|
double Q3 = VdotV(ax, q3);
|
|
|
|
double mx1 = _max(P1, P2, P3);
|
|
double mn1 = _min(P1, P2, P3);
|
|
double mx2 = _max(Q1, Q2, Q3);
|
|
double mn2 = _min(Q1, Q2, Q3);
|
|
|
|
if (mn1 > mx2) return 0;
|
|
if (mn2 > mx1) return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
// very robust triangle intersection test
|
|
// uses no divisions and works on coplanar triangles
|
|
//
|
|
// One triangle is (p1,p2,p3). Other is (q1,q2,q3).
|
|
// Edges are (e1,e2,e3) and (f1,f2,f3).
|
|
// Normals are n1 and m1
|
|
// Outwards are (g1,g2,g3) and (h1,h2,h3).
|
|
//
|
|
// We assume that the triangle vertices are in the same coordinate system.
|
|
static int tri_contact (double *P1, double *P2, double *P3, double *Q1, double *Q2, double *Q3)
|
|
{
|
|
// First thing we do is establish a new c.s. so that p1 is at (0,0,0).
|
|
double p1[3], p2[3], p3[3];
|
|
double q1[3], q2[3], q3[3];
|
|
double e1[3], e2[3], e3[3];
|
|
double f1[3], f2[3], f3[3];
|
|
double g1[3], g2[3], g3[3];
|
|
double h1[3], h2[3], h3[3];
|
|
double n1[3], m1[3];
|
|
double z[3];
|
|
|
|
double ef11[3], ef12[3], ef13[3];
|
|
double ef21[3], ef22[3], ef23[3];
|
|
double ef31[3], ef32[3], ef33[3];
|
|
|
|
z[0] = 0.0; z[1] = 0.0; z[2] = 0.0;
|
|
|
|
p1[0] = P1[0] - P1[0]; p1[1] = P1[1] - P1[1]; p1[2] = P1[2] - P1[2];
|
|
p2[0] = P2[0] - P1[0]; p2[1] = P2[1] - P1[1]; p2[2] = P2[2] - P1[2];
|
|
p3[0] = P3[0] - P1[0]; p3[1] = P3[1] - P1[1]; p3[2] = P3[2] - P1[2];
|
|
|
|
q1[0] = Q1[0] - P1[0]; q1[1] = Q1[1] - P1[1]; q1[2] = Q1[2] - P1[2];
|
|
q2[0] = Q2[0] - P1[0]; q2[1] = Q2[1] - P1[1]; q2[2] = Q2[2] - P1[2];
|
|
q3[0] = Q3[0] - P1[0]; q3[1] = Q3[1] - P1[1]; q3[2] = Q3[2] - P1[2];
|
|
|
|
e1[0] = p2[0] - p1[0]; e1[1] = p2[1] - p1[1]; e1[2] = p2[2] - p1[2];
|
|
e2[0] = p3[0] - p2[0]; e2[1] = p3[1] - p2[1]; e2[2] = p3[2] - p2[2];
|
|
e3[0] = p1[0] - p3[0]; e3[1] = p1[1] - p3[1]; e3[2] = p1[2] - p3[2];
|
|
|
|
f1[0] = q2[0] - q1[0]; f1[1] = q2[1] - q1[1]; f1[2] = q2[2] - q1[2];
|
|
f2[0] = q3[0] - q2[0]; f2[1] = q3[1] - q2[1]; f2[2] = q3[2] - q2[2];
|
|
f3[0] = q1[0] - q3[0]; f3[1] = q1[1] - q3[1]; f3[2] = q1[2] - q3[2];
|
|
|
|
VcrossV(n1, e1, e2);
|
|
VcrossV(m1, f1, f2);
|
|
|
|
VcrossV(g1, e1, n1);
|
|
VcrossV(g2, e2, n1);
|
|
VcrossV(g3, e3, n1);
|
|
VcrossV(h1, f1, m1);
|
|
VcrossV(h2, f2, m1);
|
|
VcrossV(h3, f3, m1);
|
|
|
|
VcrossV(ef11, e1, f1);
|
|
VcrossV(ef12, e1, f2);
|
|
VcrossV(ef13, e1, f3);
|
|
VcrossV(ef21, e2, f1);
|
|
VcrossV(ef22, e2, f2);
|
|
VcrossV(ef23, e2, f3);
|
|
VcrossV(ef31, e3, f1);
|
|
VcrossV(ef32, e3, f2);
|
|
VcrossV(ef33, e3, f3);
|
|
|
|
// now begin the series of tests
