leocad/common/pieceinf.cpp
2011-09-07 21:06:51 +00:00

1946 lines
49 KiB
C++

// Information about how to draw a piece and some more stuff.
//
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <math.h>
#include "opengl.h"
#include "texture.h"
#include "pieceinf.h"
#include "project.h"
#include "globals.h"
#include "matrix.h"
#include "vector.h"
#include "defines.h"
#include "config.h"
#include "library.h"
#include "lc_application.h"
#define SIDES 16
static float sintbl[SIDES];
static float costbl[SIDES];
#define LC_MESH 1
#define LC_STUD 2
#define LC_STUD2 3
#define LC_STUD3 4
#define LC_STUD4 5
// measurements (in centimeters)
//#define LC_FLAT_HEIGHT 0.32f
//#define LC_BRICK_HEIGHT (3*LC_FLAT_HEIGHT)
//#define LC_BASEPLATE_HEIGHT (LC_FLAT_HEIGHT/2)
//#define LC_HALF_WIDE 0.4f
//#define LC_ONE_WIDE 0.8f
//#define LC_BRICK_WALL 0.125f
#define LC_STUD_HEIGHT 0.16f
#define LC_STUD_RADIUS 0.24f
#define LC_KNOB_RADIUS 0.32f
//#define LC_STUD_TECH_RADIUS (LC_FLAT_HEIGHT/2)
static void GetFrustumPlanes (float planes[6][4])
{
// Storage for the Modelview, Projection and their multiplication (Frustum) matrix.
float mv[16], pj[16], fm[16];
glGetFloatv(GL_MODELVIEW_MATRIX, mv);
glGetFloatv(GL_PROJECTION_MATRIX, pj);
fm[0] = pj[0] * mv[0] + pj[4] * mv[1] + pj[8] * mv[2] + pj[12] * mv[3];
fm[4] = pj[0] * mv[4] + pj[4] * mv[5] + pj[8] * mv[6] + pj[12] * mv[7];
fm[8] = pj[0] * mv[8] + pj[4] * mv[9] + pj[8] * mv[10] + pj[12] * mv[11];
fm[12] = pj[0] * mv[12] + pj[4] * mv[13] + pj[8] * mv[14] + pj[12] * mv[15];
fm[1] = pj[1] * mv[0] + pj[5] * mv[1] + pj[9] * mv[2] + pj[13] * mv[3];
fm[5] = pj[1] * mv[4] + pj[5] * mv[5] + pj[9] * mv[6] + pj[13] * mv[7];
fm[9] = pj[1] * mv[8] + pj[5] * mv[9] + pj[9] * mv[10] + pj[13] * mv[11];
fm[13] = pj[1] * mv[12] + pj[5] * mv[13] + pj[9] * mv[14] + pj[13] * mv[15];
fm[2] = pj[2] * mv[0] + pj[6] * mv[1] + pj[10] * mv[2] + pj[14] * mv[3];
fm[6] = pj[2] * mv[4] + pj[6] * mv[5] + pj[10] * mv[6] + pj[14] * mv[7];
fm[10] = pj[2] * mv[8] + pj[6] * mv[9] + pj[10] * mv[10] + pj[14] * mv[11];
fm[14] = pj[2] * mv[12] + pj[6] * mv[13] + pj[10] * mv[14] + pj[14] * mv[15];
fm[3] = pj[3] * mv[0] + pj[7] * mv[1] + pj[11] * mv[2] + pj[15] * mv[3];
fm[7] = pj[3] * mv[4] + pj[7] * mv[5] + pj[11] * mv[6] + pj[15] * mv[7];
fm[11] = pj[3] * mv[8] + pj[7] * mv[9] + pj[11] * mv[10] + pj[15] * mv[11];
fm[15] = pj[3] * mv[12] + pj[7] * mv[13] + pj[11] * mv[14] + pj[15] * mv[15];
planes[0][0] = (fm[0] - fm[3]) * -1;
planes[0][1] = (fm[4] - fm[7]) * -1;
planes[0][2] = (fm[8] - fm[11]) * -1;
planes[0][3] = (fm[12] - fm[15]) * -1;
planes[1][0] = fm[0] + fm[3];
planes[1][1] = fm[4] + fm[7];
planes[1][2] = fm[8] + fm[11];
planes[1][3] = fm[12] + fm[15];
planes[2][0] = (fm[1] - fm[3]) * -1;
planes[2][1] = (fm[5] - fm[7]) * -1;
planes[2][2] = (fm[9] - fm[11]) * -1;
planes[2][3] = (fm[13] - fm[15]) * -1;
planes[3][0] = fm[1] + fm[3];
planes[3][1] = fm[5] + fm[7];
planes[3][2] = fm[9] + fm[11];
planes[3][3] = fm[13] + fm[15];
planes[4][0] = (fm[2] - fm[3]) * -1;
planes[4][1] = (fm[6] - fm[7]) * -1;
planes[4][2] = (fm[10] - fm[11]) * -1;
planes[4][3] = (fm[14] - fm[15]) * -1;
planes[5][0] = fm[2] + fm[3];
planes[5][1] = fm[6] + fm[7];
planes[5][2] = fm[10] + fm[11];
planes[5][3] = fm[14] + fm[15];
}
bool BoxOutsideFrustum (float Dimensions[6])
{
float d, planes[6][4], verts[8][3] = {
{ Dimensions[0], Dimensions[1], Dimensions[5] },
{ Dimensions[3], Dimensions[1], Dimensions[5] },
{ Dimensions[0], Dimensions[1], Dimensions[2] },
{ Dimensions[3], Dimensions[4], Dimensions[5] },
{ Dimensions[3], Dimensions[4], Dimensions[2] },
{ Dimensions[0], Dimensions[4], Dimensions[2] },
{ Dimensions[0], Dimensions[4], Dimensions[5] },
{ Dimensions[3], Dimensions[1], Dimensions[2] } };
GetFrustumPlanes (planes);
for (int i = 0; i < 6; i++)
for (int j = 0; j < 8; j++)
{
d = verts[j][0]*planes[i][0] + verts[j][1]*planes[i][1] + verts[j][2]*planes[i][2] + planes[i][3];
if (d < -0.001f)
return true;
}
return false;
}
// Convert a color from LDraw to LeoCAD
unsigned char ConvertColor(int c)
{
if (c > 255) c -= 256;
switch (c)
{
case 0: return 9; // black (black)
case 1: return 4; // blue (blue)
case 2: return 2; // green (green)
case 3: return 5; // dark cyan
case 4: return 0; // red (red)
case 5: return 11; // magenta
case 6: return 10; // brown (brown)
case 7: return 22; // gray (gray)
case 8: return 8; // dark gray (dark gray)
case 9: return 5; // light blue ()
case 10: return 3; // light green (light green)
case 11: return 5; // cyan (light blue)
case 12: return 1; // light red
case 13: return 11; // pink (pink)
case 14: return 6; // yellow (yellow)
case 15: return 7; // white (white)
case 16: return LC_COL_DEFAULT; // special case
case 24: return LC_COL_EDGES; // edge
case 32: return 9; // black
case 33: return 18; // clear blue
case 34: return 16; // clear green
case 35: return 5; // dark cyan
case 36: return 14; // clear red
case 37: return 11; // magenta
case 38: return 10; // brown
case 39: return 21; // clear white (clear gray)
case 40: return 8; // dark gray
case 41: return 19; // clear light blue
case 42: return 17; // clear light green
case 43: return 19; // clear cyan (clear light blue)
case 44: return 15; // clear light red ??
case 45: return 11; // pink
case 46: return 20; // clear yellow
case 47: return 21; // clear white
case 70: return 10; // maroon (326)
case 78: return 13; // gold (334)
case 110: return 1; // orange (366 from fire logo pattern)
case 126: return 23;// tan (382)
case 127: return 27;// silver/chrome (383)
case 175: return 3; // mint green (431)
case 206: return 1; // orange (462)
case 238: return 6; // light yellow (494 eletric contacts)
case 239: return 6; // light yellow (495)
case 247: return 27;// 503 chrome
case 250: return 3; // 506 mint (Belville)
case 253: return 11;// 509 rose (e.g. in Paradisa)
// taken from l2p.doc but not verified
case 178: return 11;// 434 dark cyan (e.g. in New Technic Models)
case 254: return 6; // 510 light yellow (e.g. in Belville)
}
return 9; // black
}
/////////////////////////////////////////////////////////////////////////////
// PieceInfo construction/destruction
PieceInfo::PieceInfo ()
{
// Do nothing, initialization is done by LoadIndex ()
}
PieceInfo::~PieceInfo ()
{
FreeInformation ();
}
/////////////////////////////////////////////////////////////////////////////
// File I/O
void PieceInfo::LoadIndex (File& file)
{
static bool init = false;
short sh[6];
short scale;
// Initialize sin/cos table
if (!init)
{
for (int i = 0; i < SIDES; i++)
{
sintbl[i] = (float)sin((PI2*i)/(SIDES));
costbl[i] = (float)cos((PI2*i)/(SIDES));
}
init = true;
}
// TODO: don't change ref. if we're reloading ?
