leocad/win/rmodel.cpp
2011-09-07 21:06:51 +00:00

1536 lines
39 KiB
C++

// RModel.cpp: implementation of the CRModel class.
//
//////////////////////////////////////////////////////////////////////
#include "stdafx.h"
#include "leocad.h"
#include "RModel.h"
#include <math.h>
#ifdef _DEBUG
#undef THIS_FILE
static char THIS_FILE[]=__FILE__;
#define new DEBUG_NEW
#endif
//////////////////////////////////////////////////////////////////////
// Math functions
static inline void Midentity(double M[3][3])
{
M[0][0] = M[1][1] = M[2][2] = 1.0;
M[0][1] = M[1][2] = M[2][0] = 0.0;
M[0][2] = M[1][0] = M[2][1] = 0.0;
}
static inline void McM(double Mr[3][3], double M[3][3])
{
Mr[0][0] = M[0][0]; Mr[0][1] = M[0][1]; Mr[0][2] = M[0][2];
Mr[1][0] = M[1][0]; Mr[1][1] = M[1][1]; Mr[1][2] = M[1][2];
Mr[2][0] = M[2][0]; Mr[2][1] = M[2][1]; Mr[2][2] = M[2][2];
}
static inline void VcV(double Vr[3], double V[3])
{
Vr[0] = V[0]; Vr[1] = V[1]; Vr[2] = V[2];
}
static inline void MxM(double Mr[3][3], double M1[3][3], double M2[3][3])
{
Mr[0][0] = (M1[0][0] * M2[0][0] + M1[0][1] * M2[1][0] + M1[0][2] * M2[2][0]);
Mr[1][0] = (M1[1][0] * M2[0][0] + M1[1][1] * M2[1][0] + M1[1][2] * M2[2][0]);
Mr[2][0] = (M1[2][0] * M2[0][0] + M1[2][1] * M2[1][0] + M1[2][2] * M2[2][0]);
Mr[0][1] = (M1[0][0] * M2[0][1] + M1[0][1] * M2[1][1] + M1[0][2] * M2[2][1]);
Mr[1][1] = (M1[1][0] * M2[0][1] + M1[1][1] * M2[1][1] + M1[1][2] * M2[2][1]);
Mr[2][1] = (M1[2][0] * M2[0][1] + M1[2][1] * M2[1][1] + M1[2][2] * M2[2][1]);
Mr[0][2] = (M1[0][0] * M2[0][2] + M1[0][1] * M2[1][2] + M1[0][2] * M2[2][2]);
Mr[1][2] = (M1[1][0] * M2[0][2] + M1[1][1] * M2[1][2] + M1[1][2] * M2[2][2]);
Mr[2][2] = (M1[2][0] * M2[0][2] + M1[2][1] * M2[1][2] + M1[2][2] * M2[2][2]);
}
static inline void MTxM(double Mr[3][3], double M1[3][3], double M2[3][3])
{
Mr[0][0] = (M1[0][0] * M2[0][0] + M1[1][0] * M2[1][0] + M1[2][0] * M2[2][0]);
Mr[1][0] = (M1[0][1] * M2[0][0] + M1[1][1] * M2[1][0] + M1[2][1] * M2[2][0]);
Mr[2][0] = (M1[0][2] * M2[0][0] + M1[1][2] * M2[1][0] + M1[2][2] * M2[2][0]);
Mr[0][1] = (M1[0][0] * M2[0][1] + M1[1][0] * M2[1][1] + M1[2][0] * M2[2][1]);
Mr[1][1] = (M1[0][1] * M2[0][1] + M1[1][1] * M2[1][1] + M1[2][1] * M2[2][1]);
Mr[2][1] = (M1[0][2] * M2[0][1] + M1[1][2] * M2[1][1] + M1[2][2] * M2[2][1]);
Mr[0][2] = (M1[0][0] * M2[0][2] + M1[1][0] * M2[1][2] + M1[2][0] * M2[2][2]);
Mr[1][2] = (M1[0][1] * M2[0][2] + M1[1][1] * M2[1][2] + M1[2][1] * M2[2][2]);
Mr[2][2] = (M1[0][2] * M2[0][2] + M1[1][2] * M2[1][2] + M1[2][2] * M2[2][2]);
}
static inline void sMxVpV(double Vr[3], double s1, double M1[3][3], double V1[3], double V2[3])
{
Vr[0] = s1 * (M1[0][0] * V1[0] + M1[0][1] * V1[1] + M1[0][2] * V1[2]) + V2[0];
Vr[1] = s1 * (M1[1][0] * V1[0] + M1[1][1] * V1[1] + M1[1][2] * V1[2]) + V2[1];
Vr[2] = s1 * (M1[2][0] * V1[0] + M1[2][1] * V1[1] + M1[2][2] * V1[2]) + V2[2];
}
static inline void MTxV(double Vr[3], double M1[3][3], double V1[3])
{
Vr[0] = (M1[0][0] * V1[0] + M1[1][0] * V1[1] + M1[2][0] * V1[2]);
Vr[1] = (M1[0][1] * V1[0] + M1[1][1] * V1[1] + M1[2][1] * V1[2]);
Vr[2] = (M1[0][2] * V1[0] + M1[1][2] * V1[1] + M1[2][2] * V1[2]);
}
static inline void sMTxV(double Vr[3], double s1, double M1[3][3], double V1[3])
{
Vr[0] = s1*(M1[0][0] * V1[0] + M1[1][0] * V1[1] + M1[2][0] * V1[2]);
Vr[1] = s1*(M1[0][1] * V1[0] + M1[1][1] * V1[1] + M1[2][1] * V1[2]);
Vr[2] = s1*(M1[0][2] * V1[0] + M1[1][2] * V1[1] + M1[2][2] * V1[2]);
}
static inline void VmV(double Vr[3], const double V1[3], const double V2[3])
{
Vr[0] = V1[0] - V2[0];
Vr[1] = V1[1] - V2[1];
Vr[2] = V1[2] - V2[2];
}
static inline void VcrossV(double Vr[3], const double V1[3], const double V2[3])
{
Vr[0] = V1[1]*V2[2] - V1[2]*V2[1];
Vr[1] = V1[2]*V2[0] - V1[0]*V2[2];
Vr[2] = V1[0]*V2[1] - V1[1]*V2[0];
}
static inline double Vlength(double V[3])
{
return sqrt(V[0]*V[0] + V[1]*V[1] + V[2]*V[2]);
}
static inline double VdotV(double V1[3], double V2[3])
{
return (V1[0]*V2[0] + V1[1]*V2[1] + V1[2]*V2[2]);
}
//////////////////////////////////////////////////////////////////////
static int tri_contact (double *P1, double *P2, double *P3, double *Q1, double *Q2, double *Q3);
static int obb_disjoint(double B[3][3], double T[3], double a[3], double b[3]);
#define myfabs(x) ((x < 0) ? -x : x)
//////////////////////////////////////////////////////////////////////
// Construction/Destruction
//////////////////////////////////////////////////////////////////////
static BOOL RAPID_initialized = FALSE;
static void RAPID_initialize();
CRModel::CRModel()
{
if (!RAPID_initialized) RAPID_initialize();
b = NULL;
num_boxes_alloced = 0;
tris = NULL;
num_tris = 0;
num_tris_alloced = 0;
build_state = RAPID_BUILD_STATE_CONST;
}
CRModel::~CRModel()
{
if (!RAPID_initialized) RAPID_initialize();
// the boxes and triangles pointed to should be deleted.