|
|
if (!project6(n1, p1, p2, p3, q1, q2, q3)) return 0;
|
|
if (!project6(m1, p1, p2, p3, q1, q2, q3)) return 0;
|
|
|
|
if (!project6(ef11, p1, p2, p3, q1, q2, q3)) return 0;
|
|
if (!project6(ef12, p1, p2, p3, q1, q2, q3)) return 0;
|
|
if (!project6(ef13, p1, p2, p3, q1, q2, q3)) return 0;
|
|
if (!project6(ef21, p1, p2, p3, q1, q2, q3)) return 0;
|
|
if (!project6(ef22, p1, p2, p3, q1, q2, q3)) return 0;
|
|
if (!project6(ef23, p1, p2, p3, q1, q2, q3)) return 0;
|
|
if (!project6(ef31, p1, p2, p3, q1, q2, q3)) return 0;
|
|
if (!project6(ef32, p1, p2, p3, q1, q2, q3)) return 0;
|
|
if (!project6(ef33, p1, p2, p3, q1, q2, q3)) return 0;
|
|
|
|
if (!project6(g1, p1, p2, p3, q1, q2, q3)) return 0;
|
|
if (!project6(g2, p1, p2, p3, q1, q2, q3)) return 0;
|
|
if (!project6(g3, p1, p2, p3, q1, q2, q3)) return 0;
|
|
if (!project6(h1, p1, p2, p3, q1, q2, q3)) return 0;
|
|
if (!project6(h2, p1, p2, p3, q1, q2, q3)) return 0;
|
|
if (!project6(h3, p1, p2, p3, q1, q2, q3)) return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
/*
|
|
This is a test between two boxes, box A and box B. It is assumed that
|
|
the coordinate system is aligned and centered on box A. The 3x3
|
|
matrix B specifies box B's orientation with respect to box A.
|
|
Specifically, the columns of B are the basis vectors (axis vectors) of
|
|
box B. The center of box B is located at the vector T. The
|
|
dimensions of box B are given in the array b. The orientation and
|
|
placement of box A, in this coordinate system, are the identity matrix
|
|
and zero vector, respectively, so they need not be specified. The
|
|
dimensions of box A are given in array a.
|
|
|
|
This test operates in two modes, depending on how the library is
|
|
compiled. It indicates whether the two boxes are overlapping, by
|
|
returning a boolean.
|
|
|
|
The second version of the routine will return a conservative bounds on
|
|
the distance between the polygon sets which the boxes enclose. It is
|
|
used when RAPID is being used to estimate the distance between two
|
|
models.
|
|
*/
|
|
static int obb_disjoint(double B[3][3], double T[3], double a[3], double b[3])
|
|
{
|
|
register double t, s;
|
|
register int r;
|
|
double Bf[3][3];
|
|
const double reps = 1e-6;
|
|
|
|
// Bf = fabs(B)
|
|
Bf[0][0] = myfabs(B[0][0]); Bf[0][0] += reps;
|
|
Bf[0][1] = myfabs(B[0][1]); Bf[0][1] += reps;
|
|
Bf[0][2] = myfabs(B[0][2]); Bf[0][2] += reps;
|
|
Bf[1][0] = myfabs(B[1][0]); Bf[1][0] += reps;
|
|
Bf[1][1] = myfabs(B[1][1]); Bf[1][1] += reps;
|
|
Bf[1][2] = myfabs(B[1][2]); Bf[1][2] += reps;
|
|
Bf[2][0] = myfabs(B[2][0]); Bf[2][0] += reps;