m_nRef = 0;
m_nVertexCount = 0;
m_fVertexArray = NULL;
m_nConnectionCount = 0;
m_pConnections = NULL;
m_nGroupCount = 0;
m_pGroups = NULL;
m_nTextureCount = 0;
m_pTextures = NULL;
m_nBoxList = 0;
file.Read (m_strName, LC_PIECE_NAME_LEN);
file.Read (m_strDescription, 64);
m_strDescription[64] = '\0';
file.ReadShort (sh, 6);
file.ReadByte (&m_nFlags, 1);
lcuint32 Groups; file.ReadLong (&Groups, 1);
file.ReadLong (&m_nOffset, 1);
file.ReadLong (&m_nSize, 1);
if (m_nFlags & LC_PIECE_SMALL)
scale = 10000;
else if (m_nFlags & LC_PIECE_MEDIUM)
scale = 1000;
else
scale = 100;
m_fDimensions[0] = (float)sh[0]/scale;
m_fDimensions[1] = (float)sh[1]/scale;
m_fDimensions[2] = (float)sh[2]/scale;
m_fDimensions[3] = (float)sh[3]/scale;
m_fDimensions[4] = (float)sh[4]/scale;
m_fDimensions[5] = (float)sh[5]/scale;
}
void PieceInfo::AddRef()
{
if (m_nRef == 0)
LoadInformation();
m_nRef++;
for (int i = 0; i < m_nTextureCount; i++)
if (m_pTextures[i].texture != NULL)
m_pTextures[i].texture->AddRef(false);
// TODO: get correct filter paramenter
}
void PieceInfo::DeRef()
{
m_nRef--;
for (int i = 0; i < m_nTextureCount; i++)
if (m_pTextures[i].texture != NULL)
m_pTextures[i].texture->DeRef();
if (m_nRef == 0)
FreeInformation();
}
void PieceInfo::CreateBoxDisplayList()
{
if (m_nBoxList)
return;
// Create a display for the bounding box.
m_nBoxList = glGenLists(1);
glNewList(m_nBoxList, GL_COMPILE);
glEnableClientState(GL_VERTEX_ARRAY);
float box[24][3] =
{
{ m_fDimensions[0], m_fDimensions[1], m_fDimensions[2] },
{ m_fDimensions[3], m_fDimensions[1], m_fDimensions[2] },
{ m_fDimensions[3], m_fDimensions[4], m_fDimensions[2] },
{ m_fDimensions[0], m_fDimensions[4], m_fDimensions[2] },
{ m_fDimensions[0], m_fDimensions[1], m_fDimensions[5] },
{ m_fDimensions[0], m_fDimensions[4], m_fDimensions[5] },
{ m_fDimensions[3], m_fDimensions[4], m_fDimensions[5] },
{ m_fDimensions[3], m_fDimensions[1], m_fDimensions[5] },
{ m_fDimensions[3], m_fDimensions[4], m_fDimensions[2] },
{ m_fDimensions[3], m_fDimensions[1], m_fDimensions[2] },
{ m_fDimensions[3], m_fDimensions[1], m_fDimensions[5] },
{ m_fDimensions[3], m_fDimensions[4], m_fDimensions[5] },
{ m_fDimensions[0], m_fDimensions[4], m_fDimensions[5] },
{ m_fDimensions[0], m_fDimensions[1], m_fDimensions[5] },
{ m_fDimensions[0], m_fDimensions[1], m_fDimensions[2] },
{ m_fDimensions[0], m_fDimensions[4], m_fDimensions[2] },
{ m_fDimensions[0], m_fDimensions[1], m_fDimensions[5] },
{ m_fDimensions[3], m_fDimensions[1], m_fDimensions[5] },
{ m_fDimensions[3], m_fDimensions[1], m_fDimensions[2] },
{ m_fDimensions[0], m_fDimensions[1], m_fDimensions[2] },
{ m_fDimensions[0], m_fDimensions[4], m_fDimensions[2] },
{ m_fDimensions[3], m_fDimensions[4], m_fDimensions[2] },
{ m_fDimensions[3], m_fDimensions[4], m_fDimensions[5] },
{ m_fDimensions[0], m_fDimensions[4], m_fDimensions[5] }
};
glVertexPointer(3, GL_FLOAT, 0, box);
glDrawArrays(GL_QUADS, 0, 24);
glEndList();
}
void PieceInfo::LoadInformation()
{
FileDisk bin;
char filename[LC_MAXPATH];
CONNECTIONINFO* pConnection;
DRAWGROUP* pGroup;
void* buf;
lcuint32 verts, *longs, fixverts;
lcuint16 *ushorts, sh;
lcuint8 *bytes, *tmp, bt;
float scale, shift;
lcint16* shorts;
int i, j;
// We don't want memory leaks.
FreeInformation ();
// Open pieces.bin and buffer the information we need.
strcpy (filename, lcGetPiecesLibrary()->GetLibraryPath());
strcat (filename, "pieces.bin");
if (!bin.Open (filename, "rb"))
return;
buf = malloc(m_nSize);
bin.Seek(m_nOffset, SEEK_SET);
bin.Read(buf, m_nSize);
bin.Close();
shift = 1.0f/(1<<14);
scale = 0.01f;
if (m_nFlags & LC_PIECE_MEDIUM) scale = 0.001f;
if (m_nFlags & LC_PIECE_SMALL) scale = 0.0001f;
longs = (lcuint32*)buf;
fixverts = verts = LCUINT32(*longs);
bytes = (unsigned char*)(longs + 1);
bytes += verts * sizeof(lcint16) * 3;
// Read connections
m_nConnectionCount = LCUINT16(*((lcuint16*)bytes));
bytes += sizeof (lcuint16);
m_pConnections = (CONNECTIONINFO*)malloc (m_nConnectionCount * sizeof(CONNECTIONINFO));
sh = m_nConnectionCount;
for (pConnection = m_pConnections; sh--; pConnection++)
{
pConnection->type = *bytes;
bytes++;
shorts = (lcint16*)bytes;
pConnection->center[0] = (float)(LCINT16(*shorts))*scale;
shorts++;
pConnection->center[1] = (float)(LCINT16(*shorts))*scale;
shorts++;
pConnection->center[2] = (float)(LCINT16(*shorts))*scale;
shorts++;
pConnection->normal[0] = (float)(LCINT16(*shorts))*shift;
shorts++;
pConnection->normal[1] = (float)(LCINT16(*shorts))*shift;
shorts++;
pConnection->normal[2] = (float)(LCINT16(*shorts))*shift;
shorts++;
bytes = (unsigned char*)shorts;
}
// Load textures
m_nTextureCount = *bytes;
if (m_nTextureCount > 0)
m_pTextures = (TEXTURE*)malloc(m_nTextureCount*sizeof(TEXTURE));
bytes++;
for (sh = 0; sh < m_nTextureCount; sh++)
{
char name[9];
TEXTURE* tex = &m_pTextures[sh];
tex->color = ConvertColor(*bytes);
bytes++;
strcpy(name, (char*)bytes);
tex->texture = lcGetPiecesLibrary()->FindTexture(name);
shorts = (lcint16*)(bytes + 8);
for (i = 0; i < 4; i++)
{
tex->vertex[i][0] = (float)LCINT16(shorts[0])*scale;
tex->vertex[i][1] = (float)LCINT16(shorts[1])*scale;
tex->vertex[i][2] = (float)LCINT16(shorts[2])*scale;
shorts += 3;
}
for (i = 0; i < 4; i++)
{
tex->coords[i][0] = (float)LCINT16(shorts[0]);