delete [] b;
delete [] tris;
}
int CRModel::BeginModel()
{
int bs = build_state;
if (!RAPID_initialized) RAPID_initialize();
// free whatever storage we had. Remember, it's okay to delete null
// pointers in C++, so we don't have to check them first.
delete [] b;
b = NULL;
num_boxes_alloced = 0;
delete [] tris;
tris = NULL;
num_tris = 0;
num_tris_alloced = 0;
build_state = RAPID_BUILD_STATE_BEGIN;
if ((bs == RAPID_BUILD_STATE_CONST) ||
(bs == RAPID_BUILD_STATE_PROCESSED))
return RAPID_OK;
if ((bs == RAPID_BUILD_STATE_BEGIN) ||
(bs == RAPID_BUILD_STATE_ADDTRI))
return RAPID_ERR_BUILD_OUT_OF_SEQUENCE;
return RAPID_OK;
}
int CRModel::EndModel()
{
if (!RAPID_initialized) RAPID_initialize();
if (num_tris == 0)
return RAPID_ERR_BUILD_EMPTY_MODEL;
int myrc = build_hierarchy();
// only change to processed state if successful.
if (myrc == RAPID_OK)
build_state = RAPID_BUILD_STATE_PROCESSED;
return myrc;
}
// int CRModel::AddTri(const double *p1, const double *p2, const double *p3, int id)
int CRModel::AddTri(float *p1, float *p2, float *p3, int id)
{
if (!RAPID_initialized) RAPID_initialize();
int myrc = RAPID_OK; // we'll return this unless a problem is found
// client forgot to call BeginModel() before calling AddTri().
if (build_state == RAPID_BUILD_STATE_PROCESSED)
return RAPID_ERR_BUILD_OUT_OF_SEQUENCE;
// first make sure that we haven't filled up our allocation.
// if we have, allocate a new array of twice the size, and copy
// the old data to it.
if (num_tris == num_tris_alloced)
{
// decide on new size -- accounting for first time, where none are
// allocated
int n = num_tris_alloced*2;
if (n == 0) n = 1;
// make new array, and copy the old one to it
tri *t = new tri[n];
// if we can't get any more space, return an error
if (!t)
{
// we are leaving the model unchanged.
return RAPID_ERR_MODEL_OUT_OF_MEMORY;
}
int i;
for(i=0; i<num_tris; i++)
t[i] = tris[i];
// free the old array and reassign.
delete [] tris;
tris = t;
// update the allocation counter.
num_tris_alloced = n;
}
// now copy the new tri into the array
tris[num_tris].p1[0] = p1[0];
tris[num_tris].p1[1] = p1[1];
tris[num_tris].p1[2] = p1[2];
tris[num_tris].p2[0] = p2[0];
tris[num_tris].p2[1] = p2[1];
tris[num_tris].p2[2] = p2[2];
tris[num_tris].p3[0] = p3[0];
tris[num_tris].p3[1] = p3[1];
tris[num_tris].p3[2] = p3[2];
tris[num_tris].id = id;
// update the counter
num_tris++;
return myrc;
}
#define rfabs(x) ((x < 0) ? -x : x)
#define ROT(a,i,j,k,l) g=a[i][j]; h=a[k][l]; a[i][j]=g-s*(h+g*tau); a[k][l]=h+s*(g-h*tau);
static int inline Meigen(double vout[3][3], double dout[3], double a[3][3])
{
int i;
double tresh,theta,tau,t,sm,s,h,g,c;
int nrot;
double b[3];
double z[3];
double v[3][3];
double d[3];
v[0][0] = v[1][1] = v[2][2] = 1.0;
v[0][1] = v[1][2] = v[2][0] = 0.0;
v[0][2] = v[1][0] = v[2][1] = 0.0;
b[0] = a[0][0]; d[0] = a[0][0]; z[0] = 0.0;
b[1] = a[1][1]; d[1] = a[1][1]; z[1] = 0.0;
b[2] = a[2][2]; d[2] = a[2][2]; z[2] = 0.0;
nrot = 0;
for (i = 0; i < 50; i++)
{
sm=0.0; sm+=fabs(a[0][1]); sm+=fabs(a[0][2]); sm+=fabs(a[1][2]);
if (sm == 0.0) { McM(vout,v); VcV(dout,d); return i; }
if (i < 3) tresh=0.2*sm/(3*3); else tresh=0.0;
{
g = 100.0*rfabs(a[0][1]);
if (i>3 && rfabs(d[0])+g==rfabs(d[0]) && rfabs(d[1])+g==rfabs(d[1]))
a[0][1]=0.0;
else if (rfabs(a[0][1])>tresh)
{
h = d[1]-d[0];
if (rfabs(h)+g == rfabs(h)) t=(a[0][1])/h;
else
{
theta=0.5*h/(a[0][1]);
t=1.0/(rfabs(theta)+sqrt(1.0+theta*theta));
if (theta < 0.0) t = -t;
}
c=1.0/sqrt(1+t*t); s=t*c; tau=s/(1.0+c); h=t*a[0][1];
z[0] -= h; z[1] += h; d[0] -= h; d[1] += h;
a[0][1]=0.0;
ROT(a,0,2,1,2); ROT(v,0,0,0,1); ROT(v,1,0,1,1); ROT(v,2,0,2,1);
nrot++;
}
}
{
g = 100.0*rfabs(a[0][2]);
if (i>3 && rfabs(d[0])+g==rfabs(d[0]) && rfabs(d[2])+g==rfabs(d[2]))
a[0][2]=0.0;
else if (rfabs(a[0][2])>tresh)
{
h = d[2]-d[0];
if (rfabs(h)+g == rfabs(h)) t=(a[0][2])/h;
else
{
theta=0.5*h/(a[0][2]);
t=1.0/(rfabs(theta)+sqrt(1.0+theta*theta));
if (theta < 0.0) t = -t;
}
c=1.0/sqrt(1+t*t); s=t*c; tau=s/(1.0+c); h=t*a[0][2];
z[0] -= h; z[2] += h; d[0] -= h; d[2] += h;
a[0][2]=0.0;
ROT(a,0,1,1,2); ROT(v,0,0,0,2); ROT(v,1,0,1,2); ROT(v,2,0,2,2);
nrot++;
}
}
{
g = 100.0*rfabs(a[1][2]);
if (i>3 && rfabs(d[1])+g==rfabs(d[1]) && rfabs(d[2])+g==rfabs(d[2]))
a[1][2]=0.0;
else if (rfabs(a[1][2])>tresh)
{
h = d[2]-d[1];
if (rfabs(h)+g == rfabs(h)) t=(a[1][2])/h;
else
{
theta=0.5*h/(a[1][2]);
t=1.0/(rfabs(theta)+sqrt(1.0+theta*theta));
if (theta < 0.0) t = -t;
}
c=1.0/sqrt(1+t*t); s=t*c; tau=s/(1.0+c); h=t*a[1][2];