|
|
Bf[2][1] = myfabs(B[2][1]); Bf[2][1] += reps;
|
|
Bf[2][2] = myfabs(B[2][2]); Bf[2][2] += reps;
|
|
|
|
// printf("Box test: Bf[3][3], B[3][3], T[3], a[3], b[3]\n");
|
|
|
|
// if any of these tests are one-sided, then the polyhedra are disjoint
|
|
r = 1;
|
|
|
|
// A1 x A2 = A0
|
|
t = myfabs(T[0]);
|
|
|
|
r &= (t <=
|
|
(a[0] + b[0] * Bf[0][0] + b[1] * Bf[0][1] + b[2] * Bf[0][2]));
|
|
if (!r) return 1;
|
|
|
|
// B1 x B2 = B0
|
|
s = T[0]*B[0][0] + T[1]*B[1][0] + T[2]*B[2][0];
|
|
t = myfabs(s);
|
|
|
|
r &= ( t <=
|
|
(b[0] + a[0] * Bf[0][0] + a[1] * Bf[1][0] + a[2] * Bf[2][0]));
|
|
if (!r) return 2;
|
|
|
|
// A2 x A0 = A1
|
|
t = myfabs(T[1]);
|
|
|
|
r &= ( t <=
|
|
(a[1] + b[0] * Bf[1][0] + b[1] * Bf[1][1] + b[2] * Bf[1][2]));
|
|
if (!r) return 3;
|
|
|
|
// A0 x A1 = A2
|
|
t = myfabs(T[2]);
|
|
|
|
r &= ( t <=
|
|
(a[2] + b[0] * Bf[2][0] + b[1] * Bf[2][1] + b[2] * Bf[2][2]));
|
|
if (!r) return 4;
|
|
|
|
// B2 x B0 = B1
|
|
s = T[0]*B[0][1] + T[1]*B[1][1] + T[2]*B[2][1];
|
|
t = myfabs(s);
|
|
|
|
r &= ( t <=
|
|
(b[1] + a[0] * Bf[0][1] + a[1] * Bf[1][1] + a[2] * Bf[2][1]));
|
|
if (!r) return 5;
|
|
|
|
// B0 x B1 = B2
|
|
s = T[0]*B[0][2] + T[1]*B[1][2] + T[2]*B[2][2];
|
|
t = myfabs(s);
|
|
|
|
r &= ( t <=
|
|
(b[2] + a[0] * Bf[0][2] + a[1] * Bf[1][2] + a[2] * Bf[2][2]));
|
|
if (!r) return 6;
|
|
|
|
// A0 x B0
|
|
s = T[2] * B[1][0] - T[1] * B[2][0];
|
|
t = myfabs(s);
|
|
|
|
r &= ( t <=
|
|
(a[1] * Bf[2][0] + a[2] * Bf[1][0] +
|
|
b[1] * Bf[0][2] + b[2] * Bf[0][1]));
|
|
if (!r) return 7;
|
|
|
|
// A0 x B1
|
|
s = T[2] * B[1][1] - T[1] * B[2][1];
|
|
t = myfabs(s);
|
|
|
|
r &= ( t <=
|
|
(a[1] * Bf[2][1] + a[2] * Bf[1][1] +
|
|
b[0] * Bf[0][2] + b[2] * Bf[0][0]));
|
|
if (!r) return 8;
|
|
|
|
// A0 x B2
|
|
s = T[2] * B[1][2] - T[1] * B[2][2];
|
|
t = myfabs(s);
|
|
|
|
r &= ( t <=
|
|
(a[1] * Bf[2][2] + a[2] * Bf[1][2] +
|
|
b[0] * Bf[0][1] + b[1] * Bf[0][0]));
|
|
if (!r) return 9;
|
|
|
|
// A1 x B0
|
|
s = T[0] * B[2][0] - T[2] * B[0][0];
|
|
t = myfabs(s);
|
|
|
|
r &= ( t <=
|
|
(a[0] * Bf[2][0] + a[2] * Bf[0][0] +
|
|
b[1] * Bf[1][2] + b[2] * Bf[1][1]));
|
|
if (!r) return 10;
|
|
|
|
// A1 x B1
|
|
s = T[0] * B[2][1] - T[2] * B[0][1];
|
|
t = myfabs(s);
|
|
|
|
r &= ( t <=
|
|
(a[0] * Bf[2][1] + a[2] * Bf[0][1] +
|
|
b[0] * Bf[1][2] + b[2] * Bf[1][0]));
|
|
if (!r) return 11;
|
|
|
|
// A1 x B2
|
|
s = T[0] * B[2][2] - T[2] * B[0][2];
|
|
t = myfabs(s);
|
|
|
|
r &= (t <=
|
|
(a[0] * Bf[2][2] + a[2] * Bf[0][2] +
|
|
b[0] * Bf[1][1] + b[1] * Bf[1][0]));
|
|
if (!r) return 12;
|
|
|
|
// A2 x B0
|
|
s = T[1] * B[0][0] - T[0] * B[1][0];