tex->coords[i][1] = (float)LCINT16(shorts[1]);
shorts += 2;
}
bytes += 8 + 20*sizeof(lcuint16);
}
// Read groups
m_nGroupCount = LCUINT16(*((lcuint16*)bytes));
bytes += sizeof(lcuint16);
m_pGroups = (DRAWGROUP*)malloc(sizeof(DRAWGROUP)*m_nGroupCount);
memset(m_pGroups, 0, sizeof(DRAWGROUP)*m_nGroupCount);
// First we need to know the number of vertexes
tmp = bytes;
sh = m_nGroupCount;
lcuint32 quads = 0, fixquads = 0;
while (sh--)
{
bt = *bytes;
bytes++;
bytes += bt*sizeof(lcuint16);
while (*bytes)
{
if (*bytes == LC_MESH)
{
if ((fixverts > 65535) || (m_nFlags & LC_PIECE_LONGDATA))
{
lcuint32 colors, *p;
p = (lcuint32*)(bytes + 1);
colors = LCUINT32(*p);
p++;
while (colors--)
{
p++; // color code
quads += LCUINT32(*p);
fixquads += LCUINT32(*p);
p += LCUINT32(*p) + 1;
p += LCUINT32(*p) + 1;
p += LCUINT32(*p) + 1;
}
bytes = (unsigned char*)p;
}
else
{
lcuint16 colors, *p;
p = (lcuint16*)(bytes + 1);
colors = LCUINT16(*p);
p++;
while (colors--)
{
p++; // color code
quads += LCUINT16(*p);
fixquads += LCUINT16(*p);
p += LCUINT16(*p) + 1;
p += LCUINT16(*p) + 1;
p += LCUINT16(*p) + 1;
}
bytes = (unsigned char*)p;
}
}
if (*bytes == LC_STUD)
{
verts += (2*SIDES)+1;
quads += 4*SIDES;
bytes += 2*sizeof(unsigned char) + 12*sizeof(float);
}
if (*bytes == LC_STUD2)
{
verts += 4*SIDES;
quads += 12*SIDES;
bytes += 2*sizeof(unsigned char) + 12*sizeof(float);
}
if (*bytes == LC_STUD3)
{
verts += (2*SIDES)+1;
quads += 4*SIDES;
bytes += 2*sizeof(unsigned char) + 12*sizeof(float);
}
if (*bytes == LC_STUD4)
{
verts += 4*SIDES;
quads += 12*SIDES;
bytes += 2*sizeof(unsigned char) + 12*sizeof(float);
}
}
bytes++; // should be 0
}
m_fVertexArray = (float*)malloc(3*sizeof(float)*verts);
m_nVertexCount = verts;
if ((verts > 65535) || (quads > 65535) || (fixquads > 65535))
{
if ((m_nFlags & LC_PIECE_LONGDATA) == 0)
{
m_nFlags |= LC_PIECE_LONGDATA | LC_PIECE_LONGDATA_RUNTIME;
}
}
else
m_nFlags &= ~(LC_PIECE_LONGDATA | LC_PIECE_LONGDATA_RUNTIME);
// Copy the 'fixed' vertexes
shorts = (lcint16*)(longs + 1);
for (verts = 0; verts < LCUINT32(*longs); verts++)
{
m_fVertexArray[verts*3] = (float)LCINT16(*shorts)*scale;
shorts++;
m_fVertexArray[verts*3+1] = (float)LCINT16(*shorts)*scale;
shorts++;
m_fVertexArray[verts*3+2] = (float)LCINT16(*shorts)*scale;
shorts++;
}
// Read groups
bytes = tmp;
sh = m_nGroupCount;
for (pGroup = m_pGroups; sh--; pGroup++)
{
bt = *bytes;
bytes++;
pGroup->connections[bt] = 0xFFFF;
while(bt--)
{
lcuint16 tmp = LCUINT16(*((lcuint16*)bytes));
pGroup->connections[bt] = tmp;
bytes += sizeof(lcuint16);
}
// Currently there's only one type of drawinfo (mesh or stud)
// per group but this will change in the future.
switch (*bytes)
{
case LC_MESH:
if ((fixverts > 65535) || (fixquads > 65535))
{
lcuint32 colors, *p;
bytes++;
p = (lcuint32*)bytes;
*p = LCUINT32(*p);
colors = *p;
p++;
while (colors--)
{
*p = ConvertColor(LCUINT32(*p));
p++; // color code
#ifdef LC_BIG_ENDIAN
int f;
f = LCUINT32(*p) + 1;
while (f--) { *p = LCUINT32(*p); p++; };
f = LCUINT32(*p) + 1;
while (f--) { *p = LCUINT32(*p); p++; };
f = LCUINT32(*p) + 1;
while (f--) { *p = LCUINT32(*p); p++; };
#else
p += LCUINT32(*p) + 1;
p += LCUINT32(*p) + 1;
p += LCUINT32(*p) + 1;
#endif
}
i = (unsigned char*)p - bytes;
pGroup->drawinfo = malloc(i);
memcpy(pGroup->drawinfo, bytes, i);
bytes = (unsigned char*)p;
}
else
{
lcuint16 colors, *p;
bytes++;
p = (lcuint16*)bytes;
*p = LCUINT16(*p);
colors = *p;
p++;
while (colors--)
{
*p = ConvertColor(LCUINT16(*p));
p++; // color code
#ifdef LC_BIG_ENDIAN
int f;
f = LCUINT16(*p) + 1;
while (f--) { *p = LCUINT16(*p); p++; };
f = LCUINT16(*p) + 1;
while (f--) { *p = LCUINT16(*p); p++; };
f = LCUINT16(*p) + 1;
while (f--) { *p = LCUINT16(*p); p++; };
#else
p += *p + 1;
p += *p + 1;
p += *p + 1;
#endif
}
i = (unsigned char*)p - bytes;
if (m_nFlags & LC_PIECE_LONGDATA)
{
pGroup->drawinfo = malloc(i*sizeof(lcuint32)/sizeof(lcuint16));
longs = (lcuint32*)pGroup->drawinfo;
for (ushorts = (lcuint16*)bytes; ushorts != p; ushorts++, longs++)
*longs = *ushorts;//LCUINT16(*ushorts);
}
else
{
pGroup->drawinfo = malloc(i);
memcpy(pGroup->drawinfo, bytes, i);
}
bytes = (unsigned char*)p;
}
break;
case LC_STUD:
{
int size;
Matrix mat;
for (i = 0; i < 12; i++)
((float*)(bytes+2))[i] = LCFLOAT (((float*)(bytes+2))[i]);
mat.FromPacked ((float*)(bytes+2));
lcuint16 color = ConvertColor(*(bytes+1));
// Create the vertexes
for (i = 0; i < SIDES; i++)
{
m_fVertexArray[(verts+i+SIDES)*3] =
m_fVertexArray[(verts+i)*3] =
LC_STUD_RADIUS * costbl[i];
m_fVertexArray[(verts+i+SIDES)*3+1] =
m_fVertexArray[(verts+i)*3+1] =
LC_STUD_RADIUS * sintbl[i];
m_fVertexArray[(verts+i)*3+2] = 0;
m_fVertexArray[(verts+i+SIDES)*3+2] = LC_STUD_HEIGHT;
}
m_fVertexArray[(verts+2*SIDES)*3] = 0;
m_fVertexArray[(verts+2*SIDES)*3+1] = 0;
m_fVertexArray[(verts+2*SIDES)*3+2] = LC_STUD_HEIGHT;
mat.TransformPoints(&m_fVertexArray[verts*3], 2*SIDES+1);
// colors + 2*num_prim + sides*prims
size = 9+SIDES*11;
if (m_nFlags & LC_PIECE_LONGDATA)
{
pGroup->drawinfo = malloc(sizeof(lcuint32)*size);
longs = (lcuint32*)pGroup->drawinfo;
longs[0] = 2; // colors
longs[1] = color;
longs[2] = SIDES*4;
j = 3;
for (i = 0; i < SIDES; i++)
{
longs[3+i*4] = (lcuint32)verts + i;
if (i == SIDES-1)
{
longs[4+i*4] = (lcuint32)verts;