z[1] -= h; z[2] += h; d[1] -= h; d[2] += h;
a[1][2]=0.0;
ROT(a,0,1,0,2); ROT(v,0,1,0,2); ROT(v,1,1,1,2); ROT(v,2,1,2,2);
nrot++;
}
}
b[0] += z[0]; d[0] = b[0]; z[0] = 0.0;
b[1] += z[1]; d[1] = b[1]; z[1] = 0.0;
b[2] += z[2]; d[2] = b[2]; z[2] = 0.0;
}
// fprintf(stderr, "eigen: too many iterations in Jacobi transform (%d).\n", i);
return i;
}
// not a full sort -- just makes column 1 the largest
static int eigen_and_sort1(double evecs[3][3], double cov[3][3])
{
double t;
double evals[3];
int n;
n = Meigen(evecs, evals, cov);
if (evals[2] > evals[0])
{
if (evals[2] > evals[1])
{
// 2 is largest, swap with column 0
t = evecs[0][2];
evecs[0][2] = evecs[0][0];
evecs[0][0] = t;
t = evecs[1][2];
evecs[1][2] = evecs[1][0];
evecs[1][0] = t;
t = evecs[2][2];
evecs[2][2] = evecs[2][0];
evecs[2][0] = t;
}
else
{
// 1 is largest, swap with column 0
t = evecs[0][1];
evecs[0][1] = evecs[0][0];
evecs[0][0] = t;
t = evecs[1][1];
evecs[1][1] = evecs[1][0];
evecs[1][0] = t;
t = evecs[2][1];
evecs[2][1] = evecs[2][0];
evecs[2][0] = t;
}
}
else
{
if (evals[0] > evals[1])
{
// 0 is largest, do nothing
}
else
{
// 1 is largest
t = evecs[0][1];
evecs[0][1] = evecs[0][0];
evecs[0][0] = t;
t = evecs[1][1];
evecs[1][1] = evecs[1][0];
evecs[1][0] = t;
t = evecs[2][1];
evecs[2][1] = evecs[2][0];
evecs[2][0] = t;
}
}
// we are returning the number of iterations Meigen took.
// too many iterations means our chosen orientation is bad.
return n;
}
static inline void minmax(double &mn, double &mx, double v)
{
if (v < mn) mn = v;
else if (v > mx) mx = v;
}
typedef struct
{
double A;
double m[3];
double s[3][3];
} moment;
typedef struct
{
double A;
double m[3];
double s[3][3];
} accum;
static inline void clear_accum(accum &a)
{
a.m[0] = a.m[1] = a.m[2] = 0.0;
a.s[0][0] = a.s[0][1] = a.s[0][2] = 0.0;
a.s[1][0] = a.s[1][1] = a.s[1][2] = 0.0;
a.s[2][0] = a.s[2][1] = a.s[2][2] = 0.0;
a.A = 0.0;
}
static inline void accum_moment(accum &a, moment &b)
{
a.m[0] += b.m[0] * b.A;
a.m[1] += b.m[1] * b.A;
a.m[2] += b.m[2] * b.A;
a.s[0][0] += b.s[0][0];
a.s[0][1] += b.s[0][1];
a.s[0][2] += b.s[0][2];
a.s[1][0] += b.s[1][0];
a.s[1][1] += b.s[1][1];
a.s[1][2] += b.s[1][2];
a.s[2][0] += b.s[2][0];
a.s[2][1] += b.s[2][1];
a.s[2][2] += b.s[2][2];
a.A += b.A;
}
static inline void mean_from_moment(double M[3], moment &m)
{
M[0] = m.m[0];
M[1] = m.m[1];
M[2] = m.m[2];
}
static inline void mean_from_accum(double M[3], accum &a)
{
M[0] = a.m[0] / a.A;
M[1] = a.m[1] / a.A;
M[2] = a.m[2] / a.A;
}
static inline void covariance_from_accum(double C[3][3], accum &a)
{
int i,j;
for(i=0; i<3; i++)
for(j=0; j<3; j++)
C[i][j] = a.s[i][j] - a.m[i]*a.m[j]/a.A;
}
static inline void compute_moment(moment &M, double p[3], double q[3], double r[3])
{
double u[3], v[3], w[3];
// compute the area of the triangle
VmV(u, q, p);
VmV(v, r, p);
VcrossV(w, u, v);
M.A = 0.5 * Vlength(w);
if (M.A == 0.0)
{
// This triangle has zero area. The second order components
// would be eliminated with the usual formula, so, for the
// sake of robustness we use an alternative form. These are the
// centroid and second-order components of the triangle's vertices.
// centroid
M.m[0] = (p[0] + q[0] + r[0]) /3;
M.m[1] = (p[1] + q[1] + r[1]) /3;
M.m[2] = (p[2] + q[2] + r[2]) /3;
// second-order components
M.s[0][0] = (p[0]*p[0] + q[0]*q[0] + r[0]*r[0]);
M.s[0][1] = (p[0]*p[1] + q[0]*q[1] + r[0]*r[1]);
M.s[0][2] = (p[0]*p[2] + q[0]*q[2] + r[0]*r[2]);
M.s[1][1] = (p[1]*p[1] + q[1]*q[1] + r[1]*r[1]);
M.s[1][2] = (p[1]*p[2] + q[1]*q[2] + r[1]*r[2]);
M.s[2][2] = (p[2]*p[2] + q[2]*q[2] + r[2]*r[2]);
M.s[2][1] = M.s[1][2];
M.s[1][0] = M.s[0][1];
M.s[2][0] = M.s[0][2];
return;
}
// get the centroid
M.m[0] = (p[0] + q[0] + r[0])/3;
M.m[1] = (p[1] + q[1] + r[1])/3;
M.m[2] = (p[2] + q[2] + r[2])/3;
// get the second order components -- note the weighting by the area
M.s[0][0] = M.A*(9*M.m[0]*M.m[0]+p[0]*p[0]+q[0]*q[0]+r[0]*r[0])/12;
M.s[0][1] = M.A*(9*M.m[0]*M.m[1]+p[0]*p[1]+q[0]*q[1]+r[0]*r[1])/12;
M.s[1][1] = M.A*(9*M.m[1]*M.m[1]+p[1]*p[1]+q[1]*q[1]+r[1]*r[1])/12;
M.s[0][2] = M.A*(9*M.m[0]*M.m[2]+p[0]*p[2]+q[0]*q[2]+r[0]*r[2])/12;
M.s[1][2] = M.A*(9*M.m[1]*M.m[2]+p[1]*p[2]+q[1]*q[2]+r[1]*r[2])/12;
M.s[2][2] = M.A*(9*M.m[2]*M.m[2]+p[2]*p[2]+q[2]*q[2]+r[2]*r[2])/12;
M.s[2][1] = M.s[1][2];
M.s[1][0] = M.s[0][1];
M.s[2][0] = M.s[0][2];
}
static inline void compute_moments(moment *M, tri *tris, int num_tris)
{
int i;
// first collect all the moments, and obtain the area of the
// smallest nonzero area triangle.