|
|
t = myfabs(s);
|
|
|
|
r &= (t <=
|
|
(a[0] * Bf[1][0] + a[1] * Bf[0][0] +
|
|
b[1] * Bf[2][2] + b[2] * Bf[2][1]));
|
|
if (!r) return 13;
|
|
|
|
// A2 x B1
|
|
s = T[1] * B[0][1] - T[0] * B[1][1];
|
|
t = myfabs(s);
|
|
|
|
r &= ( t <=
|
|
(a[0] * Bf[1][1] + a[1] * Bf[0][1] +
|
|
b[0] * Bf[2][2] + b[2] * Bf[2][0]));
|
|
if (!r) return 14;
|
|
|
|
// A2 x B2
|
|
s = T[1] * B[0][2] - T[0] * B[1][2];
|
|
t = myfabs(s);
|
|
|
|
r &= ( t <=
|
|
(a[0] * Bf[1][2] + a[1] * Bf[0][2] +
|
|
b[0] * Bf[2][1] + b[1] * Bf[2][0]));
|
|
if (!r) return 15;
|
|
|
|
return 0; // should equal 0
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
// Collide
|
|
|
|
static double RAPID_mR[3][3];
|
|
static double RAPID_mT[3];
|
|
static double RAPID_ms;
|
|
|
|
static int RAPID_first_contact;
|
|
|
|
static int RAPID_num_box_tests;
|
|
static int RAPID_num_tri_tests;
|
|
static int RAPID_num_contacts;
|
|
|
|
static int RAPID_num_cols_alloced = 0;
|
|
static collision_pair *RAPID_contact = 0;
|
|
|
|
static int add_collision(int id1, int id2)
|
|
{
|
|
if (!RAPID_contact)
|
|
{
|
|
RAPID_contact = new collision_pair[10];
|
|
if (!RAPID_contact)
|
|
return RAPID_ERR_COLLIDE_OUT_OF_MEMORY;
|
|
|
|
RAPID_num_cols_alloced = 10;
|
|
RAPID_num_contacts = 0;
|
|
}
|
|
|
|
if (RAPID_num_contacts == RAPID_num_cols_alloced)
|
|
{
|
|
collision_pair *t = new collision_pair[RAPID_num_cols_alloced*2];
|
|
if (!t)
|
|
{
|
|
return RAPID_ERR_COLLIDE_OUT_OF_MEMORY;
|
|
}
|
|
RAPID_num_cols_alloced *= 2;
|
|
|
|
for(int i=0; i<RAPID_num_contacts; i++) t[i] = RAPID_contact[i];
|
|
delete [] RAPID_contact;
|
|
RAPID_contact = t;
|
|
}
|
|
|
|
RAPID_contact[RAPID_num_contacts].id1 = id1;
|
|
RAPID_contact[RAPID_num_contacts].id2 = id2;
|
|
RAPID_num_contacts++;
|
|
|
|
return RAPID_OK;
|
|
}
|
|
|
|
static int tri_contact(box *b1, box *b2)
|
|
{
|
|
// assume just one triangle in each box.
|
|
|
|
// the vertices of the tri in b2 is in model1 C.S. The vertices of
|
|
// the other triangle is in model2 CS. Use RAPID_mR, RAPID_mT, and
|
|
// RAPID_ms to transform into model2 CS.
|
|
|
|
double i1[3];
|
|
double i2[3];
|
|
double i3[3];
|
|
int rc; // return code
|
|
|
|
sMxVpV(i1, RAPID_ms, RAPID_mR, b1->trp->p1, RAPID_mT);
|
|
sMxVpV(i2, RAPID_ms, RAPID_mR, b1->trp->p2, RAPID_mT);
|
|
sMxVpV(i3, RAPID_ms, RAPID_mR, b1->trp->p3, RAPID_mT);
|
|
|
|
RAPID_num_tri_tests++;
|
|
|
|
int f = tri_contact(i1, i2, i3, b2->trp->p1,b2->trp->p2, b2->trp->p3);
|
|
|
|
if (f)
|
|
{
|
|
// add_collision may be unable to allocate enough memory,
|
|
// so be prepared to pass along an OUT_OF_MEMORY return code.