longs[5+i*4] = (lcuint32)verts + SIDES;
}
else
{
longs[4+i*4] = (lcuint32)verts + i + 1;
longs[5+i*4] = (lcuint32)verts + SIDES + i + 1;
}
longs[6+i*4] = (lcuint32)verts + SIDES + i;
}
j += 4*SIDES;
longs[j] = SIDES*3;
j++;
for (i = 0; i < SIDES; i++)
{
longs[j+i*3] = (lcuint16)verts + 2*SIDES;
longs[1+j+i*3] = (lcuint16)verts + SIDES + i;
if (i == SIDES-1)
longs[2+j+i*3] = (lcuint16)verts + SIDES;
else
longs[2+j+i*3] = (lcuint16)verts + SIDES + i + 1;
}
j += 3*SIDES;
longs[j] = 0; j++; // lines
longs[j] = LC_COL_EDGES; j++; // color
longs[j] = 0; j++; // quads
longs[j] = 0; j++; // tris
longs[j] = 4*SIDES; j++;
for (i = 0; i < SIDES; i++)
{
longs[j+i*4] = (lcuint32)verts + i;
if (i == SIDES-1)
longs[1+j+i*4] = (lcuint32)verts;
else
longs[1+j+i*4] = (lcuint32)verts + i + 1;
longs[2+j+i*4] = longs[j+i*4] + SIDES;
longs[3+j+i*4] = longs[1+j+i*4] + SIDES;
}
}
else
{
pGroup->drawinfo = malloc(sizeof(lcuint16)*size);
ushorts = (lcuint16*)pGroup->drawinfo;
ushorts[0] = 2; // colors
ushorts[1] = color;
ushorts[2] = SIDES*4;
j = 3;
for (i = 0; i < SIDES; i++)
{
ushorts[3+i*4] = (lcuint16)(verts + i);
if (i == SIDES-1)
{
ushorts[4+i*4] = (lcuint16)verts;
ushorts[5+i*4] = (lcuint16)verts + SIDES;
}
else
{
ushorts[4+i*4] = (lcuint16)verts + i + 1;
ushorts[5+i*4] = (lcuint16)verts + SIDES + i + 1;
}
ushorts[6+i*4] = (lcuint16)verts + SIDES + i;
}
j += 4*SIDES;
ushorts[j] = SIDES*3;
j++;
for (i = 0; i < SIDES; i++)
{
ushorts[j+i*3] = (lcuint16)verts + 2*SIDES;
ushorts[1+j+i*3] = (lcuint16)verts + SIDES + i;
if (i == SIDES-1)
ushorts[2+j+i*3] = (lcuint16)verts + SIDES;
else
ushorts[2+j+i*3] = (lcuint16)verts + SIDES + i + 1;
}
j += 3*SIDES;
ushorts[j] = 0; j++; // lines
ushorts[j] = LC_COL_EDGES; j++; // color
ushorts[j] = 0; j++; // quads
ushorts[j] = 0; j++; // tris
ushorts[j] = 4*SIDES; j++;
for (i = 0; i < SIDES; i++)
{
ushorts[j+i*4] = (lcuint16)verts + i;
if (i == SIDES-1)
ushorts[1+j+i*4] = (lcuint16)verts;
else
ushorts[1+j+i*4] = (lcuint16)verts + i + 1;
ushorts[2+j+i*4] = ushorts[j+i*4] + SIDES;
ushorts[3+j+i*4] = ushorts[1+j+i*4] + SIDES;
}
}
verts += 2*SIDES+1;
bytes += 2*sizeof(unsigned char) + 12*sizeof(float);
} break;
case LC_STUD2:
{
int size;
Matrix mat;
for (i = 0; i < 12; i++)
((float*)(bytes+2))[i] = LCFLOAT (((float*)(bytes+2))[i]);
mat.FromPacked ((float*)(bytes+2));
lcuint16 color = ConvertColor(*(bytes+1));
// Create the vertexes
for (i = 0; i < SIDES; i++)
{
// outside
m_fVertexArray[(verts+i+SIDES)*3] =
m_fVertexArray[(verts+i)*3] =
LC_STUD_RADIUS * costbl[i];
m_fVertexArray[(verts+i+SIDES)*3+1] =
m_fVertexArray[(verts+i)*3+1] =
LC_STUD_RADIUS * sintbl[i];
m_fVertexArray[(verts+i)*3+2] = LC_STUD_HEIGHT;
m_fVertexArray[(verts+i+SIDES)*3+2] = 0;
// inside
m_fVertexArray[(verts+i+2*SIDES)*3] =
m_fVertexArray[(verts+i+3*SIDES)*3] =
0.16f * costbl[i];
m_fVertexArray[(verts+i+2*SIDES)*3+1] =
m_fVertexArray[(verts+i+3*SIDES)*3+1] =
0.16f * sintbl[i];
m_fVertexArray[(verts+i+3*SIDES)*3+2] = LC_STUD_HEIGHT;
m_fVertexArray[(verts+i+2*SIDES)*3+2] = 0;
}
mat.TransformPoints(&m_fVertexArray[verts*3], 4*SIDES);
// colors + 2*num_prim + sides*prims
size = 9+SIDES*20;
if (m_nFlags & LC_PIECE_LONGDATA)
{
pGroup->drawinfo = malloc(sizeof(lcuint32)*size);
longs = (lcuint32*)pGroup->drawinfo;
longs[0] = 2; // colors
longs[1] = color;
longs[2] = SIDES*12;
j = 3;
// outside
for (i = 0; i < SIDES; i++)
{
longs[j+i*4] = (lcuint32)(verts + SIDES + i);
if (i == SIDES-1)
{
longs[j+1+i*4] = (lcuint32)verts + SIDES;
longs[j+2+i*4] = (lcuint32)verts;
}
else
{
longs[j+1+i*4] = (lcuint32)verts + SIDES + i + 1;
longs[j+2+i*4] = (lcuint32)verts + i + 1;
}
longs[j+3+i*4] = (lcuint32)verts + i;
}
j += 4*SIDES;
// inside
for (i = 0; i < SIDES; i++)
{
longs[j+i*4] = (lcuint32)(verts + 2*SIDES + i);
if (i == SIDES-1)
{
longs[j+1+i*4] = (lcuint32)verts + 2*SIDES;
longs[j+2+i*4] = (lcuint32)verts + 3*SIDES;
}
else
{
longs[j+1+i*4] = (lcuint32)verts + 2*SIDES + i + 1;
longs[j+2+i*4] = (lcuint32)verts + 3*SIDES + i + 1;
}
longs[j+3+i*4] = (lcuint32)verts + 3*SIDES + i;
}
j += 4*SIDES;
// ring
for (i = 0; i < SIDES; i++)
{
longs[j+i*4] = (lcuint32)(verts + i);
if (i == SIDES-1)
{
longs[j+1+i*4] = (lcuint32)verts;
longs[j+2+i*4] = (lcuint32)verts + 3*SIDES;
}
else
{
longs[j+1+i*4] = (lcuint32)verts + i + 1;
longs[j+2+i*4] = (lcuint32)verts + 3*SIDES + i + 1;
}
longs[j+3+i*4] = (lcuint32)verts + 3*SIDES + i;
}
j += 4*SIDES;
longs[j] = 0; j++; // tris
longs[j] = 0; j++; // lines
longs[j] = LC_COL_EDGES; j++; // color
longs[j] = 0; j++; // quads
longs[j] = 0; j++; // tris
longs[j] = 8*SIDES; j++;
// outside
for (i = 0; i < SIDES; i++)
{
longs[j+i*4] = (lcuint32)verts + i;
if (i == SIDES-1)
longs[1+j+i*4] = (lcuint32)verts;
else
longs[1+j+i*4] = (lcuint32)verts + i + 1;
longs[2+j+i*4] = longs[j+i*4] + SIDES;
longs[3+j+i*4] = longs[1+j+i*4] + SIDES;
}
j += 4*SIDES;
// inside
for (i = 0; i < SIDES; i++)
{
longs[j+i*4] = (lcuint32)verts + 2*SIDES + i;
if (i == SIDES-1)
longs[1+j+i*4] = (lcuint32)verts + 2*SIDES;
else
longs[1+j+i*4] = (lcuint32)verts + 2*SIDES + i + 1;
longs[2+j+i*4] = longs[j+i*4] + SIDES;
longs[3+j+i*4] = longs[1+j+i*4] + SIDES;
}
}
else
{
pGroup->drawinfo = malloc(sizeof(lcuint16)*size);
ushorts = (lcuint16*)pGroup->drawinfo;
ushorts[0] = 2; // colors