double Amin = 0.0;
int zero = 0;
int nonzero = 0;
for(i=0; i<num_tris; i++)
{
compute_moment(M[i],
tris[i].p1,
tris[i].p2,
tris[i].p3);
if (M[i].A == 0.0)
{
zero = 1;
}
else
{
nonzero = 1;
if (Amin == 0.0) Amin = M[i].A;
else if (M[i].A < Amin) Amin = M[i].A;
}
}
if (zero)
{
fprintf(stderr, "----\n");
fprintf(stderr, "Warning! Some triangles have zero area!\n");
fprintf(stderr, "----\n");
// if there are any zero area triangles, go back and set their area
// if ALL the triangles have zero area, then set the area thingy
// to some arbitrary value.
if (Amin == 0.0) Amin = 1.0;
for(i=0; i<num_tris; i++)
{
if (M[i].A == 0.0) M[i].A = Amin;
}
}
}
static moment *RAPID_moment = NULL;
static tri *RAPID_tri = NULL;
static box *RAPID_boxes = NULL;
static int RAPID_boxes_inited = 0;
// There are <n> tri structures in an array starting at <t>.
//
// We are told that the mean point is <mp> and the orientation
// for the parent box will be <or>. The split axis is to be the
// vector given by <ax>.
//
// <or>, <ax>, and <mp> are model space coordinates.
int CRModel::build_hierarchy()
{
// allocate the boxes and set the box list globals
num_boxes_alloced = num_tris * 2;
b = new box[num_boxes_alloced];
if (b == 0) return RAPID_ERR_MODEL_OUT_OF_MEMORY;
RAPID_boxes = b;
RAPID_boxes_inited = 1; // we are in process of initializing b[0].
// Determine initial orientation, mean point, and splitting axis.
int i;
accum M;
// double F1[3];
// double S1[6];
double C[3][3];
RAPID_moment = new moment[num_tris];
if (RAPID_moment == 0)
{
delete [] b;
return RAPID_ERR_MODEL_OUT_OF_MEMORY;
}
compute_moments(RAPID_moment, tris, num_tris);
clear_accum(M);
for(i=0; i<num_tris; i++)
accum_moment(M, RAPID_moment[i]);
mean_from_accum(b[0].pT, M);
covariance_from_accum(C, M);
eigen_and_sort1(b[0].pR, C);
// create the index list
int *t = new int[num_tris];
if (t == 0)
{
delete [] b;
delete [] RAPID_moment;
return RAPID_ERR_MODEL_OUT_OF_MEMORY;
}
for(i=0; i<num_tris; i++) t[i] = i;
// set the tri pointer
RAPID_tri = tris;
// do the build
int rc = b[0].split_recurse(t, num_tris);
if (rc != RAPID_OK)
{
delete [] b;
delete [] RAPID_moment;
delete [] t;
return RAPID_ERR_MODEL_OUT_OF_MEMORY;
}
// free the moment list
delete [] RAPID_moment; RAPID_moment = 0;
// null the tri pointer
RAPID_tri = 0;
// free the index list
delete [] t;
return RAPID_OK;
}
static inline void reaccum_moments(accum &A, int *t, int n)
{
clear_accum(A);
for(int i=0; i<n; i++)
accum_moment(A, RAPID_moment[t[i]]);
}
int box::split_recurse(int *t, int n)
{
// The orientation for the parent box is already assigned to this->pR.
// The axis along which to split will be column 0 of this->pR.
// The mean point is passed in on this->pT.
// When this routine completes, the position and orientation in model
// space will be established, as well as its dimensions. Child boxes
// will be constructed and placed in the parent's CS.
if (n == 1)
{
return split_recurse(t);
}
// walk along the tris for the box, and do the following:
// 1. collect the max and min of the vertices along the axes of <or>.
// 2. decide which group the triangle goes in, performing appropriate swap.
// 3. accumulate the mean point and covariance data for that triangle.
accum M1, M2;
double C[3][3];
double c[3];
double minval[3], maxval[3];
int rc; // for return code on procedure calls.
int in;
tri *ptr;
int i;
double axdmp;
int n1 = 0; // The number of tris in group 1.
// Group 2 will have n - n1 tris.
// project approximate mean point onto splitting axis, and get coord.
axdmp = (pR[0][0] * pT[0] + pR[1][0] * pT[1] + pR[2][0] * pT[2]);
clear_accum(M1);
clear_accum(M2);
MTxV(c, pR, RAPID_tri[t[0]].p1);
minval[0] = maxval[0] = c[0];
minval[1] = maxval[1] = c[1];
minval[2] = maxval[2] = c[2];
for(i=0; i<n; i++)
{
in = t[i];
ptr = RAPID_tri + in;
MTxV(c, pR, ptr->p1);
minmax(minval[0], maxval[0], c[0]);
minmax(minval[1], maxval[1], c[1]);
minmax(minval[2], maxval[2], c[2]);
MTxV(c, pR, ptr->p2);
minmax(minval[0], maxval[0], c[0]);
minmax(minval[1], maxval[1], c[1]);
minmax(minval[2], maxval[2], c[2]);
MTxV(c, pR, ptr->p3);
minmax(minval[0], maxval[0], c[0]);
minmax(minval[1], maxval[1], c[1]);
minmax(minval[2], maxval[2], c[2]);
// grab the mean point of the in'th triangle, project
// it onto the splitting axis (1st column of pR) and
// see where it lies with respect to axdmp.
mean_from_moment(c, RAPID_moment[in]);
if (((pR[0][0]*c[0] + pR[1][0]*c[1] + pR[2][0]*c[2]) < axdmp)
&& ((n!=2)) || ((n==2) && (i==0)))
{
// accumulate first and second order moments for group 1
accum_moment(M1, RAPID_moment[in]);
// put it in group 1 by swapping t[i] with t[n1]
int temp = t[i];
t[i] = t[n1];
t[n1] = temp;
n1++;
}
else
{
// accumulate first and second order moments for group 2
accum_moment(M2, RAPID_moment[in]);
// leave it in group 2
// do nothing...it happens by default
}
}
// done using this->pT as a mean point.