|
|
if ((rc = add_collision(b1->trp->id, b2->trp->id)) != RAPID_OK)
|
|
return rc;
|
|
}
|
|
|
|
return RAPID_OK;
|
|
}
|
|
|
|
static int collide_recursive(box *b1, box *b2, double R[3][3], double T[3], double s)
|
|
{
|
|
double d[3]; // temp storage for scaled dimensions of box b2.
|
|
int rc; // return codes
|
|
|
|
if (1)
|
|
{
|
|
// printf("Next collision: b1, b2, R, T, s\n");
|
|
// printf("b1=%x, b2=%x\n", b1, b2);
|
|
// Mprint(R);
|
|
// Vprint(T);
|
|
// printf("%lf\n", s);
|
|
|
|
if (RAPID_first_contact && (RAPID_num_contacts > 0))
|
|
return RAPID_OK;
|
|
|
|
// test top level
|
|
RAPID_num_box_tests++;
|
|
|
|
int f1;
|
|
|
|
d[0] = s * b2->d[0];
|
|
d[1] = s * b2->d[1];
|
|
d[2] = s * b2->d[2];
|
|
f1 = obb_disjoint(R, T, b1->d, d);
|
|
|
|
// if (f1 != 0)
|
|
// printf("BOX TEST %d DISJOINT! (code %d)\n", RAPID_num_box_tests, f1);
|
|
// else
|
|
// printf("BOX TEST %d OVERLAP! (code %d)\n", RAPID_num_box_tests, f1);
|
|
|
|
if (f1 != 0)
|
|
return RAPID_OK; // stop processing this test, go to top of loop
|
|
|
|
// contact between boxes
|
|
if (b1->leaf() && b2->leaf())
|
|
{
|
|
// it is a leaf pair - compare the polygons therein
|
|
// tri_contact uses the model-to-model transforms stored in
|
|
// RAPID_mR, RAPID_mT, RAPID_ms.
|
|
|
|
// this will pass along any OUT_OF_MEMORY return codes which
|
|
// may be generated.
|
|
return tri_contact(b1, b2);
|
|
}
|
|
|
|
double U[3];
|
|
|
|
double cR[3][3], cT[3], cs;
|
|
|
|
// Currently, the transform from model 2 to model 1 space is
|
|
// given by [B T s], where y = [B T s].x = s.B.x + T.
|
|
|
|
if (b2->leaf() || (!b1->leaf() && (b1->size() > b2->size())))
|
|
{
|
|
// here we descend to children of b1. The transform from
|
|
// a child of b1 to b1 is stored in [b1->N->pR,b1->N->pT],
|
|
// but we will denote it [B1 T1 1] for short. Notice that
|
|
// children boxes always have same scaling as parent, so s=1
|
|
// for such nested transforms.
|
|
|
|
// Here, we compute [B1 T1 1]'[B T s] = [B1'B B1'(T-T1) s]
|
|
// for each child, and store the transform into the collision
|
|
// test queue.
|
|
|
|
MTxM(cR, b1->N->pR, R);
|
|
VmV(U, T, b1->N->pT); MTxV(cT, b1->N->pR, U);
|
|
cs = s;
|
|
|
|
if ((rc = collide_recursive(b1->N, b2, cR, cT, cs)) != RAPID_OK)
|
|
return rc;
|
|
|
|
MTxM(cR, b1->P->pR, R);
|
|
VmV(U, T, b1->P->pT); MTxV(cT, b1->P->pR, U);
|
|
cs = s;
|
|
|
|
if ((rc = collide_recursive(b1->P, b2, cR, cT, cs)) != RAPID_OK)
|
|
return rc;
|
|
|
|
return RAPID_OK;
|
|
}
|
|
else
|
|
{
|
|
// here we descend to the children of b2. See comments for
|
|
// other 'if' clause for explanation.