ushorts[1] = color;
ushorts[2] = SIDES*12;
j = 3;
// outside
for (i = 0; i < SIDES; i++)
{
ushorts[j+i*4] = (lcuint16)(verts + SIDES + i);
if (i == SIDES-1)
{
ushorts[j+1+i*4] = (lcuint16)verts + SIDES;
ushorts[j+2+i*4] = (lcuint16)verts;
}
else
{
ushorts[j+1+i*4] = (lcuint16)verts + SIDES + i + 1;
ushorts[j+2+i*4] = (lcuint16)verts + i + 1;
}
ushorts[j+3+i*4] = (lcuint16)verts + i;
}
j += 4*SIDES;
// inside
for (i = 0; i < SIDES; i++)
{
ushorts[j+i*4] = (lcuint16)(verts + 3*SIDES + i);
if (i == SIDES-1)
{
ushorts[j+1+i*4] = (lcuint16)verts + 3*SIDES;
ushorts[j+2+i*4] = (lcuint16)verts + 2*SIDES;
}
else
{
ushorts[j+1+i*4] = (lcuint16)verts + 3*SIDES + i + 1;
ushorts[j+2+i*4] = (lcuint16)verts + 2*SIDES + i + 1;
}
ushorts[j+3+i*4] = (lcuint16)verts + 2*SIDES + i;
}
j += 4*SIDES;
// ring
for (i = 0; i < SIDES; i++)
{
ushorts[j+i*4] = (lcuint16)(verts + i);
if (i == SIDES-1)
{
ushorts[j+1+i*4] = (lcuint16)verts;
ushorts[j+2+i*4] = (lcuint16)verts + 3*SIDES;
}
else
{
ushorts[j+1+i*4] = (lcuint16)verts + i + 1;
ushorts[j+2+i*4] = (lcuint16)verts + 3*SIDES + i + 1;
}
ushorts[j+3+i*4] = (lcuint16)verts + 3*SIDES + i;
}
j += 4*SIDES;
ushorts[j] = 0; j++; // tris
ushorts[j] = 0; j++; // lines
ushorts[j] = LC_COL_EDGES; j++; // color
ushorts[j] = 0; j++; // quads
ushorts[j] = 0; j++; // tris
ushorts[j] = 8*SIDES; j++;
// outside
for (i = 0; i < SIDES; i++)
{
ushorts[j+i*4] = (lcuint16)verts + i;
if (i == SIDES-1)
ushorts[1+j+i*4] = (lcuint16)verts;
else
ushorts[1+j+i*4] = (lcuint16)verts + i + 1;
ushorts[2+j+i*4] = ushorts[j+i*4] + SIDES;
ushorts[3+j+i*4] = ushorts[1+j+i*4] + SIDES;
}
j += 4*SIDES;
// inside
for (i = 0; i < SIDES; i++)
{
ushorts[j+i*4] = (lcuint16)verts + 2*SIDES + i;
if (i == SIDES-1)
ushorts[1+j+i*4] = (lcuint16)verts + 2*SIDES;
else
ushorts[1+j+i*4] = (lcuint16)verts + 2*SIDES + i + 1;
ushorts[2+j+i*4] = ushorts[j+i*4] + SIDES;
ushorts[3+j+i*4] = ushorts[1+j+i*4] + SIDES;
}
}
verts += 4*SIDES;
bytes += 2*sizeof(unsigned char) + 12*sizeof(float);
} break;
case LC_STUD3:
{
int size;
Matrix mat;
for (i = 0; i < 12; i++)
((float*)(bytes+2))[i] = LCFLOAT (((float*)(bytes+2))[i]);
mat.FromPacked ((float*)(bytes+2));
lcuint16 color = ConvertColor(*(bytes+1));
// Create the vertexes
for (i = 0; i < SIDES; i++)
{
m_fVertexArray[(verts+i+SIDES)*3] =
m_fVertexArray[(verts+i)*3] =
0.16f * costbl[i];
m_fVertexArray[(verts+i+SIDES)*3+1] =
m_fVertexArray[(verts+i)*3+1] =
0.16f * sintbl[i];
m_fVertexArray[(verts+i)*3+2] = 0;
m_fVertexArray[(verts+i+SIDES)*3+2] = LC_STUD_HEIGHT;
}
m_fVertexArray[(verts+2*SIDES)*3] = 0;
m_fVertexArray[(verts+2*SIDES)*3+1] = 0;
m_fVertexArray[(verts+2*SIDES)*3+2] = LC_STUD_HEIGHT;
mat.TransformPoints(&m_fVertexArray[verts*3], 2*SIDES+1);
// colors + 2*num_prim + sides*prims
size = 9+SIDES*11;
if (m_nFlags & LC_PIECE_LONGDATA)
{
pGroup->drawinfo = malloc(sizeof(lcuint32)*size);
longs = (lcuint32*)pGroup->drawinfo;
longs[0] = 2; // colors
longs[1] = color;
longs[2] = SIDES*4;
j = 3;
for (i = 0; i < SIDES; i++)
{
longs[3+i*4] = (lcuint32)verts + SIDES + i;
if (i == SIDES-1)
{
longs[4+i*4] = (lcuint32)verts + SIDES;
longs[5+i*4] = (lcuint32)verts;
}
else
{
longs[4+i*4] = (lcuint32)verts + SIDES + i + 1;
longs[5+i*4] = (lcuint32)verts + i + 1;
}
longs[6+i*4] = (lcuint32)verts + i;
}
j += 4*SIDES;
longs[j] = SIDES*3;
j++;
for (i = 0; i < SIDES; i++)
{
if (i == SIDES-1)
longs[j+i*3] = (lcuint16)verts + SIDES;
else
longs[j+i*3] = (lcuint16)verts + SIDES + i + 1;
longs[1+j+i*3] = (lcuint16)verts + SIDES + i;
longs[2+j+i*3] = (lcuint16)verts + 2*SIDES;
}
j += 3*SIDES;
longs[j] = 0; j++; // lines
longs[j] = LC_COL_EDGES; j++; // color
longs[j] = 0; j++; // quads
longs[j] = 0; j++; // tris
longs[j] = 4*SIDES; j++;
for (i = 0; i < SIDES; i++)
{
longs[j+i*4] = (lcuint32)verts + i;
if (i == SIDES-1)
longs[1+j+i*4] = (lcuint32)verts;
else
longs[1+j+i*4] = (lcuint32)verts + i + 1;
longs[2+j+i*4] = longs[j+i*4] + SIDES;
longs[3+j+i*4] = longs[1+j+i*4] + SIDES;
}
}
else
{
pGroup->drawinfo = malloc(sizeof(lcuint16)*size);
ushorts = (lcuint16*)pGroup->drawinfo;
ushorts[0] = 2; // colors
ushorts[1] = color;
ushorts[2] = SIDES*4;
j = 3;
for (i = 0; i < SIDES; i++)
{
ushorts[3+i*4] = (lcuint16)(verts + SIDES + i);
if (i == SIDES-1)
{
ushorts[4+i*4] = (lcuint16)verts + SIDES;
ushorts[5+i*4] = (lcuint16)verts;
}
else
{
ushorts[4+i*4] = (lcuint16)verts + SIDES + i + 1;
ushorts[5+i*4] = (lcuint16)verts + i + 1;
}
ushorts[6+i*4] = (lcuint16)verts + i;
}
j += 4*SIDES;
ushorts[j] = SIDES*3;
j++;
for (i = 0; i < SIDES; i++)
{
if (i == SIDES-1)
ushorts[j+i*3] = (lcuint16)verts + SIDES;
else
ushorts[j+i*3] = (lcuint16)verts + SIDES + i + 1;
ushorts[1+j+i*3] = (lcuint16)verts + SIDES + i;
ushorts[2+j+i*3] = (lcuint16)verts + 2*SIDES;
}
j += 3*SIDES;
ushorts[j] = 0; j++; // lines
ushorts[j] = LC_COL_EDGES; j++; // color
ushorts[j] = 0; j++; // quads
ushorts[j] = 0; j++; // tris
ushorts[j] = 4*SIDES; j++;
for (i = 0; i < SIDES; i++)
{
ushorts[j+i*4] = (lcuint16)verts + i;
if (i == SIDES-1)
ushorts[1+j+i*4] = (lcuint16)verts;
else
ushorts[1+j+i*4] = (lcuint16)verts + i + 1;
ushorts[2+j+i*4] = ushorts[j+i*4] + SIDES;
ushorts[3+j+i*4] = ushorts[1+j+i*4] + SIDES;
}
}
verts += 2*SIDES+1;
bytes += 2*sizeof(unsigned char) + 12*sizeof(float);
} break;
case LC_STUD4:
{
int size;
Matrix mat;
for (i = 0; i < 12; i++)
((float*)(bytes+2))[i] = LCFLOAT (((float*)(bytes+2))[i]);
mat.FromPacked ((float*)(bytes+2));
lcuint16 color = ConvertColor(*(bytes+1));
// Create the vertexes
for (i = 0; i < SIDES; i++)
{
// outside
m_fVertexArray[(verts+i+SIDES)*3] =
m_fVertexArray[(verts+i)*3] =
LC_KNOB_RADIUS * costbl[i];
m_fVertexArray[(verts+i+SIDES)*3+1] =
m_fVertexArray[(verts+i)*3+1] =
LC_KNOB_RADIUS * sintbl[i];
m_fVertexArray[(verts+i)*3+2] = LC_STUD_HEIGHT;
m_fVertexArray[(verts+i+SIDES)*3+2] = 0;
// inside
m_fVertexArray[(verts+i+2*SIDES)*3] =
m_fVertexArray[(verts+i+3*SIDES)*3] =
LC_STUD_RADIUS * costbl[i];
m_fVertexArray[(verts+i+2*SIDES)*3+1] =
m_fVertexArray[(verts+i+3*SIDES)*3+1] =
LC_STUD_RADIUS * sintbl[i];
m_fVertexArray[(verts+i+3*SIDES)*3+2] = LC_STUD_HEIGHT;
m_fVertexArray[(verts+i+2*SIDES)*3+2] = 0;
}
mat.TransformPoints(&m_fVertexArray[verts*3], 4*SIDES);
// colors + 2*num_prim + sides*prims
size = 9+SIDES*20;
if (m_nFlags & LC_PIECE_LONGDATA)
{
pGroup->drawinfo = malloc(sizeof(lcuint32)*size);
longs = (lcuint32*)pGroup->drawinfo;
longs[0] = 2; // colors
longs[1] = color;
longs[2] = SIDES*12;
j = 3;
// outside
for (i = 0; i < SIDES; i++)
{
longs[j+i*4] = (lcuint32)(verts + i);
if (i == SIDES-1)
{
longs[j+1+i*4] = (lcuint32)verts;
longs[j+2+i*4] = (lcuint32)verts + SIDES;
}
else
{
longs[j+1+i*4] = (lcuint32)verts + i + 1;
longs[j+2+i*4] = (lcuint32)verts + SIDES + i + 1;
}
longs[j+3+i*4] = (lcuint32)verts + SIDES + i;
}
j += 4*SIDES;
// inside
for (i = 0; i < SIDES; i++)
{
longs[j+i*4] = (lcuint32)(verts + 3*SIDES + i);
if (i == SIDES-1)
{
longs[j+1+i*4] = (lcuint32)verts + 3*SIDES;
longs[j+2+i*4] = (lcuint32)verts + 2*SIDES;
}
else
{
longs[j+1+i*4] = (lcuint32)verts + 3*SIDES + i + 1;
longs[j+2+i*4] = (lcuint32)verts + 2*SIDES + i + 1;
}
longs[j+3+i*4] = (lcuint32)verts + 2*SIDES + i;
}
j += 4*SIDES;
// ring
for (i = 0; i < SIDES; i++)
{
longs[j+i*4] = (lcuint32)(verts + 3*SIDES + i);
if (i == SIDES-1)
{
longs[j+1+i*4] = (lcuint32)verts + 3*SIDES;
longs[j+2+i*4] = (lcuint32)verts;
}
else
{
longs[j+1+i*4] = (lcuint32)verts + 3*SIDES + i + 1;
longs[j+2+i*4] = (lcuint32)verts + i + 1;
}
longs[j+3+i*4] = (lcuint32)verts + i;
}
j += 4*SIDES;
longs[j] = 0; j++; // tris
longs[j] = 0; j++; // lines
longs[j] = LC_COL_EDGES; j++; // color
longs[j] = 0; j++; // quads
longs[j] = 0; j++; // tris
longs[j] = 8*SIDES; j++;
// outside
for (i = 0; i < SIDES; i++)
{
longs[j+i*4] = (lcuint32)verts + i;
if (i == SIDES-1)
longs[1+j+i*4] = (lcuint32)verts;
else
longs[1+j+i*4] = (lcuint32)verts + i + 1;
longs[2+j+i*4] = longs[j+i*4] + SIDES;
longs[3+j+i*4] = longs[1+j+i*4] + SIDES;
}
j += 4*SIDES;
// inside
for (i = 0; i < SIDES; i++)
{
longs[j+i*4] = (lcuint32)verts + 2*SIDES + i;
if (i == SIDES-1)
longs[1+j+i*4] = (lcuint32)verts + 2*SIDES;
else
longs[1+j+i*4] = (lcuint32)verts + 2*SIDES + i + 1;
longs[2+j+i*4] = longs[j+i*4] + SIDES;
longs[3+j+i*4] = longs[1+j+i*4] + SIDES;
}
}
else
{
pGroup->drawinfo = malloc(sizeof(lcuint16)*size);
ushorts = (lcuint16*)pGroup->drawinfo;
ushorts[0] = 2; // colors
ushorts[1] = color;
ushorts[2] = SIDES*12;
j = 3;
// outside
for (i = 0; i < SIDES; i++)
{
ushorts[j+i*4] = (lcuint16)(verts + i);
if (i == SIDES-1)
{
ushorts[j+1+i*4] = (lcuint16)verts;
ushorts[j+2+i*4] = (lcuint16)verts + SIDES;
}
else
{
ushorts[j+1+i*4] = (lcuint16)verts + i + 1;
ushorts[j+2+i*4] = (lcuint16)verts + SIDES + i + 1;
}
ushorts[j+3+i*4] = (lcuint16)verts + SIDES + i;
}
j += 4*SIDES;
// inside
for (i = 0; i < SIDES; i++)
{
ushorts[j+i*4] = (lcuint16)(verts + 2*SIDES + i);
if (i == SIDES-1)
{
ushorts[j+1+i*4] = (lcuint16)verts + 2*SIDES;
ushorts[j+2+i*4] = (lcuint16)verts + 3*SIDES;
}
else
{
ushorts[j+1+i*4] = (lcuint16)verts + 2*SIDES + i + 1;
ushorts[j+2+i*4] = (lcuint16)verts + 3*SIDES + i + 1;
}
ushorts[j+3+i*4] = (lcuint16)verts + 3*SIDES + i;
}
j += 4*SIDES;
// ring
for (i = 0; i < SIDES; i++)
{
ushorts[j+i*4] = (lcuint16)(verts + 3*SIDES + i);
if (i == SIDES-1)
{
ushorts[j+1+i*4] = (lcuint16)verts + 3*SIDES;
ushorts[j+2+i*4] = (lcuint16)verts;
}
else
{
ushorts[j+1+i*4] = (lcuint16)verts + 3*SIDES + i + 1;
ushorts[j+2+i*4] = (lcuint16)verts + i + 1;
}
ushorts[j+3+i*4] = (lcuint16)verts + i;
}
j += 4*SIDES;
ushorts[j] = 0; j++; // tris
ushorts[j] = 0; j++; // lines
ushorts[j] = LC_COL_EDGES; j++; // color
ushorts[j] = 0; j++; // quads
ushorts[j] = 0; j++; // tris
ushorts[j] = 8*SIDES; j++;
// outside
for (i = 0; i < SIDES; i++)
{
ushorts[j+i*4] = (lcuint16)verts + i;
if (i == SIDES-1)
ushorts[1+j+i*4] = (lcuint16)verts;
else
ushorts[1+j+i*4] = (lcuint16)verts + i + 1;
ushorts[2+j+i*4] = ushorts[j+i*4] + SIDES;
ushorts[3+j+i*4] = ushorts[1+j+i*4] + SIDES;
}
j += 4*SIDES;
// inside
for (i = 0; i < SIDES; i++)
{
ushorts[j+i*4] = (lcuint16)verts + 2*SIDES + i;
if (i == SIDES-1)
ushorts[1+j+i*4] = (lcuint16)verts + 2*SIDES;
else
ushorts[1+j+i*4] = (lcuint16)verts + 2*SIDES + i + 1;
ushorts[2+j+i*4] = ushorts[j+i*4] + SIDES;
ushorts[3+j+i*4] = ushorts[1+j+i*4] + SIDES;
}
}
verts += 4*SIDES;
bytes += 2*sizeof(unsigned char) + 12*sizeof(float);
} break;
}
bytes++; // should be 0
}
free(buf);
/*
// Now create the information for the CD
// If the object is big this can block the program for serveral seconds.