// error check!
if ((n1 == 0) || (n1 == n))
{
// our partitioning has failed: all the triangles fell into just
// one of the groups. So, we arbitrarily partition them into
// equal parts, and proceed.
n1 = n/2;
// now recompute accumulated stuff
reaccum_moments(M1, t, n1);
reaccum_moments(M2, t + n1, n - n1);
}
// With the max and min data, determine the center point and dimensions
// of the parent box.
c[0] = (minval[0] + maxval[0])*0.5;
c[1] = (minval[1] + maxval[1])*0.5;
c[2] = (minval[2] + maxval[2])*0.5;
pT[0] = c[0] * pR[0][0] + c[1] * pR[0][1] + c[2] * pR[0][2];
pT[1] = c[0] * pR[1][0] + c[1] * pR[1][1] + c[2] * pR[1][2];
pT[2] = c[0] * pR[2][0] + c[1] * pR[2][1] + c[2] * pR[2][2];
d[0] = (maxval[0] - minval[0])*0.5;
d[1] = (maxval[1] - minval[1])*0.5;
d[2] = (maxval[2] - minval[2])*0.5;
// allocate new boxes
P = RAPID_boxes + RAPID_boxes_inited++;
N = RAPID_boxes + RAPID_boxes_inited++;
// Compute the orienations for the child boxes (eigenvectors of
// covariance matrix). Select the direction of maximum spread to be
// the split axis for each child.
double tR[3][3];
if (n1 > 1)
{
mean_from_accum(P->pT, M1);
covariance_from_accum(C, M1);
if (eigen_and_sort1(tR, C) > 30)
{
// unable to find an orientation. We'll just pick identity.
Midentity(tR);
}
McM(P->pR, tR);
if ((rc = P->split_recurse(t, n1)) != RAPID_OK) return rc;
}
else
{
if ((rc = P->split_recurse(t)) != RAPID_OK) return rc;
}
McM(C, P->pR); MTxM(P->pR, pR, C); // and F1
VmV(c, P->pT, pT); MTxV(P->pT, pR, c);
if ((n-n1) > 1)
{
mean_from_accum(N->pT, M2);
covariance_from_accum (C, M2);
if (eigen_and_sort1(tR, C) > 30)
{
// unable to find an orientation. We'll just pick identity.
Midentity(tR);
}
McM(N->pR, tR);
if ((rc = N->split_recurse(t + n1, n - n1)) != RAPID_OK) return rc;
}
else
{
if ((rc = N->split_recurse(t+n1)) != RAPID_OK) return rc;
}
McM(C, N->pR); MTxM(N->pR, pR, C);
VmV(c, N->pT, pT); MTxV(N->pT, pR, c);
return RAPID_OK;
}
int box::split_recurse(int *t)
{
// For a single triangle, orientation is easily determined.
// The major axis is parallel to the longest edge.
// The minor axis is normal to the triangle.
// The in-between axis is determine by these two.
// this->pR, this->d, and this->pT are set herein.
P = N = 0;
tri *ptr = RAPID_tri + t[0];
// Find the major axis: parallel to the longest edge.
double u12[3], u23[3], u31[3];
// First compute the squared-lengths of each edge
VmV(u12, ptr->p1, ptr->p2);
double d12 = VdotV(u12,u12);
VmV(u23, ptr->p2, ptr->p3);
double d23 = VdotV(u23,u23);
VmV(u31, ptr->p3, ptr->p1);
double d31 = VdotV(u31,u31);
// Find the edge of longest squared-length, normalize it to
// unit length, and put result into a0.
double a0[3];
double l;
if (d12 > d23)
{
if (d12 > d31)
{
l = 1.0 / sqrt(d12);
a0[0] = u12[0] * l;
a0[1] = u12[1] * l;
a0[2] = u12[2] * l;
}
else
{
l = 1.0 / sqrt(d31);
a0[0] = u31[0] * l;
a0[1] = u31[1] * l;
a0[2] = u31[2] * l;
}
}
else
{
if (d23 > d31)
{
l = 1.0 / sqrt(d23);
a0[0] = u23[0] * l;
a0[1] = u23[1] * l;
a0[2] = u23[2] * l;
}
else
{
l = 1.0 / sqrt(d31);
a0[0] = u31[0] * l;
a0[1] = u31[1] * l;
a0[2] = u31[2] * l;
}
}
// Now compute unit normal to triangle, and put into a2.
double a2[3];
VcrossV(a2, u12, u23);
l = 1.0 / Vlength(a2); a2[0] *= l; a2[1] *= l; a2[2] *= l;
// a1 is a2 cross a0.
double a1[3];
VcrossV(a1, a2, a0);
// Now make the columns of this->pR the vectors a0, a1, and a2.
pR[0][0] = a0[0]; pR[0][1] = a1[0]; pR[0][2] = a2[0];
pR[1][0] = a0[1]; pR[1][1] = a1[1]; pR[1][2] = a2[1];
pR[2][0] = a0[2]; pR[2][1] = a1[2]; pR[2][2] = a2[2];
// Now compute the maximum and minimum extents of each vertex
// along each of the box axes. From this we will compute the
// box center and box dimensions.
double minval[3], maxval[3];
double c[3];
MTxV(c, pR, ptr->p1);
minval[0] = maxval[0] = c[0];
minval[1] = maxval[1] = c[1];
minval[2] = maxval[2] = c[2];
MTxV(c, pR, ptr->p2);
minmax(minval[0], maxval[0], c[0]);
minmax(minval[1], maxval[1], c[1]);
minmax(minval[2], maxval[2], c[2]);
MTxV(c, pR, ptr->p3);
minmax(minval[0], maxval[0], c[0]);
minmax(minval[1], maxval[1], c[1]);
minmax(minval[2], maxval[2], c[2]);
// With the max and min data, determine the center point and dimensions
// of the box
c[0] = (minval[0] + maxval[0])*0.5;
c[1] = (minval[1] + maxval[1])*0.5;
c[2] = (minval[2] + maxval[2])*0.5;
pT[0] = c[0] * pR[0][0] + c[1] * pR[0][1] + c[2] * pR[0][2];
pT[1] = c[0] * pR[1][0] + c[1] * pR[1][1] + c[2] * pR[1][2];
pT[2] = c[0] * pR[2][0] + c[1] * pR[2][1] + c[2] * pR[2][2];
d[0] = (maxval[0] - minval[0])*0.5;
d[1] = (maxval[1] - minval[1])*0.5;
d[2] = (maxval[2] - minval[2])*0.5;
// Assign the one triangle to this box
trp = ptr;
return RAPID_OK;
}
//////////////////////////////////////////////////////////////////////
// Overlap
static inline double _max(double a, double b, double c)
{
double t = a;
if (b > t) t = b;
if (c > t) t = c;
return t;
}
static inline double _min(double a, double b, double c)
{
double t = a;
if (b < t) t = b;
if (c < t) t = c;
return t;
}
static int project6(double *ax, double *p1, double *p2, double *p3, double *q1, double *q2, double *q3)
{
double P1 = VdotV(ax, p1);
double P2 = VdotV(ax, p2);
double P3 = VdotV(ax, p3);
double Q1 = VdotV(ax, q1);
double Q2 = VdotV(ax, q2);
double Q3 = VdotV(ax, q3);
double mx1 = _max(P1, P2, P3);
double mn1 = _min(P1, P2, P3);
double mx2 = _max(Q1, Q2, Q3);
double mn2 = _min(Q1, Q2, Q3);
if (mn1 > mx2) return 0;
if (mn2 > mx1) return 0;
return 1;
}
// very robust triangle intersection test
// uses no divisions and works on coplanar triangles
//
// One triangle is (p1,p2,p3). Other is (q1,q2,q3).