|
|
|
|
MxM(cR, R, b2->N->pR);
|
|
sMxVpV(cT, s, R, b2->N->pT, T);
|
|
cs = s;
|
|
|
|
if ((rc = collide_recursive(b1, b2->N, cR, cT, cs)) != RAPID_OK)
|
|
return rc;
|
|
|
|
MxM(cR, R, b2->P->pR);
|
|
sMxVpV(cT, s, R, b2->P->pT, T);
|
|
cs = s;
|
|
|
|
if ((rc = collide_recursive(b1, b2->P, cR, cT, cs)) != RAPID_OK)
|
|
return rc;
|
|
|
|
return RAPID_OK;
|
|
}
|
|
|
|
}
|
|
|
|
return RAPID_OK;
|
|
}
|
|
|
|
// return TRUE if objects collide
|
|
BOOL CollisionCheck(double R1[3][3], double T1[3], CRModel *RAPID_model1,
|
|
double R2[3][3], double T2[3], CRModel *RAPID_model2, int flag)
|
|
{
|
|
int ret = RAPID_Collide(R1, T1, 1.0, RAPID_model1, R2, T2, 1.0, RAPID_model2, flag);
|
|
|
|
return (ret == RAPID_OK) && (RAPID_num_contacts > 0);
|
|
}
|
|
|
|
static int RAPID_Collide(double R1[3][3], double T1[3], double s1, CRModel *RAPID_model1,
|
|
double R2[3][3], double T2[3], double s2, CRModel *RAPID_model2, int flag)
|
|
{
|
|
if (!RAPID_initialized) RAPID_initialize();
|
|
|
|
if (RAPID_model1->build_state != RAPID_BUILD_STATE_PROCESSED)
|
|
return RAPID_ERR_UNPROCESSED_MODEL;
|
|
|
|
if (RAPID_model2->build_state != RAPID_BUILD_STATE_PROCESSED)
|
|
return RAPID_ERR_UNPROCESSED_MODEL;
|
|
|
|
box *b1 = RAPID_model1->b;
|
|
box *b2 = RAPID_model2->b;
|
|
|
|
RAPID_first_contact = 0;
|
|
if (flag == RAPID_FIRST_CONTACT) RAPID_first_contact = 1;
|
|
|
|
double tR1[3][3], tR2[3][3], R[3][3];
|
|
double tT1[3], tT2[3], T[3], U[3];
|
|
double s;
|
|
|
|
// [R1,T1,s1] and [R2,T2,s2] are how the two triangle sets
|
|
// (i.e. models) are positioned in world space. [tR1,tT1,s1] and
|
|
// [tR2,tT2,s2] are how the top level boxes are positioned in world
|
|
// space
|
|
|
|
MxM(tR1, R1, b1->pR); // tR1 = R1 * b1->pR;
|
|
sMxVpV(tT1, s1, R1, b1->pT, T1); // tT1 = s1 * R1 * b1->pT + T1;
|
|
MxM(tR2, R2, b2->pR); // tR2 = R2 * b2->pR;
|
|
sMxVpV(tT2, s2, R2, b2->pT, T2); // tT2 = s2 * R2 * b2->pT + T2;
|
|
|
|
// (R,T,s) is the placement of b2's top level box within
|
|
// the coordinate system of b1's top level box.
|
|
|
|
MTxM(R, tR1, tR2); // R = tR1.T()*tR2;
|
|
VmV(U, tT2, tT1); sMTxV(T, 1.0/s1, tR1, U); // T = tR1.T()*(tT2-tT1)/s1;
|
|
|
|
s = s2/s1;
|
|
|
|
// To transform tri's from model1's CS to model2's CS use this:
|
|
// x2 = ms . mR . x1 + mT
|
|
|
|
{
|
|
MTxM(RAPID_mR, R2, R1);
|
|
VmV(U, T1, T2); sMTxV(RAPID_mT, 1.0/s2, R2, U);
|
|
RAPID_ms = s1/s2;
|
|
}
|
|
|
|
|
|
// reset the report fields
|
|
RAPID_num_box_tests = 0;
|
|
RAPID_num_tri_tests = 0;
|
|
RAPID_num_contacts = 0;
|
|
|
|
// make the call
|
|
return collide_recursive(b1, b2, R, T, s);
|
|
}
|
|
|
|
static void RAPID_initialize()
|
|
{
|
|
RAPID_num_box_tests = 0;
|
|
RAPID_num_contacts = 0;
|
|
RAPID_contact = 0;
|
|
|
|
RAPID_initialized = TRUE;
|
|
}
|