// ATTENTION: The RAPID CD library is based on triangles.
if (pInfo->pRModel)
delete pInfo->pRModel;
pInfo->pRModel = new CRModel();
pInfo->pRModel->BeginModel();
UINT col, loc, j, i;
int vert = 0;
for (UINT c = 0; c < pInfo->cons; c++)
{
if (pInfo->connection[c].info == NULL)
continue;
if (pInfo->count > 65535)
{
UINT* info = (UINT*)pInfo->connection[c].info;
loc = 1;
col = info[0];
while (col)
{
loc++;
j = info[loc];
for (i = 0; i < j; i+=4)
{
pInfo->pRModel->AddTri(&pInfo->vertex[info[loc+i+1]*3], &pInfo->vertex[info[loc+i+2]*3],
&pInfo->vertex[info[loc+i+3]*3], vert);
vert++;
pInfo->pRModel->AddTri(&pInfo->vertex[info[loc+i+3]*3], &pInfo->vertex[info[loc+i+4]*3],
&pInfo->vertex[info[loc+i+1]*3], vert);
vert++;
}
loc += j+1;
j = info[loc];
for (i = 0; i < j; i+=3)
{
pInfo->pRModel->AddTri(&pInfo->vertex[info[loc+i+1]*3], &pInfo->vertex[info[loc+i+2]*3],
&pInfo->vertex[info[loc+i+3]*3], vert);
vert++;
}
loc += j+1;
loc += info[loc]+1;
col--;
}
}
else
{
WORD* info = (WORD*)pInfo->connection[c].info;
loc = 1;
col = info[0];
while (col)
{
loc++;
j = info[loc];
for (i = 0; i < j; i+=4)
{
pInfo->pRModel->AddTri(&pInfo->vertex[info[loc+i+1]*3], &pInfo->vertex[info[loc+i+2]*3],
&pInfo->vertex[info[loc+i+3]*3], vert);
vert++;
pInfo->pRModel->AddTri(&pInfo->vertex[info[loc+i+3]*3], &pInfo->vertex[info[loc+i+4]*3],
&pInfo->vertex[info[loc+i+1]*3], vert);
vert++;
}
loc += j+1;
j = info[loc];
for (i = 0; i < j; i+=3)
{
pInfo->pRModel->AddTri(&pInfo->vertex[info[loc+i+1]*3], &pInfo->vertex[info[loc+i+2]*3],
&pInfo->vertex[info[loc+i+3]*3], vert);
vert++;
}
loc += j+1;
loc += info[loc]+1;
col--;
}
}
}
pInfo->pRModel->EndModel();
*/
}
void PieceInfo::FreeInformation()
{
if (m_nBoxList != 0)
glDeleteLists(m_nBoxList, 1);
m_nBoxList = 0;
if (m_fVertexArray != NULL)
{
free(m_fVertexArray);
m_fVertexArray = NULL;
m_nVertexCount = 0;
}
if (m_pConnections != NULL)
{
free(m_pConnections);
m_pConnections = NULL;
m_nConnectionCount = 0;
}
if (m_pGroups != NULL)
{
while (m_nGroupCount--)
if (m_pGroups[m_nGroupCount].drawinfo)
free(m_pGroups[m_nGroupCount].drawinfo);
free(m_pGroups);
m_pGroups = NULL;
}
if (m_pTextures != NULL)
{
// while (m_nTextureCount--)
// if (m_pTextures[m_nTextureCount].texture)
// m_pTextures[m_nTextureCount].texture->DeRef();
free(m_pTextures);
m_pTextures = NULL;
}
if (m_nFlags & LC_PIECE_LONGDATA_RUNTIME)
{
m_nFlags &= ~(LC_PIECE_LONGDATA | LC_PIECE_LONGDATA_RUNTIME);
}
}
// Zoom extents for the preview window and print catalog
void PieceInfo::ZoomExtents(float Fov, float Aspect, float* EyePos) const
{
float Eye[3] = { -100.0f, -100.0f, 50.0f };
if (EyePos)
{
Eye[0] = EyePos[0];
Eye[1] = EyePos[1];
Eye[2] = EyePos[2];
}
// Get perspective information.
float Alpha = Fov / 2.0f;
float HalfFovY = Fov / 2.0f;
HalfFovY = HalfFovY * 3.1415f / 180.0f;
float HalfFovX = (float)atan(tan(HalfFovY) * Aspect);
HalfFovX = HalfFovX * 180.0f / 3.1415f;
float Beta = HalfFovX;
// Get vectors from the position.
float NonOrthoTop[3] = { 0.0f, 0.0f, 1.0f };
float Target[3] = { (m_fDimensions[0] + m_fDimensions[3])*0.5f, (m_fDimensions[1] + m_fDimensions[4])*0.5f,
(m_fDimensions[2] + m_fDimensions[5])*0.5f };
float Front[3] = { Target[0] - Eye[0], Target[1] - Eye[1], Target[2] - Eye[2]};
float Side[3];
Side[0] = NonOrthoTop[1]*Front[2] - NonOrthoTop[2]*Front[1];
Side[1] = NonOrthoTop[2]*Front[0] - NonOrthoTop[0]*Front[2];
Side[2] = NonOrthoTop[0]*Front[1] - NonOrthoTop[1]*Front[0];
// Make sure the up vector is orthogonal.
float Top[3];
Top[0] = Front[1]*Side[2] - Front[2]*Side[1];
Top[1] = Front[2]*Side[0] - Front[0]*Side[2];
Top[2] = Front[0]*Side[1] - Front[1]*Side[0];
// Calculate the plane normals.
Matrix Mat;
float TopNormal[3] = { -Top[0], -Top[1], -Top[2] };
Mat.FromAxisAngle(Side, -Alpha);
Mat.TransformPoints(TopNormal, 1);
float BottomNormal[3] = { Top[0], Top[1], Top[2] };
Mat.FromAxisAngle(Side, Alpha);
Mat.TransformPoints(BottomNormal, 1);
float RightNormal[3] = { Side[0], Side[1], Side[2] };
Mat.FromAxisAngle(Top, -Beta);
Mat.TransformPoints(RightNormal, 1);
float LeftNormal[3] = { -Side[0], -Side[1], -Side[2] };
Mat.FromAxisAngle(Top, Beta);
Mat.TransformPoints(LeftNormal, 1);
// Calculate the plane offsets from the normals and the eye position.
float TopD = Eye[0]*-TopNormal[0] + Eye[1]*-TopNormal[1] + Eye[2]*-TopNormal[2];
float BottomD = Eye[0]*-BottomNormal[0] + Eye[1]*-BottomNormal[1] + Eye[2]*-BottomNormal[2];
float LeftD = Eye[0]*-LeftNormal[0] + Eye[1]*-LeftNormal[1] + Eye[2]*-LeftNormal[2];
float RightD = Eye[0]*-RightNormal[0] + Eye[1]*-RightNormal[1] + Eye[2]*-RightNormal[2];
// Now generate the planes
float Inv;
Inv = 1.0f/(float)sqrt(TopNormal[0]*TopNormal[0]+TopNormal[1]*TopNormal[1]+TopNormal[2]*TopNormal[2]);
float TopPlane[4] = { TopNormal[0]*Inv, TopNormal[1]*Inv, TopNormal[2]*Inv, TopD*Inv };
Inv = 1.0f/(float)sqrt(BottomNormal[0]*BottomNormal[0]+BottomNormal[1]*BottomNormal[1]+BottomNormal[2]*BottomNormal[2]);
float BottomPlane[4] = { BottomNormal[0]*Inv, BottomNormal[1]*Inv, BottomNormal[2]*Inv, BottomD*Inv };
Inv = 1.0f/(float)sqrt(LeftNormal[0]*LeftNormal[0]+LeftNormal[1]*LeftNormal[1]+LeftNormal[2]*LeftNormal[2]);
float LeftPlane[4] = { LeftNormal[0]*Inv, LeftNormal[1]*Inv, LeftNormal[2]*Inv, LeftD*Inv };
Inv = 1.0f/(float)sqrt(RightNormal[0]*RightNormal[0]+RightNormal[1]*RightNormal[1]+RightNormal[2]*RightNormal[2]);
float RightPlane[4] = { RightNormal[0]*Inv, RightNormal[1]*Inv, RightNormal[2]*Inv, RightD*Inv };
float Verts[8][3] = {
{ m_fDimensions[0], m_fDimensions[1], m_fDimensions[5] },
{ m_fDimensions[3], m_fDimensions[1], m_fDimensions[5] },
{ m_fDimensions[0], m_fDimensions[1], m_fDimensions[2] },
{ m_fDimensions[3], m_fDimensions[4], m_fDimensions[5] },
{ m_fDimensions[3], m_fDimensions[4], m_fDimensions[2] },
{ m_fDimensions[0], m_fDimensions[4], m_fDimensions[2] },
{ m_fDimensions[0], m_fDimensions[4], m_fDimensions[5] },
{ m_fDimensions[3], m_fDimensions[1], m_fDimensions[2] } };
float SmallestU = 10000.0f;
for (int i = 0; i < 4; i++)
{
float* Plane;
switch (i)
{
case 0: Plane = TopPlane; break;
case 1: Plane = BottomPlane; break;
case 2: Plane = LeftPlane; break;
case 3: Plane = RightPlane; break;
}
for (int j = 0; j < 8; j++)
{
Plane[3] = Verts[j][0]*-Plane[0] + Verts[j][1]*-Plane[1] + Verts[j][2]*-Plane[2];
// Intersect the eye line with the plane, NewEye = Eye + u * (Target - Eye)
float u = Eye[0] * Plane[0] + Eye[1] * Plane[1] + Eye[2] * Plane[2] + Plane[3];
u /= Front[0] * -Plane[0] + Front[1] * -Plane[1] + Front[2] * -Plane[2];
if (u < SmallestU)
SmallestU = u;
}
}
float NewEye[3];
NewEye[0] = Eye[0] + Front[0] * SmallestU;
NewEye[1] = Eye[1] + Front[1] * SmallestU;
NewEye[2] = Eye[2] + Front[2] * SmallestU;
if (EyePos)
{
EyePos[0] = NewEye[0];
EyePos[1] = NewEye[1];
EyePos[2] = NewEye[2];
}
Vector FrontVec, RightVec, UpVec;
// Calculate view matrix.