// Edges are (e1,e2,e3) and (f1,f2,f3).
// Normals are n1 and m1
// Outwards are (g1,g2,g3) and (h1,h2,h3).
//
// We assume that the triangle vertices are in the same coordinate system.
static int tri_contact (double *P1, double *P2, double *P3, double *Q1, double *Q2, double *Q3)
{
// First thing we do is establish a new c.s. so that p1 is at (0,0,0).
double p1[3], p2[3], p3[3];
double q1[3], q2[3], q3[3];
double e1[3], e2[3], e3[3];
double f1[3], f2[3], f3[3];
double g1[3], g2[3], g3[3];
double h1[3], h2[3], h3[3];
double n1[3], m1[3];
double z[3];
double ef11[3], ef12[3], ef13[3];
double ef21[3], ef22[3], ef23[3];
double ef31[3], ef32[3], ef33[3];
z[0] = 0.0; z[1] = 0.0; z[2] = 0.0;
p1[0] = P1[0] - P1[0]; p1[1] = P1[1] - P1[1]; p1[2] = P1[2] - P1[2];
p2[0] = P2[0] - P1[0]; p2[1] = P2[1] - P1[1]; p2[2] = P2[2] - P1[2];
p3[0] = P3[0] - P1[0]; p3[1] = P3[1] - P1[1]; p3[2] = P3[2] - P1[2];
q1[0] = Q1[0] - P1[0]; q1[1] = Q1[1] - P1[1]; q1[2] = Q1[2] - P1[2];
q2[0] = Q2[0] - P1[0]; q2[1] = Q2[1] - P1[1]; q2[2] = Q2[2] - P1[2];
q3[0] = Q3[0] - P1[0]; q3[1] = Q3[1] - P1[1]; q3[2] = Q3[2] - P1[2];
e1[0] = p2[0] - p1[0]; e1[1] = p2[1] - p1[1]; e1[2] = p2[2] - p1[2];
e2[0] = p3[0] - p2[0]; e2[1] = p3[1] - p2[1]; e2[2] = p3[2] - p2[2];
e3[0] = p1[0] - p3[0]; e3[1] = p1[1] - p3[1]; e3[2] = p1[2] - p3[2];
f1[0] = q2[0] - q1[0]; f1[1] = q2[1] - q1[1]; f1[2] = q2[2] - q1[2];
f2[0] = q3[0] - q2[0]; f2[1] = q3[1] - q2[1]; f2[2] = q3[2] - q2[2];
f3[0] = q1[0] - q3[0]; f3[1] = q1[1] - q3[1]; f3[2] = q1[2] - q3[2];
VcrossV(n1, e1, e2);
VcrossV(m1, f1, f2);
VcrossV(g1, e1, n1);
VcrossV(g2, e2, n1);
VcrossV(g3, e3, n1);
VcrossV(h1, f1, m1);
VcrossV(h2, f2, m1);
VcrossV(h3, f3, m1);
VcrossV(ef11, e1, f1);
VcrossV(ef12, e1, f2);
VcrossV(ef13, e1, f3);
VcrossV(ef21, e2, f1);
VcrossV(ef22, e2, f2);
VcrossV(ef23, e2, f3);
VcrossV(ef31, e3, f1);
VcrossV(ef32, e3, f2);
VcrossV(ef33, e3, f3);
// now begin the series of tests
if (!project6(n1, p1, p2, p3, q1, q2, q3)) return 0;
if (!project6(m1, p1, p2, p3, q1, q2, q3)) return 0;
if (!project6(ef11, p1, p2, p3, q1, q2, q3)) return 0;
if (!project6(ef12, p1, p2, p3, q1, q2, q3)) return 0;
if (!project6(ef13, p1, p2, p3, q1, q2, q3)) return 0;
if (!project6(ef21, p1, p2, p3, q1, q2, q3)) return 0;
if (!project6(ef22, p1, p2, p3, q1, q2, q3)) return 0;
if (!project6(ef23, p1, p2, p3, q1, q2, q3)) return 0;
if (!project6(ef31, p1, p2, p3, q1, q2, q3)) return 0;
if (!project6(ef32, p1, p2, p3, q1, q2, q3)) return 0;
if (!project6(ef33, p1, p2, p3, q1, q2, q3)) return 0;
if (!project6(g1, p1, p2, p3, q1, q2, q3)) return 0;
if (!project6(g2, p1, p2, p3, q1, q2, q3)) return 0;
if (!project6(g3, p1, p2, p3, q1, q2, q3)) return 0;
if (!project6(h1, p1, p2, p3, q1, q2, q3)) return 0;
if (!project6(h2, p1, p2, p3, q1, q2, q3)) return 0;
if (!project6(h3, p1, p2, p3, q1, q2, q3)) return 0;
return 1;
}
/*
This is a test between two boxes, box A and box B. It is assumed that
the coordinate system is aligned and centered on box A. The 3x3
matrix B specifies box B's orientation with respect to box A.
Specifically, the columns of B are the basis vectors (axis vectors) of
box B. The center of box B is located at the vector T. The
dimensions of box B are given in the array b. The orientation and
placement of box A, in this coordinate system, are the identity matrix
and zero vector, respectively, so they need not be specified. The
dimensions of box A are given in array a.
This test operates in two modes, depending on how the library is
compiled. It indicates whether the two boxes are overlapping, by
returning a boolean.
The second version of the routine will return a conservative bounds on
the distance between the polygon sets which the boxes enclose. It is
used when RAPID is being used to estimate the distance between two
models.