UpVec = Vector(Top[0], Top[1], Top[2]);
UpVec.Normalize();
FrontVec = Vector(Front[0], Front[1], Front[2]);
FrontVec.Normalize();
RightVec = Vector(Side[0], Side[1], Side[2]);
RightVec.Normalize();
float ViewMat[16];
ViewMat[0] = -RightVec[0]; ViewMat[4] = -RightVec[1]; ViewMat[8] = -RightVec[2]; ViewMat[12] = 0.0;
ViewMat[1] = UpVec[0]; ViewMat[5] = UpVec[1]; ViewMat[9] = UpVec[2]; ViewMat[13] = 0.0;
ViewMat[2] = -FrontVec[0]; ViewMat[6] = -FrontVec[1]; ViewMat[10] = -FrontVec[2]; ViewMat[14] = 0.0;
ViewMat[3] = 0.0; ViewMat[7] = 0.0; ViewMat[11] = 0.0; ViewMat[15] = 1.0;
// Load ViewMatrix
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glMultMatrixf(ViewMat);
glTranslatef(-NewEye[0], -NewEye[1], -NewEye[2]);
}
// Used by the print catalog and HTML instructions functions.
void PieceInfo::RenderOnce(int nColor)
{
AddRef();
RenderPiece(nColor);
DeRef();
}
// Called by the piece preview and from RenderOnce()
void PieceInfo::RenderPiece(int nColor)
{
lcuint16 sh, curcolor;
DRAWGROUP* pGroup;
for (sh = 0; sh < m_nTextureCount; sh++)
{
// if (!m_pTextures[sh].texture->IsLoaded())
// m_pTextures[sh].texture->Load(false);
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL);
m_pTextures[sh].texture->MakeCurrent();
if (m_pTextures[sh].color == LC_COL_DEFAULT)
glColor3ubv(FlatColorArray[nColor]);
if (nColor > 13 && nColor < 22)
{
glEnable (GL_BLEND);
glDepthMask (GL_FALSE);
}
else
{
glDepthMask (GL_TRUE);
glDisable (GL_BLEND);
}
glEnable(GL_TEXTURE_2D);
glBegin(GL_QUADS);
glTexCoord2fv(m_pTextures[sh].coords[0]);
glVertex3fv(m_pTextures[sh].vertex[0]);
glTexCoord2fv(m_pTextures[sh].coords[1]);
glVertex3fv(m_pTextures[sh].vertex[1]);
glTexCoord2fv(m_pTextures[sh].coords[2]);
glVertex3fv(m_pTextures[sh].vertex[2]);
glTexCoord2fv(m_pTextures[sh].coords[3]);
glVertex3fv(m_pTextures[sh].vertex[3]);
glEnd();
glDisable(GL_TEXTURE_2D);
}
glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer (3, GL_FLOAT, 0, m_fVertexArray);
sh = m_nGroupCount;
for (pGroup = m_pGroups; sh--; pGroup++)
{
if (m_nFlags & LC_PIECE_LONGDATA)
{
lcuint32* info, colors;
info = (lcuint32*)pGroup->drawinfo;
colors = *info;
info++;
while (colors--)
{
if (*info == LC_COL_DEFAULT)
curcolor = nColor;
else
curcolor = (unsigned short)*info;
info++;
if (curcolor > 13 && curcolor < 22)
{
glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glEnable (GL_BLEND);
glDepthMask (GL_FALSE);
glColor4ubv (ColorArray[curcolor]);
}
else
{
glDepthMask (GL_TRUE);
glDisable (GL_BLEND);
glColor3ubv (FlatColorArray[curcolor]);
}
if (*info)
glDrawElements(GL_QUADS, *info, GL_UNSIGNED_INT, info+1);
info += *info + 1;
if (*info)
glDrawElements(GL_TRIANGLES, *info, GL_UNSIGNED_INT, info+1);
info += *info + 1;
if (*info)
glDrawElements(GL_LINES, *info, GL_UNSIGNED_INT, info+1);
info += *info + 1;
}
}
else
{
lcuint16* info, colors;
info = (lcuint16*)pGroup->drawinfo;
colors = *info;
info++;
while (colors--)
{
if (*info == LC_COL_DEFAULT)
curcolor = nColor;
else
curcolor = *info;
info++;
if (curcolor > 13 && curcolor < 22)
{
glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glEnable (GL_BLEND);
glDepthMask (GL_FALSE);
glColor4ubv (ColorArray[curcolor]);
}
else
{
glDepthMask (GL_TRUE);
glDisable (GL_BLEND);
glColor3ubv(FlatColorArray[curcolor]);
}
if (*info)
glDrawElements(GL_QUADS, *info, GL_UNSIGNED_SHORT, info+1);
info += *info + 1;
if (*info)
glDrawElements(GL_TRIANGLES, *info, GL_UNSIGNED_SHORT, info+1);
info += *info + 1;
if (*info)
glDrawElements(GL_LINES, *info, GL_UNSIGNED_SHORT, info+1);
info += *info + 1;
}
}
}
// if glDepthMask is GL_FALSE then glClearBuffer (GL_DEPTH_BUFFER_BIT) doesn't work
glDepthMask (GL_TRUE);
}
void PieceInfo::WriteWavefront(FILE* file, unsigned char color, unsigned long* start)
{
unsigned short group;
const char* colname;
for (group = 0; group < m_nGroupCount; group++)
{
if (m_nFlags & LC_PIECE_LONGDATA)
{
unsigned long* info = (unsigned long*)m_pGroups[group].drawinfo;
unsigned long count, colors = *info;
info++;
while (colors--)
{
if (*info == LC_COL_DEFAULT)
colname = altcolornames[color];
else
{
if (*info >= LC_MAXCOLORS)
{
info++;
info += *info + 1;
info += *info + 1;
info += *info + 1;
continue;
}
colname = altcolornames[*info];
}
info++;
// skip if color only have lines
if ((*info == 0) && (info[1] == 0))
{
info += 2;
info += *info + 1;
continue;
}
fprintf(file, "usemtl %s\n", colname);
for (count = *info, info++; count; count -= 4)
{
fprintf(file, "f %ld %ld %ld %ld\n",
*info+*start, info[1]+*start, info[2]+*start, info[3]+*start);
info += 4;
}
for (count = *info, info++; count; count -= 3)
{
fprintf(file, "f %ld %ld %ld\n",
*info+*start, info[1]+*start, info[2]+*start);
info += 3;
}
info += *info + 1;
}
}
else
{
unsigned short* info = (unsigned short*)m_pGroups[group].drawinfo;
unsigned short count, colors = *info;
info++;
while (colors--)
{
if (*info == LC_COL_DEFAULT)
colname = altcolornames[color];
else
{
if (*info >= LC_MAXCOLORS)
{
info++;
info += *info + 1;
info += *info + 1;
info += *info + 1;
continue;
}
colname = altcolornames[*info];
}
info++;
// skip if color only have lines
if ((*info == 0) && (info[1] == 0))
{
info += 2;
info += *info + 1;
continue;
}
fprintf(file, "usemtl %s\n", colname);
for (count = *info, info++; count; count -= 4)
{
fprintf(file, "f %ld %ld %ld %ld\n",
*info+*start, info[1]+*start, info[2]+*start, info[3]+*start);
info += 4;
}
for (count = *info, info++; count; count -= 3)
{
fprintf(file, "f %ld %ld %ld\n",
*info+*start, info[1]+*start, info[2]+*start);
info += 3;
}
info += *info + 1;
}
}
}
*start += m_nVertexCount;
fputs("\n", file);
}