*/
static int obb_disjoint(double B[3][3], double T[3], double a[3], double b[3])
{
register double t, s;
register int r;
double Bf[3][3];
const double reps = 1e-6;
// Bf = fabs(B)
Bf[0][0] = myfabs(B[0][0]); Bf[0][0] += reps;
Bf[0][1] = myfabs(B[0][1]); Bf[0][1] += reps;
Bf[0][2] = myfabs(B[0][2]); Bf[0][2] += reps;
Bf[1][0] = myfabs(B[1][0]); Bf[1][0] += reps;
Bf[1][1] = myfabs(B[1][1]); Bf[1][1] += reps;
Bf[1][2] = myfabs(B[1][2]); Bf[1][2] += reps;
Bf[2][0] = myfabs(B[2][0]); Bf[2][0] += reps;
Bf[2][1] = myfabs(B[2][1]); Bf[2][1] += reps;
Bf[2][2] = myfabs(B[2][2]); Bf[2][2] += reps;
// printf("Box test: Bf[3][3], B[3][3], T[3], a[3], b[3]\n");
// if any of these tests are one-sided, then the polyhedra are disjoint
r = 1;
// A1 x A2 = A0
t = myfabs(T[0]);
r &= (t <=
(a[0] + b[0] * Bf[0][0] + b[1] * Bf[0][1] + b[2] * Bf[0][2]));
if (!r) return 1;
// B1 x B2 = B0
s = T[0]*B[0][0] + T[1]*B[1][0] + T[2]*B[2][0];
t = myfabs(s);
r &= ( t <=
(b[0] + a[0] * Bf[0][0] + a[1] * Bf[1][0] + a[2] * Bf[2][0]));
if (!r) return 2;
// A2 x A0 = A1
t = myfabs(T[1]);
r &= ( t <=
(a[1] + b[0] * Bf[1][0] + b[1] * Bf[1][1] + b[2] * Bf[1][2]));
if (!r) return 3;
// A0 x A1 = A2
t = myfabs(T[2]);
r &= ( t <=
(a[2] + b[0] * Bf[2][0] + b[1] * Bf[2][1] + b[2] * Bf[2][2]));
if (!r) return 4;
// B2 x B0 = B1
s = T[0]*B[0][1] + T[1]*B[1][1] + T[2]*B[2][1];
t = myfabs(s);
r &= ( t <=
(b[1] + a[0] * Bf[0][1] + a[1] * Bf[1][1] + a[2] * Bf[2][1]));
if (!r) return 5;
// B0 x B1 = B2
s = T[0]*B[0][2] + T[1]*B[1][2] + T[2]*B[2][2];
t = myfabs(s);
r &= ( t <=
(b[2] + a[0] * Bf[0][2] + a[1] * Bf[1][2] + a[2] * Bf[2][2]));
if (!r) return 6;
// A0 x B0
s = T[2] * B[1][0] - T[1] * B[2][0];
t = myfabs(s);
r &= ( t <=
(a[1] * Bf[2][0] + a[2] * Bf[1][0] +
b[1] * Bf[0][2] + b[2] * Bf[0][1]));
if (!r) return 7;
// A0 x B1
s = T[2] * B[1][1] - T[1] * B[2][1];
t = myfabs(s);
r &= ( t <=
(a[1] * Bf[2][1] + a[2] * Bf[1][1] +
b[0] * Bf[0][2] + b[2] * Bf[0][0]));
if (!r) return 8;
// A0 x B2
s = T[2] * B[1][2] - T[1] * B[2][2];
t = myfabs(s);
r &= ( t <=
(a[1] * Bf[2][2] + a[2] * Bf[1][2] +
b[0] * Bf[0][1] + b[1] * Bf[0][0]));
if (!r) return 9;
// A1 x B0
s = T[0] * B[2][0] - T[2] * B[0][0];
t = myfabs(s);
r &= ( t <=
(a[0] * Bf[2][0] + a[2] * Bf[0][0] +
b[1] * Bf[1][2] + b[2] * Bf[1][1]));
if (!r) return 10;
// A1 x B1
s = T[0] * B[2][1] - T[2] * B[0][1];
t = myfabs(s);
r &= ( t <=
(a[0] * Bf[2][1] + a[2] * Bf[0][1] +
b[0] * Bf[1][2] + b[2] * Bf[1][0]));
if (!r) return 11;
// A1 x B2
s = T[0] * B[2][2] - T[2] * B[0][2];
t = myfabs(s);
r &= (t <=
(a[0] * Bf[2][2] + a[2] * Bf[0][2] +
b[0] * Bf[1][1] + b[1] * Bf[1][0]));
if (!r) return 12;
// A2 x B0
s = T[1] * B[0][0] - T[0] * B[1][0];
t = myfabs(s);
r &= (t <=
(a[0] * Bf[1][0] + a[1] * Bf[0][0] +
b[1] * Bf[2][2] + b[2] * Bf[2][1]));
if (!r) return 13;
// A2 x B1
s = T[1] * B[0][1] - T[0] * B[1][1];
t = myfabs(s);
r &= ( t <=
(a[0] * Bf[1][1] + a[1] * Bf[0][1] +
b[0] * Bf[2][2] + b[2] * Bf[2][0]));
if (!r) return 14;
// A2 x B2
s = T[1] * B[0][2] - T[0] * B[1][2];
t = myfabs(s);
r &= ( t <=
(a[0] * Bf[1][2] + a[1] * Bf[0][2] +
b[0] * Bf[2][1] + b[1] * Bf[2][0]));
if (!r) return 15;
return 0; // should equal 0
}
//////////////////////////////////////////////////////////////////////
// Collide
static double RAPID_mR[3][3];
static double RAPID_mT[3];
static double RAPID_ms;
static int RAPID_first_contact;
static int RAPID_num_box_tests;
static int RAPID_num_tri_tests;
static int RAPID_num_contacts;
static int RAPID_num_cols_alloced = 0;
static collision_pair *RAPID_contact = 0;
static int add_collision(int id1, int id2)
{
if (!RAPID_contact)
{
RAPID_contact = new collision_pair[10];
if (!RAPID_contact)
return RAPID_ERR_COLLIDE_OUT_OF_MEMORY;
RAPID_num_cols_alloced = 10;
RAPID_num_contacts = 0;
}
if (RAPID_num_contacts == RAPID_num_cols_alloced)
{
collision_pair *t = new collision_pair[RAPID_num_cols_alloced*2];
if (!t)
{
return RAPID_ERR_COLLIDE_OUT_OF_MEMORY;
}
RAPID_num_cols_alloced *= 2;
for(int i=0; i<RAPID_num_contacts; i++) t[i] = RAPID_contact[i];
delete [] RAPID_contact;
RAPID_contact = t;
}
RAPID_contact[RAPID_num_contacts].id1 = id1;
RAPID_contact[RAPID_num_contacts].id2 = id2;
RAPID_num_contacts++;
return RAPID_OK;
}
static int tri_contact(box *b1, box *b2)
{
// assume just one triangle in each box.
// the vertices of the tri in b2 is in model1 C.S. The vertices of
// the other triangle is in model2 CS. Use RAPID_mR, RAPID_mT, and
// RAPID_ms to transform into model2 CS.
double i1[3];
double i2[3];
double i3[3];
int rc; // return code
sMxVpV(i1, RAPID_ms, RAPID_mR, b1->trp->p1, RAPID_mT);
sMxVpV(i2, RAPID_ms, RAPID_mR, b1->trp->p2, RAPID_mT);
sMxVpV(i3, RAPID_ms, RAPID_mR, b1->trp->p3, RAPID_mT);
RAPID_num_tri_tests++;
int f = tri_contact(i1, i2, i3, b2->trp->p1,b2->trp->p2, b2->trp->p3);
if (f)
{
// add_collision may be unable to allocate enough memory,
// so be prepared to pass along an OUT_OF_MEMORY return code.
if ((rc = add_collision(b1->trp->id, b2->trp->id)) != RAPID_OK)
return rc;
}
return RAPID_OK;
}
static int collide_recursive(box *b1, box *b2, double R[3][3], double T[3], double s)
{
double d[3]; // temp storage for scaled dimensions of box b2.
int rc; // return codes
if (1)
{
// printf("Next collision: b1, b2, R, T, s\n");
// printf("b1=%x, b2=%x\n", b1, b2);
// Mprint(R);
// Vprint(T);
// printf("%lf\n", s);
if (RAPID_first_contact && (RAPID_num_contacts > 0))
return RAPID_OK;
// test top level
RAPID_num_box_tests++;
int f1;
d[0] = s * b2->d[0];
d[1] = s * b2->d[1];
d[2] = s * b2->d[2];
f1 = obb_disjoint(R, T, b1->d, d);
// if (f1 != 0)
// printf("BOX TEST %d DISJOINT! (code %d)\n", RAPID_num_box_tests, f1);
// else
// printf("BOX TEST %d OVERLAP! (code %d)\n", RAPID_num_box_tests, f1);
if (f1 != 0)
return RAPID_OK; // stop processing this test, go to top of loop
// contact between boxes
if (b1->leaf() && b2->leaf())
{
// it is a leaf pair - compare the polygons therein
// tri_contact uses the model-to-model transforms stored in
// RAPID_mR, RAPID_mT, RAPID_ms.
// this will pass along any OUT_OF_MEMORY return codes which
// may be generated.
return tri_contact(b1, b2);
}
double U[3];
double cR[3][3], cT[3], cs;
// Currently, the transform from model 2 to model 1 space is
// given by [B T s], where y = [B T s].x = s.B.x + T.
if (b2->leaf() || (!b1->leaf() && (b1->size() > b2->size())))
{
// here we descend to children of b1. The transform from
// a child of b1 to b1 is stored in [b1->N->pR,b1->N->pT],
// but we will denote it [B1 T1 1] for short. Notice that
// children boxes always have same scaling as parent, so s=1
// for such nested transforms.
// Here, we compute [B1 T1 1]'[B T s] = [B1'B B1'(T-T1) s]
// for each child, and store the transform into the collision
// test queue.
MTxM(cR, b1->N->pR, R);
VmV(U, T, b1->N->pT); MTxV(cT, b1->N->pR, U);
cs = s;
if ((rc = collide_recursive(b1->N, b2, cR, cT, cs)) != RAPID_OK)
return rc;
MTxM(cR, b1->P->pR, R);
VmV(U, T, b1->P->pT); MTxV(cT, b1->P->pR, U);
cs = s;
if ((rc = collide_recursive(b1->P, b2, cR, cT, cs)) != RAPID_OK)
return rc;
return RAPID_OK;
}
else
{
// here we descend to the children of b2. See comments for
// other 'if' clause for explanation.
MxM(cR, R, b2->N->pR);
sMxVpV(cT, s, R, b2->N->pT, T);
cs = s;
if ((rc = collide_recursive(b1, b2->N, cR, cT, cs)) != RAPID_OK)
return rc;
MxM(cR, R, b2->P->pR);
sMxVpV(cT, s, R, b2->P->pT, T);
cs = s;
if ((rc = collide_recursive(b1, b2->P, cR, cT, cs)) != RAPID_OK)
return rc;
return RAPID_OK;
}
}
return RAPID_OK;
}
// return TRUE if objects collide
BOOL CollisionCheck(double R1[3][3], double T1[3], CRModel *RAPID_model1,
double R2[3][3], double T2[3], CRModel *RAPID_model2, int flag)
{
int ret = RAPID_Collide(R1, T1, 1.0, RAPID_model1, R2, T2, 1.0, RAPID_model2, flag);
return (ret == RAPID_OK) && (RAPID_num_contacts > 0);
}
static int RAPID_Collide(double R1[3][3], double T1[3], double s1, CRModel *RAPID_model1,
double R2[3][3], double T2[3], double s2, CRModel *RAPID_model2, int flag)
{
if (!RAPID_initialized) RAPID_initialize();
if (RAPID_model1->build_state != RAPID_BUILD_STATE_PROCESSED)
return RAPID_ERR_UNPROCESSED_MODEL;
if (RAPID_model2->build_state != RAPID_BUILD_STATE_PROCESSED)
return RAPID_ERR_UNPROCESSED_MODEL;
box *b1 = RAPID_model1->b;
box *b2 = RAPID_model2->b;
RAPID_first_contact = 0;
if (flag == RAPID_FIRST_CONTACT) RAPID_first_contact = 1;
double tR1[3][3], tR2[3][3], R[3][3];
double tT1[3], tT2[3], T[3], U[3];
double s;
// [R1,T1,s1] and [R2,T2,s2] are how the two triangle sets
// (i.e. models) are positioned in world space. [tR1,tT1,s1] and
// [tR2,tT2,s2] are how the top level boxes are positioned in world
// space
MxM(tR1, R1, b1->pR); // tR1 = R1 * b1->pR;
sMxVpV(tT1, s1, R1, b1->pT, T1); // tT1 = s1 * R1 * b1->pT + T1;
MxM(tR2, R2, b2->pR); // tR2 = R2 * b2->pR;
sMxVpV(tT2, s2, R2, b2->pT, T2); // tT2 = s2 * R2 * b2->pT + T2;
// (R,T,s) is the placement of b2's top level box within
// the coordinate system of b1's top level box.
MTxM(R, tR1, tR2); // R = tR1.T()*tR2;
VmV(U, tT2, tT1); sMTxV(T, 1.0/s1, tR1, U); // T = tR1.T()*(tT2-tT1)/s1;
s = s2/s1;
// To transform tri's from model1's CS to model2's CS use this:
// x2 = ms . mR . x1 + mT
{
MTxM(RAPID_mR, R2, R1);
VmV(U, T1, T2); sMTxV(RAPID_mT, 1.0/s2, R2, U);
RAPID_ms = s1/s2;
}
// reset the report fields
RAPID_num_box_tests = 0;
RAPID_num_tri_tests = 0;
RAPID_num_contacts = 0;
// make the call
return collide_recursive(b1, b2, R, T, s);
}
static void RAPID_initialize()
{
RAPID_num_box_tests = 0;
RAPID_num_contacts = 0;
RAPID_contact = 0;
RAPID_initialized = TRUE;
}